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Equivalence of generalized teleportation 
        & generalized encryption of quantum states 

Non-composable qbit: remote state preparation 
& approximation encryption of pure states
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Encryption of quantum states using a classical key
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Generalized teleportation:
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Generalized teleportation:
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Generalized encryption:

The connection goes further -- any generalized 
teleportation scheme can be turned into a generalized 
quantum encryption scheme and vice versa !!

* classical comm cost becomes key-cost and vice versa
* entanglement cost becomes Q comm cost & vice versa



Theorem 1: 
For any generalized teleportation protocol TP'
transmitting any d-dim state by consuming 
an entangled state         with local dimension d' 
and sending a message k    {1,2,...,m}, 
there is a generalized encryption scheme QEnc' for d-dim 
states consuming a key k    {1,2,...,m} & log d' qbits. 

We are given the meas, in TP'.  

We need to find in QEnc'.



Generalized teleportation:
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Generalized encryption:

want: if key=k, Alice can prepare from a copy of

take:

Then (1) correctness is immediate, (2) privacy follows 
from writing Bob's state in 2 ways before he receives k:

given TP' want

= postmeas state in B given outcome k in TP'
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Generalized encryption:

want: if key=k, Alice can prepare from a copy of

take:

given TP' want

= postmeas state in B given outcome k in TP'

Tempting, wrong, idea: Alice prepares with both AC

in her lab, meas MA as in TP', and obtain           in C. 

only wp But she cannot control the outcome -- gets 



How to apply given 
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Generalized teleportation:
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Theorem 2: 
Given a generalized encryption scheme QEnc' encrypting
any d-dim state to a d'-dim state     , consuming a key k     
{1,2,...,m} and log d' qbits, there is a generalized 
teleportation protocol TP' that comm any d-dim state by 
consuming an entangled state with local dimension d' 
and sending a message k    {1,2,...,m}. 

We are given  

in TP'.  We need to find meas, 

in QEnc'.

We first consider the case when 

(extend to 

as in QEnc'. 

later)

In TP', choose and choose 



Want: meas with outcome k with prob      postmeas state
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Coming up with the meas for TP': 
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Here, X = complex conjugate of X, dim(M)=d, dim(A)=d'.



partial trace of M (and identity map on AB):

use 

to move the partial trace of M to
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To complete the construction of the protocol TP', we now 
show that            is a POVM.  



From the privacy condition of QEnc':

Taking complex conjugate on both sides:

constant



What if in QEnc' ?

We will eventually take in TP'.

But for now, instead, let 

which is completely positive but not trace preserving
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Consequence 1:

The encryption of a d-dim quantum state requires 
a key that ranges over d   values.

Proof: suppose, by contradiction, there is a protocol with 
a key that ranges over fewer than d    values. 

This gives a generalized teleportation scheme to comm
a d-dim quantum state consuming entanglement and 
comm of a classical message with fewer than d    values, 
contradicting the optimality of standard teleportation.

d    key values are sufficient due to teleportation. 

Consequence 2: 

NB. Such a key is called "log d" key-bits (kbits).  



Preview:

To encrypt a classical message with d possible values, 
log d kbits are sufficient. 

Why quantum encryption incurs a factor of 2? 

1. We will see that quantum encryption of pure quantum 
states of d-dim requires only log d kbits, so, the factor 
of 2 comes from having to break the entanglement 
with a purification of the state to be encrypted.

This comes from remote state preparation (a discounted 
teleportation-like scheme).



2. Probably won't have time for this ... 
Barnum, Crepeau, Gottesman, Smith, Tapp (2002) 
compose a small quantum error detecting code (chosen
randomly with log key size) to QEnc.  This gives a 
quantum message authentication scheme, with small 
 prob(no error detected and message altered).

In 2004 (arXiv 2016), Hayden, Mayers, and I showed that
key recycling (of the encryption key) (and also the auth
scheme) is composably secure if no error is detected.  
This requires 1 authenticated cbit backwards, but allows
the catalytic (or amortized) key cost to be negligible in 
message length (if no one tampers with the transmission).

Both proofs rely on relating teleportation with encryption, 
and secure ebits. 

Today's lecture came from an attempt to lower bound the 
cost for remote state preparation ... 


