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Theory of Quantum Communication
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What is communication of data?

The no-signalling principle

Optimality of superdense coding and teleportation
Cobits, duality of SD and TP,

and unitary gates as bidirectional channels
Equivalence of generalized teleportation

& generalized encryption of quantum states

Non-composable gbit: remote state preparation
& approximation encryption of pure states
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Lo 99: Remote state preparation of a re-bit

Alice comes up with some > = a0y +bi1y, a.b <R
Her goal: prepare a copy of |¥> in Bob's lab

using entanglement & classical communication

Solution 1: teleportation

But is there a cheaper solution ?



Lo 99: Remote state preparation of a re-bit
Alice comes up with some ¥>= a1y +bl1y, a.b <R
Her goal: prepare a copy of |¥) in Bob's lab

using entanglement & classical communication
Solution 2:

Alice & Bob share 1 ebit 2= = (loo)+(11) AR

—

= = [(mow biy) @ (Alovt bly) + (-ble>+a 1)) @ (—blo>+a \‘7)]

Alice measures A along the basis: [¢7= dle>tbir
: e y=—=blo>+ a D)
& tells Bob the outcome (1 cbit)

If outcome is e, Bob has €07 n [meas LKE T

leo?
If outcome is le,y, Bob has le,” 5 - Xs
B

in which case he applies ZX to -
recover le.Y.

1T




Remarks:

1. Alice's measurement depends on a, b
Bob's decoding is independent on a, b

2. Why does RSP not contradict the optimality of TP?

(a) Only works for some qubit states, not all

but this limitation is not fundamental
-- we will see a solution for large dimension

(b) Protocol does not produce "gbits" -- it does not
preserve entanglement between the transmitted
system and an arbitrary reference system.

Crucial -- optimality proof of TP does not apply.

(c) Alice needs to know the state
Crucial -- knowledge is power ...



We will discuss:

1. remote state preparation for arbitrary pure
states in d dims

2. make connection with approximate encryption
3. open problems and known bounds

4. discuss extensions to superdense coding of
quantum state (leaving most in Al)



A useful lemma:
d
If Alice and Bob share |24) = 7 2. 1i1) on AB
and Alice applies (to A) meas with POVM { M« Y,
then, prob(k) = -ji? (Me) |

-
postmeas state conditioned on outcome k = My

Tr Mk

Proof: similar to self-study notes, show that

'T_r‘ ( |2, 5¢2,) Mo T_) = AL\“'\kT
I

prob(k) * postmeas state

Rule of thumb: to "induce" a state f , choose M « fT



Lo 99: Remote state preparation of a re-bit  (revisited)

Alice comes up with some ¥>= a0y +b11y, a.b <R

Her goal: prepare a copy of |¥> in Bob's lab
using entanglement & classical communication

ot -ab
P\

Solution 2: Alice & Bob share 1 ebit 1|2)

T T
Let Mo = (\¥o<¥1) = [az ab] , Moo= (X2 1Wee) X))
A

NB Mo, M; dependon ¥y, buwt Me+™M =T

Alice applies meas on A, with POVM Mo, ™M,
& tells Bob the outcome (1 cbit)

If outcome = 0, Bob has \¥:<t1 p [meas LK€

Mo, M,
If outcome = 1, Bob has X2 IYX¥12X g :\
B

In which case he applies ZX to
recover \Y»<Y|




Sufficient conditions + protocol for remote state preparation

Goal: Alice prepares a copy of |¥>& S < C° in Bob's lab
using a copy of |2,) (on AB) & classical comm

Suppose J Wi, Ur, ... Ue € WA () <ame set of
b YW eS, ¢ Y Uk [¥X¢] UL = L Ux for all ¥>
K=t
Then, each \¥) ¢ S defines a POVM {M«} on A:
t
M= 4 (Uerrxern uk )’ (Y20, = MeeT)

Protocol T: Alice comes up with some ¥> € S
Alice applies meas on A, with POVM  {M«]
& tells Bob the outcome k (log t cbits)

If outcome = k, Bob has Uk IYX¥] Uk n [

he applies U\E to recover \Y»<\y| 3, e T‘\:
d 3 ——




For protocol T :
How large does t have to be for the U«s to exist?
In Lo 99, S = equator of Bloch sphere, and t=2 sufficient.

fS = ¢¢, t=d" sufficient
choose Uk to be generalized Pauli's (pf ~ SS notes)
note this consumes as many resources as TP

If S = €2, then t = 4" necessary.
The condition Y ¥)¢ S, % Ki‘ Uk [YX] Uk = L gives an exact

encryption scheme for quantum states, and the lower
bound for t follows from last lecture.

Recall: for exact encryption scheme \710 =4
which implies V19) , To ¢ (1¥5¢¢1) = (Fu [¥XYI) ® €



What about more general RSP protocols?

For exact RSP (arbitrary entangled state):

- If S includes a basis, needs log d cbits (due to C2)
_ifS = &4, no further restriction, open problem ...

_if S = ﬁ, "oblivious to Bob" (he receives no more info

about the state beyond the prepared copy), then needs
2 log d cbits. (L, Shor 02)

e.g., protocol in previous slide is oblivious
-- prob(k) indep of 1Y)

Proof idea: from RSP protocol, construct encryption
scheme, then argue similar to last lecture

_if S = ﬁ, Bob's decoding restricted to Pauli's but prob(k)
may depend on the state, still needs 2 log d cbits (Nayak).

Approx RSP, approx oblivious, ~log d cbits sufficient!



Approx RSP (based on protocol T & a technical lemma):

Technical lemma (HLSWO03, BHLSWO03):
Forlarged, >0,

3 MI, ML: ... U € M(A)
st Y W) € ¢

.
T U 19 Uk — >

o ~ d

p-|H

— L =L L
fort = =134 dlogd (t = 150dlog - in Aubrun 08)

where | Il = operator-norm (max (abs (eigenvalue) ) )

When ¢£=0, same as the sufficient condition for protocol T

and requires t > J4?%,



Proof ideas for technical lemma:
Want W, UL, ... U € WL(J)

.
b Y e, ”:‘g LUkl ue — L)) < &

d

”oo

Note ¥ D¢, [dUl UWixein® = T Fix ¥,
/

Haar measure
View W(¢x¥lu' as an operator-valued RV, with average =
Take iid samples according to Haar measure:
WKL AT, UG It W A 1<t

" " -b
Take empirical average: x 2 U 19 Uk

Analyse how quickly empirical average converges to
actual average (as a function of t) ...



Can show that: fix 1Y> . With very high prob over which

1 g
Wi U, - - Mg are drawn, ” £ L Uk Iy Ue — L Hw < %

( Prob(above doesn't hold) rapidly vanishes with t, d. )

Take union bound over a net of 1Y)

The prob the above fail for at least one 1Y> is still very low.

So, there must exist some W, Uz, .. ..Ut

L
VAAD ”%%umwwui—%‘ < £

e d

Actual proof more technical ... possible term project.

First of many randomized arguments, with a protocol

known to exist existentially (but without an explicit
construction).



Consequences of technical lemma:
1. RSP of any I¥)<¢ iy exactly with prob 2 |- % possible
using log d ebits & log d + loglog d + 2 log 3 + 8 cbits

.
Proof: ¥ Ied, |3 Zucinxiuk =L || < &
N oo

-b

= ||+ 2 Ui 19X Uk

< Ute)
o - d

Then, each |¥) ¢ S defines a POVM { M}

.
Me= gy £ (Uit ue ) fork =1,2,..t

_ €
My = I =

MK)

t )
= M < | i Mg 20

O

ctl

Other M\<>/ O and E‘ Mg =T,



Apply protocol T as before: Alice and Bob share 14.)

Alice comes up with some Y5
Alice applies meas on A, with POVM {Mk«

T
b

& tells Bob the outcome k (log (t+1) cbits)
If outcome = k < t+1, Bob has Uk I¥YX¥] Uk

he applies Ug to recover \¢s<t|

If outcome = k = t+1, Bob outputs an error symbol.
T ( Men -

._\_.

Prob(k=t+1)
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{
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So, the protocol succeeds with prob at least 1- €
It uses log d ebits,
and log (t+1) cbits, fort = if_l 134 d log d

For large d and constant €, log (t+1) is dominated by
the leading term log d.

With prob mg , protocol is exact and oblivious.
Bob gets one exact copy of IY> , & prob(k) is indep of |'Y>

With prob % , Bob gets Mttt | Mk= J‘r—g) %(MK Y uE)T
T M e
- Mi = 1= 2 e
This breaks the lower bound K=1
from LSO02 ...




Consequences of technical lemma:
2. Any )¢ € can be encrypted and decrypted with

log d + loglog d + 2 log ’lz + 8 kbits

such that the quantum ciphertex is &£ close to —‘}

IN trace distance.

T

Proof: Y e d?, || L U 19 Uk — L < %
O
LY Ur — I <
't K= KIY><.&{/1 K _E— i J 8

Encryption scheme: YK . Px=g

Conditioned on the key k, Alice applies U« to encrypt
Bob applies U to decrypt

LY
Eve sees the state ¥ L Uk 1YYl Uk which is € close to

L
d



Consequences of technical lemma:

3. Define the completely randomizing map R on d-dim

state as: \” | R\r) -

Let T{p) =% L Uk I¥X¥] Uk -

et

{

~
R

So, Y/ . H?\\ TR, <€ but [R—<| . = |

1\

In particular, ToR ( 13,)¢3| ) §—® —i—

But T@< (13453l ) only hasrankt << d*

N very very different from »i— ® —i—



Two TCP maps can thus be nearly indistinguishable on
the input system alone, but very different if a reference

system is included.

SRy = pATY
but %__ * QE]_

NB. Luckily, for R=1 | /
VP NED-RIDN € § fhen Ne-R 1, < £

vanishing
function of ¢

NB Vy,\\ilg?)%{\f)\\‘s ¢ & N, | Tune -RutxsN || ¢

Open problem: what TCP maps can be accurately
characterized by pure state inputs?



Further remarks:

NN

T) =% T Ui [¥XY1 UE

5 (16 1) |
&) / — ® entanglement (+all correlations)
\—@— < between the 2 sys are broken
does not break correlations
\ &)
e
But v &) ¢ €%, T\ |) = T with key cost similar

d

to classical setting. So, the factor of 2 for quantum
encryption comes from having to break correlations.



Also, the approx RSP scheme breaks the 2 log d comm
lower bound for TP because of the following.

From the RSP measurement, we cannot make a
generalized TP scheme in which Alice operates
independent of the input. The construction last
lecture gives a proper measurement because

I@E?\c L ( \EXE\): %Qbi—/

which does not hold for ¢ .



Superdense cading of quantum states:
SD: 1 ebit+ 1 gbit 2 2 chits

Alice applies one of 4 unitaries turning her shared state

with Bob to one of 4 orthogonal states, thereby "doubling"
the rate of communication.

. 2,
If she instead wants to prepare a d -dim pure state %
in Bob's lab, and she knows the state to be prepared.

This is analogous to RSP, in that the sender knows the
state to be prepared, but here we allow entanglement
and quantum comm to be used.



Can she do so by consuming only log d gbits?

1. if the state is "maximally entangled" , |¥)= UoT [24)
for some U, then she applies U to her half of [3,)

and sends it to Bob.

2. 50, the 3* states used in SD is a special case -- Alice
knows which of the A% orthogonal max entangled state

IS to be prepared in Bob's lab.



1
3. For large d, states in @C‘ with nearly max entanglement

2
form a high prob set. So, if V) & C*” is drawn at
random, is there a way to super-dense-code |\V)
with good approximation?

4. What if someone tells Alice which |V) has to be
prepared and adversarially choose [V )

Spoiler: there is still a way to super-dense-code |V

In that log d ebits and slightly larger than log d gbits
are needed, but no other resources (like shared
randomness) is needed.

How? there is a large subspace in a bipartite system
containing only high entangled states. In Al, you will
use this fact to perform SD of guantum states !!



Quantum states known to the sender seems to behave
a little like classical data (in the presence of shared
entanglement between Alice and Bob and in terms of
the necessary communication cost of transmission).



