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What is uncertainty?
What is information?
What is redundancy?

How to quantify them?



X : random variable
Q. sample space, |2l =m

p : prob distribution of X

P: L — [o,1] \

X P upper case: rv

¢t ) P(x)= {
X € SL

\
lower case: outcome

e.g., biased coin
Q= {0,1}, p(0) =0.1, p(1) =0.9



A "discrete information source" is a sequence of rvs
X1, X2, X3, ... with a common sample space / source
alphabet O .

e.g., can toss the biased coin as many times as wished
e.g., weather each day, & = {sun, cloud, rain}

With n draws, we get one out of m" outcomes.

In general, the Xi's need not be independent or
identically distributed. (e.g., weather)

If Xi's are independent and identically distributed,
we call X1, X2, ... an "iid" source.

Focus on iid sources rest of this lecture.



Better than magic for iid sources:
-- typicality and asymptotic equipartition thm

ldea: Consider X = X, X; ' Xj
For large n, 3 a subset S € SLW with
(1) high prob, (2) low cardinality, (3) ~equiprobable elements

Why? Consider any x"=x, x, "' X
F(Xn) =P (¢) plxa) o P (Xn) (by independence)
— Zloﬂ P(xl) Zloﬂ F(I?_) . Zloﬂ F(xn) (|Og base 2)

-N [J— £ () Ioi F(x.):l empirical average of Hloﬂ P(x)
- = | over n samples

theoretical average

_ —ﬂ[ L P(x) ("”03 F(I)] é—ﬂg (‘)\0%?(23 =: H(X)



Def: [Shannon entropy] H(X) or H(p) := —Z@_pcm log p ()

e.g., for biased coin, H(X) =-0.11log 0.1 - 0.9 log 0.9 = 0.469

Def: [typical sequence] x" is §-typical if |-« logp(x™ - H(X)| < §

(F(Xn) ~ Z—nH(x))
Def: [typical set] Tsn = {x": x"is é—typical}

e.g., for biased coin, n =100, § = 0.1
if x"has € 0's & n-t 1%

then ~ log p(x") = ~% log 0:1 - A% o 01

< [0.369, 0.569] fort=7,8, ..., 13

\

. —_lOO 0.1 = all 100-bit strings with 7 to 13 0's.



Idea: Ts,n is a large prob set with low cardinality

e.g., Peob ( Tioo, 001) = 0.75997

IT(O0,0J , = 83 X |Ols
| 0.4 = 1.3 x 107

IT(oo, 0.1 l
’ {0‘ ’\]IOO

IS

~ [(x10




; . artition H AEP
V50, V8>0, Ine st. ¥Ynxn.
O p(Tas) 2 1-¢

® VA<, p(A) 3 1-¢ = (Al 2 (1-28) 2

< | Tosl < 2\r\(H(><)+2\)

n(H(Xx)-3)

Interpretations:

(1) says the typical set is a large prob set

(2) quantifies how small the typical set is

(3) says any large prob set can't be much smaller
Bonus: within typical set, elements are equiprobable

(See Preskill for full motivating example for biased coin.)



; . nartition H AEP!

VEyo, V>0, In, st YVnzn,
O p(Tns) 2 1-¢
Proof: we upper bound pr(" & Tn.)
X induces arvyY = log p(X)
i.e., Y X €51, wp p(x), Y =log p(x)

S EY= LU opeo log px) = - H(X)

X
XY A, se s YT R o Ya

Fov X"= 003G = Xa, le Yyt = log P 0G)

Then X" &ETae & |4Z Y- EY| > 4 %)

——

use LLN on Y to bound prob of this



Then X € Taw & 14 %-EY] >4 ®
— _
use LLN on Y to bound prob of this

By Chebyshev's inequality forarv Z :

P(‘ { \-g'_ E%\ > KJV&T?:.\] s —IJ{{ ((V%,OV\'\'LOVV\C.‘X,>
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; . nartition t AEP'

VEs0, V>0, Tne st. VYnzn,

0 P(Tn,a) Z |l—-c

& (1-¢) 2\r\(H(x)~A) < [ Tos | < 2\n(H(><)+A)

Proof: 1-£ < P(Tns) < |
H max p(x") \€' ("¢ Tny
L
‘Tn,a‘ Z—ﬂ(H(XH’A) S Z F(x_n) s ‘Tn.é‘ Z—H(H(X)"A)
X"&Tn&
LolTaal g 2R (1-e) 2" <l
In particular, | T | < "n(‘fﬂ\m“mx);f) expJlinn

—

tve J‘of most ¥



; | . tion t AEP
VEs0, V>0, Tne st. Ynzn,
(DP(TmA) Z |—c

@ (l“i) Zﬂ(H(X)"A) S ‘Tmé‘ < zﬁ(H(X)'l’A)

N

Proof: P (AN Tos)

P(A) — 'P(Tf\\Tn.A)

51“

N

\Y

O VYASQ, pAZ -t > 1Al 3 (1-2g) 2" OV
P(A — P LS\ T
Z -2 — ¢ = |-1¢
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Application: data compression of iid sources

lid source X

ir\
4

Bob

(if Bob = future Alice, nR cbits refer to storage space)



Application: data compression of iid sources.

) ~ " nR ebits <"
lid source
o i\

n

Alice Bob
Goal: min R while keeping p(x"# %X") negligible.

Shannon's noiseless coding theorem:
Let Xl,X)_. ---,Xn be 31d csource

direct coding © VY £>0 YR > HKX)

theorem - we Tn. st.¥Yn2ne 3 Ca, Da
can do ...
¢t P Dnofn (x") # xn) € €
converse - ® Y R< HKX)
cannot do TN st YN2Ne VY Ea. D
better [ HK-R ]

Pe( Do fn (xm) =x") € €+ 72



Proof of (1):

ldea: transmit only typical sequences, ignore the rest

For each >" <€ (a.g,
let b (") be unlique. N (HXY +48) bit \abe for 3"

2r\: pak S b (™) o™ € o \

. | prgagreed by
"~y err otherwise Alice and Bob

@v\ + Invert b if r not receive err
else output err

Pr (Dao o) # ) = Pe (2" 4 Tug) < €

Lor 0> 0o = Var[ log p(x]
& ¢




Proof of (2):
By C2, at most 2" o("'s satisfies Dee Tu (") = X",
Let A =setof X" s.t. Dao Tn (") = %™, N < 2"F

let § = 5~ (H(X)-R) >0, T=TTa .

PAY = POANT)) + POANT)
< g + |A] max \)b(_"‘)
X"€T

" ~-n(HMX-=4
< g 4 Rh .

-N(HMX-R-4)
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Comments: \2/

* Allowing an arbitrarily small error reduces the
compression cost from log | | to H(X) cbits per symbol

*Wp \-¢ the ENTIRE 2" correct !!

* data compression gives H(X) an operational meaning.

- how much space is needed to represent each symbol
asymptotically (large n limit)?

- how much uncertainty is associated with each symbol?

* We considered "block codes" where n is fixed.

* We are not concerned about the computational
complexity of Zn. dn .

See Cover and Thomas for other codes, e.g., Hoffman
code is exact, but variable-length, with expectation
H(X) per symbol.



