Bernoulli Trials Problems for 2012

- 1: There exists a positive integer n such that $n^3 + (n+1)^3 = (n+2)^3$.
- **2:** There exists a positive integer n such that neither n nor n^2 uses the digit 1 in its base 3 representation.
- **3:** For every positive integer n, n is prime if and only if there exist unique positive integers a and b such that $\frac{1}{n} = \frac{1}{a} \frac{1}{b}$.

4:
$$\sqrt{1 + \sqrt{7 + \sqrt{1 + \sqrt{7 + \cdots}}}}$$
 is rational.

- **5:** $\sin(20^\circ)\sin(40^\circ)\sin(60^\circ)\sin(80^\circ)$ is rational.
- $6: \left(\frac{e}{2}\right)^{\sqrt{3}} < \left(\sqrt{2}\right)^{\pi/2}.$
- **7:** Given $a \in \mathbf{R}$, let $x_1 = a$ and for $n \ge 1$ let $x_{n+1} = x_n \cos(x_n)$. Then $\{x_n\}$ converges for all choices of $a \in \mathbf{R}$.
- 8: Define a bijection $f : \mathbf{Z}^+ \to \mathbf{Z}^2$ by counting the elements in \mathbf{Z}^2 as follows. Let f(1) = (0,0)and f(2) = (1,0), and then continue counting by spiralling counterclockwise so that for example we have

Then there exists $a \in \mathbf{Z}^+$ such that $f^{-1}(a, 0)$ is a multiple of 5.

- **9:** There exists a permutation $\{a_1, a_2, \dots, a_{20}\}$ of the set $\{1, 2, \dots, 20\}$ such that for all k with 1 < k < 20, either $a_k = a_{k+1} + a_{k-1}$ or $a_k = |a_{k+1} a_{k-1}|$.
- 10: There exists a permutation $\{a_1, a_2, \dots, a_{20}\}$ of the set $\{1, 2, \dots, 20\}$ such that for all k with $1 \le k \le 20, k + a_k$ is a power of 2.
- **11:** There exists a partition of $\{1, 2, \dots, 15\}$ into 5 disjoint 3-element sets $S_k = \{a_k, b_k, c_k\}$ such that $a_k + b_k = c_k$ for k = 1, 2, 3, 4, 5.
- $\mathbf{12:} \text{ For every finite set of integers } S, \left| \left\{ (a,b) \in S^2 \middle| a-b \text{ is odd} \right\} \right| \leq \left| \left\{ (a,b) \in S^2 \middle| a-b \text{ is even} \right\} \right|.$
- **13:** For every set S, whose elements are finite subsets of **Z**, with the property that $A \cap B \neq \emptyset$ for all $A, B \in S$, there exists a finite set $C \subset \mathbf{Z}$ such that $A \cap B \cap C \neq \emptyset$ for all $A, B \in S$.
- 14: There exists a linearly independent set $\{A_1, A_2, A_3\}$ of real 3×3 matrices such that every non-zero matrix in Span $\{A_1, A_2, A_3\}$ is invertible.

- **15:** For all 2×2 real matrices A, B and C, det $\begin{pmatrix} I & A \\ B & C \end{pmatrix} = 0$ if and only if det $\begin{pmatrix} I & B \\ A & C \end{pmatrix} = 0$.
- 16: There exists a positive integer n and an $n \times n$ matrix A whose entries lie in $\{0, 1\}$, such that det(A) > n.
- 17: For every function $f : \mathbf{R} \to \mathbf{R}$, if f^2 and f^3 are both polynomials, then so is f.
- 18: Every real polynomial is equal to the difference of two increasing polynomials.
- **19:** For every polynomial f with integer coefficients, and for all distinct integers a_1, a_2, \dots, a_l , there exists an integer c such that the product $p(a_1)p(a_2)\cdots p(a_l)$ divides f(c).
- **20:** For all increasing functions $f, g : \mathbf{R} \to \mathbf{R}$ with f(x) < g(x) for all $x \in \mathbf{Q}$, we have $f(x) \leq g(x)$ for all $x \in \mathbf{R}$.
- **21:** There exists a continuously differentiable function $f : \mathbf{R} \to \mathbf{R}^+$ such that f'(x) = f(f(x)) for all $x \in \mathbf{R}$.