Bernoulli Trials Problems for 2012

1: There exists a positive integer n such that $n^{3}+(n+1)^{3}=(n+2)^{3}$.
2: There exists a positive integer n such that neither n nor n^{2} uses the digit 1 in its base 3 representation.

3: For every positive integer n, n is prime if and only if there exist unique positive integers a and b such that $\frac{1}{n}=\frac{1}{a}-\frac{1}{b}$.

4: $\sqrt{1+\sqrt{7+\sqrt{1+\sqrt{7+\cdots}}}}$ is rational.
5: $\sin \left(20^{\circ}\right) \sin \left(40^{\circ}\right) \sin \left(60^{\circ}\right) \sin \left(80^{\circ}\right)$ is rational.
6: $\left(\frac{e}{2}\right)^{\sqrt{3}}<(\sqrt{2})^{\pi / 2}$.
7: Given $a \in \mathbf{R}$, let $x_{1}=a$ and for $n \geq 1$ let $x_{n+1}=x_{n} \cos \left(x_{n}\right)$. Then $\left\{x_{n}\right\}$ converges for all choices of $a \in \mathbf{R}$.

8: Define a bijection $f: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{2}$ by counting the elements in \mathbf{Z}^{2} as follows. Let $f(1)=(0,0)$ and $f(2)=(1,0)$, and then continue counting by spiralling counterclockwise so that for example we have

k	1	2	3	4	5	6	7	8	9	10
$f(k)$	$(0,0)$	$(1,0)$	$(1,-1)$	$(0,-1)$	$(-1,-1)$	$(-1,0)$	$(-1,1)$	$(0,1)$	$(1,1)$	$(2,1)$

Then there exists $a \in \mathbf{Z}^{+}$such that $f^{-1}(a, 0)$ is a multiple of 5 .
9: There exists a permutation $\left\{a_{1}, a_{2}, \cdots, a_{20}\right\}$ of the set $\{1,2, \cdots, 20\}$ such that for all k with $1<k<20$, either $a_{k}=a_{k+1}+a_{k-1}$ or $a_{k}=\left|a_{k+1}-a_{k-1}\right|$.

10: There exists a permutation $\left\{a_{1}, a_{2}, \cdots, a_{20}\right\}$ of the set $\{1,2, \cdots, 20\}$ such that for all k with $1 \leq k \leq 20, k+a_{k}$ is a power of 2 .

11: There exists a partition of $\{1,2, \cdots, 15\}$ into 5 disjoint 3 -element sets $S_{k}=\left\{a_{k}, b_{k}, c_{k}\right\}$ such that $a_{k}+b_{k}=c_{k}$ for $k=1,2,3,4,5$.

12: For every finite set of integers $S, \mid\left\{(a, b) \in S^{2} \mid a-b\right.$ is odd $\}|\leq|\left\{(a, b) \in S^{2} \mid a-b\right.$ is even $\} \mid$.
13: For every set S, whose elements are finite subsets of \mathbf{Z}, with the property that $A \cap B \neq \emptyset$ for all $A, B \in S$, there exists a finite set $C \subset \mathbf{Z}$ such that $A \cap B \cap C \neq \emptyset$ for all $A, B \in S$.

14: There exists a linearly independent set $\left\{A_{1}, A_{2}, A_{3}\right\}$ of real 3×3 matrices such that every non-zero matrix in $\operatorname{Span}\left\{A_{1}, A_{2}, A_{3}\right\}$ is invertible.

15: For all 2×2 real matrices A, B and C, $\operatorname{det}\left(\begin{array}{cc}I & A \\ B & C\end{array}\right)=0$ if and only if $\operatorname{det}\left(\begin{array}{cc}I & B \\ A & C\end{array}\right)=0$.
16: There exists a positive integer n and an $n \times n$ matrix A whose entries lie in $\{0,1\}$, such that $\operatorname{det}(A)>n$.

17: For every function $f: \mathbf{R} \rightarrow \mathbf{R}$, if f^{2} and f^{3} are both polynomials, then so is f.
18: Every real polynomial is equal to the difference of two increasing polynomials.
19: For every polynomial f with integer coefficients, and for all distinct integers $a_{1}, a_{2}, \cdots, a_{l}$, there exists an integer c such that the product $p\left(a_{1}\right) p\left(a_{2}\right) \cdots p\left(a_{l}\right)$ divides $f(c)$.

20: For all increasing functions $f, g: \mathbf{R} \rightarrow \mathbf{R}$ with $f(x)<g(x)$ for all $x \in \mathbf{Q}$, we have $f(x) \leq g(x)$ for all $x \in \mathbf{R}$.

21: There exists a continuously differentiable function $f: \mathbf{R} \rightarrow \mathbf{R}^{+}$such that $f^{\prime}(x)=f(f(x))$ for all $x \in \mathbf{R}$.

