Bernoulli Trial 2024

- 1. There are 15 questions. Answer T or F only.
- 2. Put your name, your BT ID, and the question number on each answer slip.
- 3. Correct answer = 1 point; Incorrect answer = -1 point; No answer = 0 point.
- 4. At least 12 questions need to be answered to qualify for the prizes.
- 5. Prizes:
 - First place: \$200
 - Second place: \$100
 - Third place: \$50
 - Last place: \$200

 \mathbf{T}/\mathbf{F} : There is a complex number z with |z| = 1 such that

$$z^{2024} + z^4 + z^2 + 1 = 0.$$

 \mathbf{T}/\mathbf{F} : There is a complex number z with |z| = 1 such that

$$z^{2024} + z^4 + z^2 + 1 = 0.$$

F: Note that if $z, w \in \mathbb{C}$ with |z| = |w| = 1, then $|z + w|^2 = 2 + 2\cos\theta(z, w)$ where $\theta(z, w)$ is the angle between z and w. Hence, in order for $z^{2024} + z^4 = -z^2 - 1$, the angle between 1 and z^2 is the same as the angle between z^4 and z^{2024} . Write $z = e^{i\theta}$. Then $2\theta = \pm 2020\theta + 2k\pi$ for some integer k. So either $z^{2022} = 1$ or $z^{2018} = 1$.

If $z^{2022} = 1$, then we have $(z^2+1)^2 = 0$ and so $z^2 = -1$ and $z^{2022} = -1$. If $z^{2018} = 1$, then $z^6 + z^4 + z^2 + 1 = 0$ which implies $z^8 = 1$, and so $z^2 = 1$ and it is also impossible.

Gian's Lemma: Given four complex numbers on the unit circle that sum to 0, they must form a rectangle.

Jerry is making a MATH 145 final exam which consists of 40 T/F questions by the following inductive algorithm. Assume that questions 1, 2, ..., n-1 have been chosen.

- If there are more T than F among them, then question n will be F with probability 0.69.
- If there are more F than T among them, then question n will be T with probability 0.69.
- If there are equal number of T and F among them, then question n will be T with probability 0.5.

 \mathbf{T}/\mathbf{F} : The expected number of T questions is 20.

Jerry is making a MATH 145 final exam which consists of 40 T/F questions by the following inductive algorithm. Assume that questions 1, 2, ..., n-1 have been chosen.

- If there are more T than F among them, then question n will be F with probability 0.69.
- If there are more F than T among them, then question n will be T with probability 0.69.
- If there are equal number of T and F among them, then question n will be T with probability 0.5.

 \mathbf{T}/\mathbf{F} : The expected number of T questions is 20.

T: Let X_n be the number of T questions minus the number of F questions among questions $1, 2, \ldots, n$. For example $P(X_1 = 1) = P(X_1 = -1) = 0.5$. By symmetry, one can prove by induction on n that for any positive integer m, we have

$$P(X_n = m) = P(X_n = -m).$$

Hence $E(X_n) = 0$ for all n.

 \mathbf{T}/\mathbf{F} : There exist positive rational numbers a_1, a_2, \ldots, a_{69} (not necessarily distinct) such that

$$\sum_{i=1}^{69} a_i = \prod_{i=1}^{69} a_i = 420.$$

 \mathbf{T}/\mathbf{F} : There exist positive rational numbers a_1, a_2, \ldots, a_{69} (not necessarily distinct) such that

$$\sum_{i=1}^{69} a_i = \prod_{i=1}^{69} a_i = 420.$$

T: Using $a_1 = 3$, $a_2 = 4$, $a_3 = 5$, $a_4 = 7$, we see that it remains to find 65 rational numbers that multiply to 1 and sum to 401. The 4 rational numbers 1/3, 1/3, 1/3, 27 multiply to 1 and sum to 28. By taking 14 copies of them, we reduce to finding 9 rational numbers that multiply to 1 and sum to $401 - 28 \cdot 14 = 9$. We simply take all 1 now.

 \mathbf{T}/\mathbf{F} : There exists a 2024-digit positive integer with only 6 or 9 appearing, that is divisible by 2^{2024} .

T/F: There exists a 2024-digit positive integer with only 6 or 9 appearing, that is divisible by 2^{2024} .

T: We prove by induction that there is always an *n*-digit integer of that form that is divisible by 2^n . The key is simply that

$$2^{n+1} || 6 \cdot 10^n, \qquad 2^n || 9 \cdot 10^n.$$

So if the *n*-digit number is divisible by 2^{n+1} , we add $6 \cdot 10^n$ to it. If it is not divisible by 2^{n+1} , we add $9 \cdot 10^n$ to it.

 \mathbf{T}/\mathbf{F} : For any prime number $p \geq 3$, the integral

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x-1}{x^p - 1} dx$$

is an algebraic number, that is the root of some nonzero polynomial with rational coefficients.

 \mathbf{T}/\mathbf{F} : For any prime number $p \geq 3$, the integral

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x-1}{x^p - 1} dx$$

is an algebraic number, that is the root of some nonzero polynomial with rational coefficients.

\mathbf{T} : Let

$$f(x) = \frac{x^p - 1}{x - 1} = \prod_{k=1}^{p-1} (x - \zeta_p^k).$$

For a large R, let C_R be the upper semicircle of radius R centered at the origin, traversed counterclockwise. Then

$$\int_{-R}^{R} \frac{1}{f(x)} dx + \int_{C_R} \frac{1}{f(z)} dz = 2\pi i \sum_{k=1}^{(p-1)/2} \operatorname{res}(\frac{1}{f}; \zeta_p^k) = 2\pi i \sum_{k=1}^{(p-1)/2} \frac{1}{f'(\zeta_p^k)}.$$

On C_R , we have |z| = R and $|f(z)| \ge (R-1)^{p-1}$. Hence, as $R \to \infty$, we have

$$\int_{C_R} \frac{1}{f(z)} dz \le \frac{2\pi R}{(R-1)^{p-1}} \to 0.$$

Therefore,

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x-1}{x^p - 1} dx = 2i \sum_{k=1}^{(p-1)/2} \frac{1}{f'(\zeta_p^k)} \in \bar{\mathbb{Q}}.$$

With a bit of calculation, one has

$$\sum_{k=1}^{(p-1)/2} \frac{1}{f'(\zeta_p^k)} = \frac{1}{p} \sum_{k=1}^{(p-1)/2} \zeta_p^{2k} - \zeta_p^k.$$

 \mathbf{T}/\mathbf{F} : There does not exist a continuous function $f:[0,1] \to \mathbb{R}$ such that each pre-image

$$f^{-1}(b) = \{a \in [0,1] \colon f(a) = b\}$$

is a (possibly empty) finite set of even size.

T/F: There does not exist a continuous function $f : [0, 1] \to \mathbb{R}$ such that each pre-image $f^{-1}(b) = \{a \in [0, 1]: f(a) = b\}$ is a (possibly empty) finite set of even size.

F: Draw a zigzag picture.

T/F: The smallest positive integer d such that $2027^d \equiv 1 \pmod{49}$ is 3.

 \mathbf{T}/\mathbf{F} : The smallest positive integer d such that $2027^d \equiv 1 \pmod{49}$ is 3.

 \mathbf{T} : Note that

$$49 \times 41 = 2025 - 16 = 2009.$$

So $2027 \equiv 18 \pmod{49}$. Now by Gian's identity

 $19^2 - 19 + 1 = 343,$

we know that

$$18 \equiv 19^2 \pmod{343}$$

and

 $18^3 \equiv 19^6 \equiv 1 \pmod{343}.$

The last congruence uses

$$x^{6} - 1 = (x - 1)(x + 1)(x^{2} - x + 1)(x^{2} + x + 1).$$

Let $a_1, a_2, \ldots, a_{880}$ denote all the integers $1, 2, \ldots, 2024$ that are coprime to 2024.

T/F:
$$\sum_{k=1}^{880} a_k^{2024} \equiv 880 \pmod{2024}.$$

Let $a_1, a_2, \ldots, a_{880}$ denote all the integers $1, 2, \ldots, 2024$ that are coprime to 2024.

$$\mathbf{T/F}$$
:
 $\sum_{k=1}^{880} a_k^{2024} \equiv 880 \pmod{2024}.$

T: We factor $2024 = 8 \cdot 11 \cdot 23$. Note that $22 \mid 2024$ and $2 \mid 2024$. So we have

$$a_k^{2024} \equiv 1 \pmod{23}$$

 $a_k^{2024} \equiv 1 \pmod{8}$
 $a_k^{2024} \equiv a_k^4 \pmod{11}$

We know

$$\sum_{a \in (\mathbb{Z}/11\mathbb{Z})^{\times}} a^4 = 0 \in \mathbb{Z}/11\mathbb{Z}.$$

Hence the desired sum is 880 mod 23, 880 mod 8, and 0 mod 11. By CRT, it is 880 mod 2024.

 \mathbf{T}/\mathbf{F} : There are nonzero integers a, b, c such that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 0.$$

9: (3 minutes) \mathbf{T}/\mathbf{F} : There are nonzero integers a, b, c such that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 0.$$

F: Gian said it follows from some ν_p (*p*-adic valuation) analysis. I killed it with a hammer. Let u = a/b, v = b/c, w = c/a. Then the cubic

$$f(x) = (x - u)(x - v)(x - w) = x^3 - Ax - 1$$

for some $A \in \mathbb{Q}$. In order for all the roots of f(x) to be in \mathbb{Q} , its discriminant

$$\Delta(f) = (u - v)^2 (v - w)^2 (w - u)^2 = 4A^3 - 27$$

is a square in \mathbb{Q} . However, the elliptic curve $y^2 = 4x^3 - 27$ has only $(3, \pm 9)$ as its rational points. It is then easy to see that $x^3 - 3x - 1$ doesn't have rational roots.

To find the rational points on $y^2 = 4x^3 - 27$, we note that

$$(9+y)^3 + (9-y)^3 = 2 \cdot 9^3 + 2 \cdot 3 \cdot 9y^2 = (6x)^3.$$

By Fermat's Last Theorem, we have $y = \pm 9$.

A cyclic number is a positive integer for which cyclic permutations of the digits are successive integer multiples of the number. (Leading zeros are allowed.) For example, 142857 is cyclic:

 $142857 \times 1 = 142857$ $142857 \times 2 = 285714$ $142857 \times 3 = 428571$ $142857 \times 4 = 571428$ $142857 \times 5 = 714285$ $142857 \times 6 = 857142.$

T/F: If *p* is a Fermat prime at least 17, i.e. a prime number of the form $2^{2^n} + 1$, then $\frac{10^{p-1} - 1}{p}$ is a cyclic number.

A cyclic number is a positive integer for which cyclic permutations of the digits are successive integer multiples of the number. (Leading zeros are allowed.) For example, 142857 is cyclic.

T/F: If *p* is a Fermat prime at least 17, i.e. a prime number of the form $2^{2^n} + 1$ with $n \ge 2$, then $\frac{10^{p-1} - 1}{p}$ is a cyclic number.

T: It is known that $\frac{10^{p-1}-1}{p}$ is cyclic if and only if 10 is primitive mod p, in the sense that $o_p(10) = p - 1$. Since p-1 is a power of 2, this is equivalent to $10^{(p-1)/2} \not\equiv 1 \pmod{p}$. We now compute Legendre symbols. Since $p \equiv 1 \pmod{8}$, we have $\binom{2}{p} = 1$. Moreover, for $n \ge 2$, we have $4 \mid 2^n$ and so $2^{2^n} \equiv 1 \pmod{5}$. By quadratic reciprocity

$$\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right) = \left(\frac{2}{5}\right) = -1.$$

Hence $\left(\frac{10}{p}\right) = -1.$

 \mathbf{T}/\mathbf{F} : The Euclidean space \mathbb{R}^3 can not be covered by pairwise non-coplanar lines.

 \mathbf{T}/\mathbf{F} : The Euclidean space \mathbb{R}^3 can not be covered by pairwise non-coplanar lines.

F: Let's just try to do it. Every line will pass through the z = 0 plane at some (a, b, 0), with directional vector (u(a, b), v(a, b), 1) and every $(a, b) \in \mathbb{R}^2$ is needed. For two such lines to intersect at a point with z-coordinate t, we need

$$a + tu(a, b) = a' + tu(a', b')$$

 $a + tv(a, b) = a' + tv(a', b')$

So

$$\frac{a-a'}{u(a,b)-u(a',b')} = \frac{b-b'}{v(a,b)-v(a',b')}.$$

By taking u(a, b) = b and v(a, b) = -a, we see that this becomes

$$(a - a')^{2} + (b - b')^{2} = 0.$$

That is, the distinct lines will never intersect, and are also not parallel. To find the line passing through any (x, y, z), we see that

 $\begin{array}{rcl} a+zb &=& x\\ b-za &=& y \end{array}$

always has a solution for a, b since the determinant is $1 + z^2 \neq 0$.

T/F:

$$\int_0^\infty \frac{dx}{(1+x^2)(1+x^{2024})} < \frac{\pi}{4}.$$

T/F:

$$\int_0^\infty \frac{dx}{(1+x^2)(1+x^{2024})} < \frac{\pi}{4}.$$

T: They are equal. In fact, for any r > 0,

$$\int_{0}^{\infty} \frac{dx}{(1+x^{2})(1+x^{r})} = \int_{0}^{1} \frac{dx}{(1+x^{2})(1+x^{r})} + \int_{1}^{\infty} \frac{dx}{(1+x^{2})(1+x^{r})}$$
$$= \int_{1}^{\infty} \frac{x^{r} dx}{(1+x^{2})(1+x^{r})} + \int_{1}^{\infty} \frac{dx}{(1+x^{2})(1+x^{r})}$$
$$= \int_{1}^{\infty} \frac{dx}{(1+x^{2})}$$
$$= \frac{\pi}{4}.$$

 \mathbf{T}/\mathbf{F} : Given any sequence $a_1, a_2, \ldots, a_{2024}$ of 2024 distinct real numbers, either there is an increasing subsequence of length 120 or a decreasing subsequence of length 18.

 \mathbf{T}/\mathbf{F} : Given any sequence $a_1, a_2, \ldots, a_{2024}$ of 2024 distinct real numbers, either there is an increasing subsequence of length 120 or a decreasing subsequence of length 18.

T: For every i = 1, 2, ..., 2024, define a pair $(r_i, s_i) \in \mathbb{N}^2$ where r_i is the length of the longest increasing subsequence ending with a_i , and s_i is the length of the longest decreasing subsequence starting with a_i . Suppose i < j. If $a_i < a_j$, then by adding a_j to a maximal increasing subsequence ending with a_i , we have $r_j > r_i$. Similarly, if $a_i > a_j$, then $s_i > s_j$. Hence, the pairs (r_i, s_i) are distinct as i = 1, ..., 2024. The number of distinct pairs (r, s) with r = 1, ..., 119 and s = 1, ..., 17 is $119 \cdot 17 = 2023 < 2024$. We are done by Pigeonhole.

Gian is participating in the hardcore Bernoulli trial where answering a question correctly gives 1 point and incorrectly loses 1 point. Gian starts with 1 point and will be eliminated when he has only 0 points. When Gian has n points, he will answer the next question correctly with probability $\frac{(n+1)^2}{n^2+(n+1)^2}$.

For example, with 1 point, Gian answers the next question correctly with probability 4/5; with 2 points, the probability is 9/13; with a lot of points, Gian is basically guessing.

 \mathbf{T}/\mathbf{F} : The probability that Gian will play forever is at most 60%.

Gian is participating in the hardcore Bernoulli trial where answering a question correctly gives 1 point and incorrectly loses 1 point. Gian starts with 1 point and will be eliminated when he has only 0 points. When Gian has n points, he will answer the next question correctly with probability $\frac{(n+1)^2}{n^2+(n+1)^2}$.

 \mathbf{T}/\mathbf{F} : The probability that Gian will play forever is at most 60%.

F: The actual probability is $6/\pi^2 > 0.6$. Let p_n be the probability that 0 point is reached with a starting point of n, with $p_0 = 1$. Then

$$p_n = \frac{(n+1)^2}{n^2 + (n+1)^2} p_{n+1} + \frac{n^2}{n^2 + (n+1)^2} p_{n-1}.$$

So

$$p_{n+1} - p_n = \frac{n^2}{(n+1)^2}(p_n - p_{n-1}) = \dots = \frac{1}{(n+1)^2}(p_1 - p_0).$$

Summing gives

$$p_{n+1} - 1 = \sum_{k=1}^{n+1} \frac{1}{k^2} (p_1 - 1).$$

Consider the functional equation f(0) = 1 and

$$f(n) = \sum_{j=0}^{\infty} p_{n,j} f(j)$$

where

$$p_{n,n+1} = \frac{(n+1)^2}{n^2 + (n+1)^2}$$
, and $p_{n,n-1} = \frac{n^2}{n^2 + (n+1)^2}$, and $p_{n,j} = 0$ otherwise.

Then we see that $f(n) = p_n$ is a solution. The key here is that it is the smallest non-negative solution! Suppose f is any solution. Let X_k be Gian's score after question k assuming that Gian starts with n points. Then $p_{n,0} = P(X_1 = 0)$ and so

$$f(n) = P(X_1 = 0) + \sum_{j=1}^{\infty} p_{n,j}f(j) = P(X_1 = 0) + \sum_{j=1}^{\infty} p_{n,j}(p_{j,0} + \sum_{\ell=1}^{\infty} p_{j,\ell}f(\ell)).$$

Note that

$$\sum_{j=1}^{\infty} p_{n,j} p_{j,0} = P(X_1 \neq 0, X_2 = 0).$$

Since f is always non-negative, we have

$$f(n) \ge P(X_1 = 0) + P(X_1 \neq 0, X_2 = 0) + \dots + P(X_1 \neq 0, \dots, X_m \neq 0, X_{m+1} = 0)$$

for any $m \ge 1$. Letting m go to infinity gives $f(n) \ge p_n$. Now

$$f(n+1) = 1 - \sum_{k=1}^{n+1} \frac{1}{k^2} (1 - f(1))$$

is always a solution by the same calculation as above. If $f(1) < 1 - 6/\pi^2$, then for n large enough,

$$\sum_{k=1}^{n+1} \frac{1}{k^2} (1 - f(1)) > 1.$$

If $f(1) > 1 - 6/\pi^2$, then picking any g(1) between $1 - 6/\pi^2$ and f(1) gives a non-negative solution with

$$g(n+1) = 1 - \sum_{k=1}^{n+1} \frac{1}{k^2} (1 - g(1)) < 1 - \sum_{k=1}^{n+1} \frac{1}{k^2} (1 - f(1)) = f(n+1)$$

Therefore, the smallest non-negative solution happens with $p_1 = 1 - 6/\pi^2$.

T/F:

15! = 1307674368000.

T/F:

15! = 1307674368000.

T: Embrace the bash.

 $1307674368000 = 100590336000 \times 13$ = 4790016000 \times 21 \times 13 = 6842880 \times 10 \times 70 \times 21 \times 13 = 622080 \times 11 \times 10 \times 14 \times 5 \times 7 \times 3 \times 13 = 20736 \times 2 \times 15 \times 11 \times 10 \times 14 \times 5 \times 7 \times 3 \times 13.

We are now missing 4, 6, 8, 9, 12. We have

 $20736 = 2304 \times 9 = 256 \times 9^2 = 2^8 \times 3^4 = 4 \times 6 \times 8 \times 9 \times 12.$

16: Pizza/Tie break, if needed (3 minutes)

Compute

$$\frac{\ln(14112^2 + 104)}{\sqrt{37}}.$$

16: Pizza/Tie break, if needed (3 minutes)

Compute

$$\frac{\ln(14112^2 + 104)}{\sqrt{37}}$$

This is related to the fact that

$$e^{\pi\sqrt{37}} + 24 \approx (12 + 2\sqrt{37})^6 \approx (12 + 2\sqrt{37})^6 + (12 - 2\sqrt{37})^6 \in \mathbb{Z}.$$