SPECIAL K Saturday October 27, 2001 9:00 am - 12:00 noon

- 1: Prove that $\sum \frac{1}{i_1 i_2 \cdots i_k} = 2001$, where the summation taken is over all non-empty subsets $\{i_1, i_2, \cdots, i_k\}$ of the set $\{1, 2, \cdots, 2001\}$.
- **2:** A diameter AB of a circle intersects a chord CD at the point E. If CE = 7, DE = 1 and $\angle BED = \frac{\pi}{4}$, then determine the radius of the circle.
- **3:** For any positive integer k, consider the sequence $a_n = \sqrt{k + \sqrt{k + \dots + \sqrt{k}}}$, where there are n square root signs.
 - (a) Show that the sequence $\{a_n\}$ converges for every fixed integer $k \ge 1$.
 - (b) Find all integers k such that the limit is an integer.
 - (c) Show that if k is odd, then the limit is irrational.
- **4:** Determine all functions $f : \mathbf{R}^+ \to \mathbf{R}$ such that $f(x+y) = f(x^2 + y^2)$ for all $x, y \in \mathbf{R}^+$, where \mathbf{R}^+ is the set of all positive real numbers.
- 5: Find all pairs (m, n) of positive integers such that $gcd((n+1)^m n, (n+1)^{m+3} n) > 1$.

BIG E Saturday October, 2001 9:00 am - 12:00 noon

1: Find all pairs of non-negative integers x and y such that $x - y = x^2 + xy + y^2$.

2: Evaluate
$$\int_0^{\pi} \ln(\sin x) dx$$
.

- **3:** We are given $n \ge 4$ points in the plane such that the distance between any two of them is an integer. Prove that at least $\frac{1}{6} \binom{n}{2}$ of these distances are divisible by 3.
- 4: Evaluate $\sum_{k \in S} \left\lfloor \sqrt{\frac{n}{k}} \right\rfloor$, where $S = \left\{ k \in \mathbf{N} \right|$ for all $a \in \mathbf{N}$, if a^2 divides k then a = 1).
- **5:** Let $L : \mathbf{R}^n \to \mathbf{R}^n$ be a linear transformation on \mathbf{R}^n , where *n* is an integer greater than 1. Prove that there exists a two-dimensional subspace $V \subseteq \mathbf{R}^n$ such that $L(V) \subseteq V$.