SPECIAL K

Saturday October 27, 2001 9:00 am - 12:00 noon

1: Prove that $\sum \frac{1}{i_{1} i_{2} \cdots i_{k}}=2001$, where the summation taken is over all non-empty subsets $\left\{i_{1}, i_{2}, \cdots, i_{k}\right\}$ of the set $\{1,2, \cdots, 2001\}$.

2: A diameter $A B$ of a circle intersects a chord $C D$ at the point E. If $C E=7, D E=1$ and $\angle B E D=\frac{\pi}{4}$, then determine the radius of the circle.

3: For any positive integer k, consider the sequence $a_{n}=\sqrt{k+\sqrt{k+\cdots+\sqrt{k}}}$, where there are n square root signs.
(a) Show that the sequence $\left\{a_{n}\right\}$ converges for every fixed integer $k \geq 1$.
(b) Find all integers k such that the limit is an integer.
(c) Show that if k is odd, then the limit is irrational.

4: Determine all functions $f: \mathbf{R}^{+} \rightarrow \mathbf{R}$ such that $f(x+y)=f\left(x^{2}+y^{2}\right)$ for all $x, y \in \mathbf{R}^{+}$, where \mathbf{R}^{+}is the set of all positive real numbers.

5: Find all pairs (m, n) of positive integers such that $\operatorname{gcd}\left((n+1)^{m}-n,(n+1)^{m+3}-n\right)>1$.

BIG E

Saturday October, 2001
 9:00 am - 12:00 noon

1: Find all pairs of non-negative integers x and y such that $x-y=x^{2}+x y+y^{2}$.
2: Evaluate $\int_{0}^{\pi} \ln (\sin x) d x$.

3: We are given $n \geq 4$ points in the plane such that the distance between any two of them is an integer. Prove that at least $\frac{1}{6}\binom{n}{2}$ of these distances are divisible by 3 .

4: Evaluate $\sum_{k \in S}\left\lfloor\sqrt{\frac{n}{k}}\right\rfloor$, where $S=\left\{k \in \mathbf{N} \mid\right.$ for all $a \in \mathbf{N}$, if a^{2} divides k then $\left.\left.a=1\right)\right\}$.
5: Let $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear transformation on \mathbf{R}^{n}, where n is an integer greater than 1 . Prove that there exists a two-dimensional subspace $V \subseteq \mathbf{R}^{n}$ such that $L(V) \subseteq V$.

