Solutions to the Special K Problems, 2010

1: Find the minimum possible discriminant $\Delta=b^{2}-4 a c$ of a quadratic $f(x)=a x^{2}+b x+c$ which satisfies the requirement that $f(f(f(0)))=f(0)$.
Solution: Let $f(x)=a x^{2}+b x+c$. Then $f(0)=c$ so we have

$$
\begin{aligned}
f(f(f(0)))=f(0) & \Longleftrightarrow f(f(c))=c \\
& \Longleftrightarrow f\left(a c^{2}+b c+c\right)=c \\
& \Longleftrightarrow a\left(a c^{2}+b c+c\right)^{2}+b\left(a c^{2}+b c+c\right)+c=c \\
& \Longleftrightarrow\left(a c^{2}+b c+c\right)\left(a\left(a c^{2}+b c+c\right)+b\right)=0 \\
& \Longleftrightarrow\left(a c^{2}+b c+c\right)\left(a^{2} c^{2}+a b c+a c+b\right)=0 \\
& \Longleftrightarrow c(a c+b+1)(a c+1)(a c+b)=0 \\
& \Longleftrightarrow c=0, \quad a c=-(b+1), \quad a c=-1, \quad \text { or } a c=-b .
\end{aligned}
$$

When $c=0$ we have $\Delta=b^{2}-4 a c=b^{2} \geq 0$, when $a c=-(b+1)$ we have $\Delta=b^{2}+4(b+1)=(b+2)^{2} \geq 0$, when $a c=-1$ we have $\Delta=b^{2}+4 \geq 4$, and when $a c=-b$ we have $\Delta=b^{2}+4 b=(b+2)^{2}-4 \geq-4$. Thus the minimum possible value for Δ is $\Delta=-4$, and this minimum value is attained when $b=-2$ and $a c=2$, for example when $f(x)=x^{2}-2 x+2$.

2: Show that for every integer a, there exist infinitely many perfect powers of the form

$$
a+2010 t, t \in \mathbf{Z}
$$

(A perfect power is an integer of the form n^{k} for some integers $n \geq 0$ and $k \geq 2$).
Solution: Note that $2010=2 \cdot 3 \cdot 5 \cdot 67$, which is a product of distinct primes. We claim, more generally, that if $m=p_{1} p_{2} \cdots p_{l}$ where the p_{i} are distinct primes, then for every $a \in \mathbf{Z}$ there exist infinitely many perfect powers of the form $a+m t, t \in \mathbf{Z}$. Let $\psi \geq 1$ be any common multiple of the numbers $p_{i}-1$ for which $p_{i} \mid a$ (for example we could take $\psi=\phi(m)$). For those values of i for which $p_{i} \mid a$ we have $a \equiv 0\left(\bmod p_{i}\right)$ and so $a^{\psi+1} \equiv 0 \equiv a\left(\bmod p_{i}\right)$. For those values of i for which $p_{i} \nmid a$, by Fermat's Little Theorem we have $a^{\psi} \equiv 1\left(\bmod p_{i}\right)$ and so again we have $a^{\psi+1} \equiv a\left(\bmod p_{i}\right)$. Thus $a^{\psi+1} \equiv a\left(\bmod p_{i}\right)$ for all $i=1,2, \cdots, l$, and so by the Chinese Remainder Theorem $a^{\psi+1} \equiv a(\bmod m)$. Finally note that for any $b \geq 0$ with $b \equiv a(\bmod m)$ we have $b^{\psi+1} \equiv a^{\psi+1} \equiv a(\bmod m)$, so we have found infinitely many perfect powers $b^{\psi+1}$ of the form $a+m t, t \in \mathbf{Z}$.

We remark that the above argument does not work when m has a factor of the form p^{2} with p prime, and indeed when $p^{2} \mid m$ there are no perfect powers of the form $p+m t, t \in \mathbf{Z}$.

3: Let n be a positive integer. Evaluate $\sum_{k=0}^{\infty}\left\lfloor\frac{n+2^{k}}{2^{k+1}}\right\rfloor$, where $\lfloor x\rfloor$ is the largest integer less than or equal to x.
Solution: Let $S_{n}=\sum_{k=0}^{\infty}\left\lfloor\frac{n+2^{k}}{2^{k+1}}\right\rfloor$. We claim that $S_{n}=n$ for all positive integers n. Note first that

$$
S_{1}=\left\lfloor\frac{1+1}{2}\right\rfloor+\left\lfloor\frac{1+2}{4}\right\rfloor+\left\lfloor\frac{1+4}{8}\right\rfloor+\cdots=1+0+0+\cdots=1 .
$$

Let $n \geq 2$ and suppose, inductively, that $S_{l}=l$ for all l with $1 \leq l<n$. If n is even, say $n=2 l$, then

$$
\begin{aligned}
S_{n} & =\left\lfloor\frac{2 l+1}{2}\right\rfloor+\left\lfloor\frac{2 l+2}{4}\right\rfloor+\left\lfloor\frac{2 l+4}{8}\right\rfloor+\left\lfloor\frac{2 l+8}{16}\right\rfloor+\cdots \\
& =l+\left\lfloor\frac{l+1}{2}\right\rfloor+\left\lfloor\frac{l+2}{4}\right\rfloor+\left\lfloor\frac{l+4}{8}\right\rfloor+\cdots \\
& =l+S_{l}=2 l=n .
\end{aligned}
$$

Before considering the case that n is odd, we first claim that when a and b are both even we have $\left\lfloor\frac{a+1}{b}\right\rfloor=\left\lfloor\frac{a}{b}\right\rfloor$. To see this, let a and b be even and use the Division Algorithm to write $a=q b+r$ with $0 \leq r<b$. Note that r must be odd, so $r \neq 0$, and so we have $a=q b+s$ where $s=r-1$ with $0 \leq s<b$. Thus $\left\lfloor\frac{a+1}{b}\right\rfloor=q=\left\lfloor\frac{a}{b}\right\rfloor$. Now we consider the case that n is odd, say $n=2 l+1$, then

$$
\begin{aligned}
S_{n} & =\left\lfloor\frac{2 l+2}{2}\right\rfloor+\left\lfloor\frac{2 l+1+2}{4}\right\rfloor+\left\lfloor\frac{2 l+1+4}{8}\right\rfloor+\left\lfloor\frac{2 l+1+8}{16}\right\rfloor+\cdots \\
& =l+1+\left\lfloor\frac{2 l+2}{4}\right\rfloor+\left\lfloor\frac{2 l+4}{8}\right\rfloor+\left\lfloor\frac{2 l+8}{16}\right\rfloor \cdots \\
& =l+1+\left\lfloor\frac{l+1}{2}\right\rfloor+\left\lfloor\frac{l+2}{4}\right\rfloor+\left\lfloor\frac{l+4}{8}\right\rfloor+\cdots \\
& =l+1+S_{l}=2 l+1=n .
\end{aligned}
$$

4: A point $p=(x, y)$ is chosen at random (with uniform distribution) in the unit square $0 \leq x \leq 1,0 \leq y \leq 1$. Find the probability that, in the triangle with vertices at $(0,0),(1,0)$ and p, the angle at each vertex is at most $\frac{5 \pi}{12}$.
Solution: Let $A=(0,0), B=(1,0), C=(0,1)$ and $D=(1,1)$. Let E and F be the points on segment $C D$ such that $\angle E A B=\frac{5 \pi}{12}=\angle F B A$. Let G be the point on segment $A C$ such that $\angle A G B=\frac{5 \pi}{12}$ and let H be the point on segment $B D$ such that $\angle B H A=\frac{5 \pi}{12}$. Let S be the circle which passes through A, B, G and H. Let K and L be the points (other than A and B) which lie on S with A on the segment $A E$ and L on the segment $B F$. Let O be the center of the circle. (You should draw the picture).

Let P be a point in the square $A B C D$, To have $\angle P A B \leq \frac{5 \pi}{12}$, the point P must lie on or to the right of the segment $A E$. To have $\angle P B A \leq \frac{5 \pi}{12}$, the point P must lie on or to the left of the segment $B F$. Since $A B$ is a chord of the circle S, when P lies on S we have $\angle A P B=\angle A G B=\angle A H B=\frac{5 \pi}{12}$, so to have $\angle A P B \leq \frac{5 \pi}{12}$, the point P must lie on or outside of the circle S. Thus the required probability is equal to the area R of the region which lies between the segments $A E$ and $B F$ but outside the circle S. Let T be the area of trapezoid $K L E F$, let U be the area of triangle $K O L$, and let V be the area of the wedge which lies inside circle S between segments $O K$ and $O L$. Then the required probability is

$$
R=T+U-V
$$

Since L lies on the circle S, we have $\angle A L B=\frac{5 \pi}{12}$. We also know that $\angle A B L=\frac{5 \pi}{12}$, and so triangle $L A B$ is isosceles with $|A L|=|A B|=1$ and $\angle L A B=\frac{\pi}{6}$. It follows that $L=\left(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right)=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. By symmetry we have $K=\left(1-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. Note that on line $A K E, A$ is the origin and the x-coordinate of K is $\frac{1}{2}$ of the x-coordinate of E, so we have $E=2 K=(2-\sqrt{3}, 1)$. By symmetry, $F=(\sqrt{3}-1,1)$. Thus the trapezoid $K L E F$ has side lengths $|K L|=\sqrt{3}-1$ and $|E F|=2 \sqrt{3}-3$ and height $\frac{1}{2}$, so its area is

$$
T=\frac{1}{4}(|K L|+|E F|)=\frac{1}{4}(3 \sqrt{3}-4) .
$$

Since $\angle K A B=\frac{5 \pi}{12}$ and $\angle L A B=\frac{\pi}{6}$, we have $\angle K A L=\frac{5 \pi}{12}-\frac{\pi}{6}=\frac{\pi}{4}$. Since $K L$ is a chord of the circle S and O is the center, we have $\angle K O L=2 \angle K A L=\frac{\pi}{2}$. Thus triangle $K O L$ is an isosceles right triangle. In this triangle, $|K L|=\sqrt{3}-1$ and $|O K|=|O L|=\frac{1}{\sqrt{2}}|K L|=\frac{\sqrt{3}-1}{\sqrt{2}}$. Thus the area of triangle $K O L$ is

$$
U=\frac{1}{4}|K L|^{2}=\frac{1}{4}(4-2 \sqrt{3}) .
$$

Finally note that since $\angle K O L=\frac{\pi}{2}$, the wedge is one quarter of the circle of radius $|O K|$ so

$$
V=\frac{1}{4} \pi|O K|^{2}=\frac{2-\sqrt{3}}{4} \pi .
$$

Thus the required probability is

$$
R=T+U-V=\frac{\sqrt{3}}{4}-\frac{2-\sqrt{3}}{4} \pi .
$$

5: Let x be an irrational number, and let M be a positive integer. Show that there exist integers a and b with $b>0$ such that

$$
\left|x-\frac{a}{b}\right|<\frac{1}{M b} .
$$

Solution: For a real number u, let $\langle u\rangle$ denote the fractional part of u, that is $\langle u\rangle=u-\lfloor u\rfloor$. Note that $\langle x\rangle \in[0,1)$. We divide $[0,1)$ into M equal subintervals

$$
\left[0, \frac{1}{M}\right),\left[\frac{1}{M}, \frac{2}{M}\right),\left[\frac{2}{M}, \frac{3}{M}\right), \cdots,\left[\frac{M-1}{M}, 1\right) .
$$

Two of the numbers $\langle x\rangle,\langle 2 x\rangle,\langle 3 x\rangle \cdots$ must lie in the same subinterval, say $k<l$ and $\langle k x\rangle$ and $\langle l x\rangle$ both lie in the same subinterval. Let $a=\lfloor(k-l) x\rfloor$ and $b=(k-l)>0$. Then

$$
b x-a=(k-l) x-\lfloor(k-l) x\rfloor=\langle(k-l) x\rangle=\langle k x\rangle-\langle l x\rangle \in\left[0, \frac{1}{M}\right)
$$

and so $0 \leq b x-a<\frac{1}{M}$ and hence $0 \leq x-\frac{a}{b}<\frac{1}{M b}$.

6: Let f be continuous on $[0,1]$ and differentiable in $(0,1)$. Suppose there exists $M>0$ such that for all $x \in(0,1)$ we have $\left|f(0)-f(x)+x f^{\prime}(x)\right|<M x^{2}$. Prove that f is differentiable (from the right) at 0 .
Solution: Let $g(x)=\frac{f(x)-f(0)}{x-0}$. To show that f is differentiable at 0 , we must show that $\lim _{x \rightarrow 0^{+}} g(x)$ exists. We shall prove this by showing that $\lim _{n \rightarrow \infty} g\left(x_{n}\right)$ exists for every sequence $\left\{x_{n}\right\}$ in $(0,1)$ with $x_{n} \rightarrow 0$.

We have $g^{\prime}(x)=\frac{x f^{\prime}(x)-f(x)+f(0)}{x^{2}}$. Since $\left|x f^{\prime}(x)-f(x)+f(0)\right|<M x^{2}$ for all $x \in(0,1)$, we see that $\left|g^{\prime}(x)\right|<M$ for all $x \in(0,1)$. Now let $\left\{x_{n}\right\}$ be any sequence in $(0,1)$ with $x_{n} \rightarrow 0$. Let $\epsilon>0$. Since $\left\{x_{n}\right\}$ is Cauchy, we can choose N so that for all integers $n, m \geq N$ we have $\left|x_{n}-x_{m}\right|<\frac{\epsilon}{M}$. Let $n, m \geq N$. By the Mean Value Theorem we can choose t between x_{n} and x_{m} so that $g^{\prime}(t)\left(x_{n}-x_{m}\right)=g\left(x_{n}\right)-g\left(x_{m}\right)$. Then we have

$$
\left|g\left(x_{n}\right)-g\left(x_{m}\right)\right|=\left|g^{\prime}(t)\right|\left|x_{n}-x_{m}\right|<M \cdot \frac{\epsilon}{M}=\epsilon .
$$

Thus $\left\{g\left(x_{n}\right)\right\}$ is Cauchy, so it converges. (We remark that we did not need to use the hypothesis that f is continuous at 0).

Solutions to the Big E Problems, 2010

1: Find the minimum possible discriminant $\Delta=b^{2}-4 a c$ of a quadratic $f(x)=a x^{2}+b x+c$ which satisfies the requirement that $f(f(f(0)))=f(0)$.
Solution: Let $f(x)=a x^{2}+b x+c$. Then $f(0)=c$ so we have

$$
\begin{aligned}
f(f(f(0)))=f(0) & \Longleftrightarrow f(f(c))=c \\
& \Longleftrightarrow f\left(a c^{2}+b c+c\right)=c \\
& \Longleftrightarrow a\left(a c^{2}+b c+c\right)^{2}+b\left(a c^{2}+b c+c\right)+c=c \\
& \Longleftrightarrow\left(a c^{2}+b c+c\right)\left(a\left(a c^{2}+b c+c\right)+b\right)=0 \\
& \Longleftrightarrow\left(a c^{2}+b c+c\right)\left(a^{2} c^{2}+a b c+a c+b\right)=0 \\
& \Longleftrightarrow c(a c+b+1)(a c+1)(a c+b)=0 \\
& \Longleftrightarrow c=0, \quad a c=-(b+1), \quad a c=-1, \quad \text { or } a c=-b .
\end{aligned}
$$

When $c=0$ we have $\Delta=b^{2}-4 a c=b^{2} \geq 0$, when $a c=-(b+1)$ we have $\Delta=b^{2}+4(b+1)=(b+2)^{2} \geq 0$, when $a c=-1$ we have $\Delta=b^{2}+4 \geq 4$, and when $a c=-b$ we have $\Delta=b^{2}+4 b=(b+2)^{2}-4 \geq-4$. Thus the minimum possible value for Δ is $\Delta=-4$, and this minimum value is attained when $b=-2$ and $a c=2$, for example when $f(x)=x^{2}-2 x+2$.

2: Show that for every integer a, there exist infinitely many perfect powers of the form

$$
a+2010 t, t \in \mathbf{Z}
$$

(A perfect power is an integer of the form n^{k} for some integers $n \geq 0$ and $k \geq 2$).
Solution: Note that $2010=2 \cdot 3 \cdot 5 \cdot 67$, which is a product of distinct primes. We claim, more generally, that if $m=p_{1} p_{2} \cdots p_{l}$ where the p_{i} are distinct primes, then for every $a \in \mathbf{Z}$ there exist infinitely many perfect powers of the form $a+m t, t \in \mathbf{Z}$. Let $\psi \geq 1$ be any common multiple of the numbers $p_{i}-1$ for which $p_{i} \mid a$ (for example we could take $\psi=\phi(m)$). For those values of i for which $p_{i} \mid a$ we have $a \equiv 0\left(\bmod p_{i}\right)$ and so $a^{\psi+1} \equiv 0 \equiv a\left(\bmod p_{i}\right)$. For those values of i for which $p_{i} \nmid a$, by Fermat's Little Theorem we have $a^{\psi} \equiv 1\left(\bmod p_{i}\right)$ and so again we have $a^{\psi+1} \equiv a\left(\bmod p_{i}\right)$. Thus $a^{\psi+1} \equiv a\left(\bmod p_{i}\right)$ for all $i=1,2, \cdots, l$, and so by the Chinese Remainder Theorem $a^{\psi+1} \equiv a(\bmod m)$. Finally note that for any $b \geq 0$ with $b \equiv a(\bmod m)$ we have $b^{\psi+1} \equiv a^{\psi+1} \equiv a(\bmod m)$, so we have found infinitely many perfect powers $b^{\psi+1}$ of the form $a+m t, t \in \mathbf{Z}$.

We remark that the above argument does not work when m has a factor of the form p^{2} with p prime, and indeed when $p^{2} \mid m$ there are no perfect powers of the form $p+m t, t \in \mathbf{Z}$.

3: Evaluate $\sum_{n=0}^{\infty} \int_{0}^{\pi}(-1)^{n} \sin ^{2 n} x d x$.
Solution: Using integration by parts, then replacing $\cos ^{2} x$ by $1-\sin ^{2} x$, we have

$$
\begin{aligned}
\int \sin ^{n} x d x & =\int \sin ^{n-1} x \sin x d x \\
& =-\sin ^{n-1} x \cos x+\int(n-1) \sin ^{n-2} x \cos ^{2} x d x \\
& =-\sin ^{n-1} x \cos x+(n-1) \int \sin ^{n-2} x d x-(n-1) \int \sin ^{n} x d x
\end{aligned}
$$

Adding $(n-1) \int \sin ^{n} x d x$ to both sides then dividing by n gives

$$
\int \sin ^{n} x d x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \int \sin ^{n-2} x d x
$$

and so we have

$$
\int_{0}^{\pi} \sin ^{n} x d x=\frac{n-1}{n} \int_{0}^{\pi} \sin ^{n-2} x d x
$$

This recursion formula gives $\int_{0}^{\pi} \sin ^{0} x d x=\pi, \int_{0}^{\pi} \sin ^{2} x d x=\frac{1}{2} \pi, \int_{0}^{\pi} \sin ^{4} x d x=\frac{3}{4} \cdot \frac{1}{2} \cdot \pi$, and so on, so

$$
\int_{0}^{\pi} \sin ^{2 n} x d x=\left(\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2 n-1}{2 n}\right) \pi=(-1)^{n} \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \cdots\left(-\frac{2 n-1}{2}\right)}{n!} \pi=(-1)^{n}\binom{-1 / 2}{n} \pi
$$

By the Binomial Theorem and Abel's Theorem we have

$$
\sum_{n=0}^{\infty} \int_{0}^{\pi}(-1)^{n} \sin ^{2 n} x d x=\pi \sum_{n=0}^{\infty}\binom{-1 / 2}{n}=\pi(1+1)^{-1 / 2}=\frac{\pi}{\sqrt{2}}
$$

4: Two points p and q are chosen at random (with uniform distribution) in the unit ball $x^{2}+y^{2}+z^{2} \leq 1$. Find the probability that the triangle with vertices at p, q and the origin is an acute-angled triangle.
Solution: Let P_{0} be the probability that the angle at 0 is at least $\frac{\pi}{2}$, let P_{p} be the probability that the angle at p is at least $\frac{\pi}{2}$, and let P_{q} be the probability that the angle at q is at least $\frac{\pi}{2}$. Since at most one of the three angles of triangle $0 p q$ can be obtuse, the required probability P is equal to

$$
P=1-P_{0}-P_{p}-P_{q}
$$

We note that $P_{0}=\frac{1}{2}$ since for each choice of p (with $p \neq 0$ if we wish to avoid a degenerate triangle), the angle at the origin is at least $\frac{\pi}{2}$ if and only if q lies in the half-ball given by $q \cdot p \leq 0$ (with $q \neq t p$ for any t if we wish to avoid a degenerate triangle). We also note that $P_{p}=P_{q}$ by symmetry. Thus

$$
P=\frac{1}{2}-2 P_{q}
$$

For $r>0$, the volume of spherical shell of radius r and infinitesimal thickness $d r$ is $4 \pi r^{2} d r$, so the probability that p lies in this shell is $\frac{4 \pi r^{2} d r}{\frac{4}{3} \pi}=3 r^{2} d r$. Given that p lies in this shell, the points q for which the angle at q in the triangle $0 p q$ is at least $\frac{1}{2}$ are the points q which lie in or on the ball with diameter $0 p$ (with $q \neq t p$ for any t if we wish to avoid a degenerate triangle). The volume of this ball is $\frac{4}{3} \pi\left(\frac{r}{2}\right)^{3}$, so the probability that q lies in or on the ball is $\frac{\frac{4}{3} \pi\left(\frac{r}{2}\right)^{3}}{\frac{4}{3} \pi}=\frac{1}{8} r^{3}$. Thus

$$
P_{q}=\int_{r=0}^{1} \frac{1}{8} r^{3} \cdot 3 r^{2} d r=\frac{3}{8} \int_{0}^{1} r^{5} d r=\frac{3}{8} \cdot \frac{1}{6}=\frac{1}{16}
$$

and hence $P=\frac{1}{2}-2 \cdot \frac{1}{16}=\frac{3}{8}$.

5: Let A be the $n \times n$ matrix whose $(i, j)^{\text {th }}$ entry is $A_{i, j}=\frac{1}{i+j}$. Show that A is invertible.
Solution: We show that $\operatorname{Null}(A)=0$. Suppose that $A u=0$ where $u=\left(\begin{array}{c}u_{0} \\ u_{1} \\ \vdots \\ u_{n-1}\end{array}\right)$ and let $f(x)=\sum_{k=0}^{n-1} u_{k} x^{k}$.
Let P_{n-1} denote the vector space of polynomials of degree at most $n-1$ with the inner product given by

$$
\langle f, g\rangle=\int_{0}^{1} x f(x) g(x) d x
$$

Notice that

$$
A u=\left(\begin{array}{c}
\frac{1}{2} u_{0}+\frac{1}{3} u_{1}+\cdots+\frac{1}{n+1} u_{n-1} \\
\frac{1}{3} u_{0}+\frac{1}{4} u_{1}+\cdots+\frac{1}{n+2} u_{n-1} \\
\vdots \\
\frac{1}{n+1} u_{0}+\frac{1}{n+2} u_{1}+\cdots+\frac{1}{2 n} u_{n-1}
\end{array}\right)=\left(\begin{array}{c}
\int_{0}^{1} x f(x) d x \\
\int_{0}^{1} x^{2} f(x) d x \\
\vdots \\
\int_{0}^{1} x^{n} f(x) d x
\end{array}\right)=\left(\begin{array}{c}
\langle f, 1\rangle \\
\langle f, x\rangle \\
\vdots \\
\left\langle f, x^{n-1}\right\rangle
\end{array}\right)
$$

Since $A u=0$ we have $\langle f, 1\rangle=\langle f, x\rangle=\cdots=\left\langle f, x^{n-1}\right\rangle=0$. Since $\left\{1, x, \cdots, x^{n-1}\right\}$ is a basis for P_{n-1} it follows that $f \in P_{n-1}^{\perp}=\{0\}$, so $f=0$ and hence $u=0$.

6: Let f be continuous on $[0,1]$ and differentiable in $(0,1)$. Suppose there exists $M>0$ such that for all $x \in(0,1)$ we have $\left|f(0)-f(x)+x f^{\prime}(x)\right|<M x^{2}$. Prove that f is differentiable (from the right) at 0 .

Solution: Let $g(x)=\frac{f(x)-f(0)}{x-0}$. To show that f is differentiable at 0 , we must show that $\lim _{x \rightarrow 0^{+}} g(x)$ exists. We shall prove this by showing that $\lim _{n \rightarrow \infty} g\left(x_{n}\right)$ exists for every sequence $\left\{x_{n}\right\}$ in $(0,1)$ with $x_{n} \rightarrow 0$.

We have $g^{\prime}(x)=\frac{x f^{\prime}(x)-f(x)+f(0)}{x^{2}}$. Since $\left|x f^{\prime}(x)-f(x)+f(0)\right|<M x^{2}$ for all $x \in(0,1)$, we see that $\left|g^{\prime}(x)\right|<M$ for all $x \in(0,1)$. Now let $\left\{x_{n}\right\}$ be any sequence in $(0,1)$ with $x_{n} \rightarrow 0$. Let $\epsilon>0$. Since $\left\{x_{n}\right\}$ is Cauchy, we can choose N so that for all integers $n, m \geq N$ we have $\left|x_{n}-x_{m}\right|<\frac{\epsilon}{M}$. Let $n, m \geq N$. By the Mean Value Theorem we can choose t between x_{n} and x_{m} so that $g^{\prime}(t)\left(x_{n}-x_{m}\right)=g\left(x_{n}\right)-g\left(x_{m}\right)$. Then we have

$$
\left|g\left(x_{n}\right)-g\left(x_{m}\right)\right|=\left|g^{\prime}(t)\right|\left|x_{n}-x_{m}\right|<M \cdot \frac{\epsilon}{M}=\epsilon
$$

Thus $\left\{g\left(x_{n}\right)\right\}$ is Cauchy, so it converges. (We remark that we did not need to use the hypothesis that f is continuous at 0).

