Solutions to the Special K Problems, 2010

: Find the minimum possible discriminant A = b? — 4ac of a quadratic f(x) = az? + bz + ¢ which satisfies the
requirement that f(f(f(0))) = f(0).
Solution: Let f(x) = ax? + bz + c. Then f(0) = ¢ so we have
Ff(@)) = f(0) = [(f(e) =¢
— f(ac® +bc+c) =
a(ac® +bc+c)? +blac® +be+c)+ec=c
(ac +bc+c)(a (ac® +bc+c)+b) =0
(ac® +be+ ¢)(a*c® + abc +ac+b) =0
clac+b+1)(ac+1)(ac+b) =0
<~ ¢=0, ac=—(b+1), ac=-1, orac=-b.
When ¢ = 0 we have A = b* — dac = b> > 0, when ac = —(b+ 1) we have A =b? +4(b+ 1) = (b+2)% > 0,
when ac = —1 we have A = b? +4 > 4, and when ac = —b we have A =b? +4b = (b—|—2)2 — 4 > —4. Thus

the minimum possible value for A is A = —4, and this minimum value is attained when b = —2 and ac = 2,
for example when f(x) = 22 — 2z + 2.
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: Show that for every integer a, there exist infinitely many perfect powers of the form
a+2010t , te€Z.
(A perfect power is an integer of the form n* for some integers n > 0 and k > 2).

Solution: Note that 2010 = 2-3-5-67, which is a product of distinct primes. We claim, more generally, that
if m = p1ps -+ - p; where the p; are distinct primes, then for every a € Z there exist infinitely many perfect
powers of the form a + mt, t € Z. Let ¢ > 1 be any common multiple of the numbers p; — 1 for which
pl-’a (for example we could take v» = ¢(m)). For those values of i for which pl-’a we have a = 0 (mod p;)
and so a¥*! = 0 = a (mod p;). For those values of i for which p; /fa, by Fermat’s Little Theorem we have
a¥ =1 (mod p;) and so again we have a¥*! = a (mod p;). Thus a¥*! = a (mod p;) for all i = 1,2,---,1,
and so by the Chinese Remainder Theorem a¥*! = a (mod m). Finally note that for any b > 0 with
b = a (mod m) we have b¥*! = a¥*! = a (mod m), so we have found infinitely many perfect powers b¥+1
of the form a + mt, t € Z.

We remark that the above argument does not work when m has a factor of the form p? with p prime,
and indeed when p2|m there are no perfect powers of the form p + mt, t € Z.
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3: Let n be a positive integer. Evaluate Z {%-&-1
k=0

J , where |z] is the largest integer less than or equal to .
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Solution: Let S,, = Z VLQ;:H

J . We claim that S;, = n for all positive integers n. Note first that
k=0
Si= U+ PP+ L+ = 1404040 =
Let n > 2 and suppose, inductively, that S; =1 for all [ with 1 <[ < n. If n is even, say n = 2[, then
Sn = |243) 4+ [242) + [ 24) + | 288 +
=+ B+ R+ U
=l+5=2l=n.

Before considering the case that n is odd, we first claim that when a and b are both even we have | %5 | = [ %].
To see this, let a and b be even and use the Division Algorithm to write a = ¢gb+r with 0 < r < b. Note that
r must be odd, so r # 0, and so we have a = gb+ s where s =7 — 1 with 0 < s <b. Thus |%1] = ¢ = [%].
Now we consider the case that n is odd, say n = 2] + 1, then
S, = L2127+2J + |_2l+41+2J + L2l+1+4j + 2l+116+8J 4.

:l+1+L%T+2J+L21§4J L2l+8J

:z+1+U+71J+W‘TQJ+U%4J+---

=l+1+S5=20+1=n.




4: A point p = (z,y) is chosen at random (with uniform distribution) in the unit square 0 <2 <1, 0 <y < 1.
Find the probability that, in the triangle with vertices at (0,0), (1,0) and p, the angle at each vertex is at
most 2T

Solution: Let A = (0,0), B = (1,0), C = (0,1) and D = (1,1). Let E and F' be the points on segment C D
such that /EAB = %‘ = /FBA. Let G be the point on segment AC such that /AGB = 51—’2’ and let H be
the point on segment BD such that /BHA = %’ Let S be the circle which passes through A, B, G and H.
Let K and L be the points (other than A and B) which lie on S with A on the segment AE and L on the
segment BF. Let O be the center of the circle. (You should draw the picture).

Let P be a point in the square ABC’D To have /PAB < 3 75, the point P must lie on or to the right
of the segment AE. To have /PBA < 2 75, the point P must lie on or to the left of the segment BF'. Since
AB is a chord of the circle S, when P lies on S we have /ZAPB = /AGB = /AHB = 51’27, so to have
LAPB < El’g, the point P must lie on or outside of the circle S. Thus the required probability is equal to
the area R of the region which lies between the segments AE and BF but outside the circle S. Let T be the
area of trapezoid KLEF', let U be the area of triangle KOL, and let V be the area of the wedge which lies

inside circle S between segments OK and OL. Then the required probability is

R=T4+U-V.
Since L lies on the circle S, we have ZALB = 2. We also know that ZABL = 12, and so triangle LAB is
isosceles with |[AL| = |[AB| =1and /LAB = §. It follows that L = (cos %,sin %) = (‘{, %) By symmetry

22
z-coordinate of F/, so we have ' = 2K = (2 -3, 1). By symmetry, F' = (\/3 -1, 1). Thus the trapezoid
KLEF has side lengths |[KL| = /3 — 1 and |EF| = 2/3 — 3 and height 3, so its area is

we have K = ( — 31 7> Note that on line AKE, A is the origin and the z-coordinate of K is = of the

— (KLl + |BF|) = }(38V3 1)

Since /KAB = 57 and /LAB = %, we have /KAL = 3% — % = % Since KL is a chord of the circle S and

O is the center, we have /KOL = 2/KAL = 7. Thus triangle KOL is an isosceles right triangle. In this
triangle, |KL| = v/3 — 1 and |OK| = |OL| = f|KL| . Thus the area of triangle KOL is

U= KL = 1(4 ~2/3).
Finally note that since /ZKOL = 7, the wedge is one quarter of the circle of radius |OK| so

V=1r|OK*= 2_4\/§7T.
Thus the required probability is

2

R=T+U—-V=133_




5: Let x be an irrational number, and let M be a positive integer. Show that there exist integers a and b with

b > 0 such that

o= 5 < 355

Solution: For a real number u, let (u) denote the fractional part of u, that is (u) = u — |u]. Note that
(x) € [0,1). We divide [0,1) into M equal subintervals

M—

0.37) » aroar) > apar) 5 [0 1)
Two of the numbers (z), (2z), (3z) - - - must lie in the same subinterval, say k < [ and (kz) and (lz) both lie
in the same subinterval. Let a = |(k — )z | and b= (k — ) > 0. Then

be—a=(k—lz—|[(k—0z| =((k—Dz) = (kz) — (lz) € [0, 7;)
andsoogbx—a<ﬁandhenceogw—%<ﬁ

6: Let f be continuous on [0,1] and differentiable in (0,1). Suppose there exists M > 0 such that for all
x € (0,1) we have |f(0) — f(z) + xf'(z)| < Ma?*. Prove that f is differentiable (from the right) at 0.

f(z) — f(0)
z—0

Solution: Let g(x) = . To show that f is differentiable at 0, we must show that hm g(z) exists.

We shall prove this by showing that hm g(x,) exists for every sequence {z,} in (0,1) Wlth scn — 0.

We have ¢'(z) = 2f(x) = j:g )Jrf( ) Since |z f'(z) — f(z) + f(0)] < Ma? for all z € (0,1), we see

that |¢'(z)| < M for all z € (0,1). Now let {z,} be any sequence in (0,1) with 2, — 0. Let e > 0. Since
{z,} is Cauchy, we can choose N so that for all integers n,m > N we have |xn — xm| < 17 Let n,m > N.
By the Mean Value Theorem we can choose t between x,, and z,, so that ¢'(t)(z, — zm) = g(zn) — 9(m).
Then we have

[9(@n) = g(@m)| = 19/ (O)llen — @l < M- 15 =c.

Thus {g(z,)} is Cauchy, so it converges. (We remark that we did not need to use the hypothesis that f is
continuous at 0).



Solutions to the Big E Problems, 2010

: Find the minimum possible discriminant A = b? — 4ac of a quadratic f(x) = az? + bz + ¢ which satisfies the
requirement that f(f(f(0))) = f(0).
Solution: Let f(x) = ax? + bz + c. Then f(0) = ¢ so we have
Ff(@)) = f(0) = [(f(e) =¢
— f(ac® +bc+c) =
a(ac® +bc+c)? +blac® +be+c)+ec=c
(ac +bc+c)(a (ac® +bc+c)+b) =0
(ac® +be+ ¢)(a*c® + abc +ac+b) =0
clac+b+1)(ac+1)(ac+b) =0
<~ ¢=0, ac=—(b+1), ac=-1, orac=-b.
When ¢ = 0 we have A = b* — dac = b> > 0, when ac = —(b+ 1) we have A =b? +4(b+ 1) = (b+2)% > 0,
when ac = —1 we have A = b? +4 > 4, and when ac = —b we have A =b? +4b = (b—|—2)2 — 4 > —4. Thus

the minimum possible value for A is A = —4, and this minimum value is attained when b = —2 and ac = 2,
for example when f(x) = 22 — 2z + 2.
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: Show that for every integer a, there exist infinitely many perfect powers of the form
a+2010t , te€Z.
(A perfect power is an integer of the form n* for some integers n > 0 and k > 2).

Solution: Note that 2010 = 2-3-5-67, which is a product of distinct primes. We claim, more generally, that
if m = p1ps -+ - p; where the p; are distinct primes, then for every a € Z there exist infinitely many perfect
powers of the form a + mt, t € Z. Let ¢ > 1 be any common multiple of the numbers p; — 1 for which
pl-’a (for example we could take v» = ¢(m)). For those values of i for which pl-’a we have a = 0 (mod p;)
and so a¥*! = 0 = a (mod p;). For those values of i for which p; /fa, by Fermat’s Little Theorem we have
a¥ =1 (mod p;) and so again we have a¥*! = a (mod p;). Thus a¥*! = a (mod p;) for all i = 1,2,---,1,
and so by the Chinese Remainder Theorem a¥*! = a (mod m). Finally note that for any b > 0 with
b = a (mod m) we have b¥*! = a¥*! = a (mod m), so we have found infinitely many perfect powers b¥+1
of the form a + mt, t € Z.

We remark that the above argument does not work when m has a factor of the form p? with p prime,
and indeed when p2|m there are no perfect powers of the form p + mt, t € Z.



3: Evaluate Z/ (=1)"sin®" 2 da.
n=0"0

Solution: Using integration by parts, then replacing cos? z by 1 — sin

/sin"m dr = /sin”fla: sinz dx

= —sin" 'z cosx + /(n —1)sin" %z cos’ x dx

22, we have

= —sin" 'z cosz+ (n—1) /sin”fzx dx — (n — 1)/sin”x dx .
Adding (n —1) / sin” z dx to both sides then dividing by n gives

/sin" T dr = f% sin” 'z cosz + "T_l/sin"_2 z dz

s T
/ sin" z dz = "T_l/ sin" 2 x dx
0 0

™
This recursion formula gives / sin’ z dx = T, / sin?x dx = %77, / sin*z do = % . % -m, and so on, so
0 0 0

and so we have

2n

/W sin®z de = (13- 5.2y — (_)n (=3)(=3)(=3) (=) = (-1)" (—2/2) -
0

By the Binomial Theorem and Abel’s Theorem we have

i/oﬂ(_ sin? mdm—wZ( 1/2)— 1+1)_1/2:%.

4: Two points p and g are chosen at random (with uniform distribution) in the unit ball 2% 4+ 2 + 22 < 1. Find
the probability that the triangle with vertices at p, ¢ and the origin is an acute-angled triangle.

Solution: Let Py be the probability that the angle at 0 is at least 7, let P, be the probability that the angle
at p is at least 7, and let P, be the probability that the angle at ¢ is at least 5. Since at most one of the
three angles of trlangle Opg can be obtuse, the required probability P is equal to

P=1-P—P,—P,.

We note that Py = 3 since for each choice of p (with p # 0 if we wish to avoid a degenerate triangle), the
angle at the origin is at least 7 if and only if ¢ lies in the half-ball given by ¢ « p < 0 (with ¢ # tp for any ¢

if we wish to avoid a degenerate triangle). We also note that P, = P, by symmetry. Thus
P= % —2F,.

For r > 0, the volume of spherical shell of radius 7 and infinitesimal thickness dr is 47?2 dr, so the probability
47r? dr
ir

that p lies in this shell is = 3r? dr. Given that p lies in this shell, the points ¢ for which the angle at

3
q in the triangle Opq is at least % are the points ¢ which lie in or on the ball with diameter Op (with ¢ # ¢p

for any t if we wish to avoid a degenerate triangle). The volume of this ball is %w (%)3, so the probability

3
LW (5) = 13, Thus

1 1

_ 1,3 227 _ 3 Bgp_3.1_ 1

Pq—/osr 3rdr—8/0rdr—8 5= 16
r—=

andhenceP:%—Q'i:%.

that ¢ lies in or on the ball is

Wl
o)
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5: Let A be the n x n matrix whose (i, )" entry is A; ; = —~. Show that A is invertible.

47"
ug
(% n—1
Solution: We show that Null(A) = 0. Suppose that Au = 0 where u = _1 and let f(z) = . upa®.
: k=0
Un—1

Let P,_1 denote the vector space of polynomials of degree at most n — 1 with the inner product given by

(f.9) = / » f(@)g(z) de.

Notice that

lup + dur 4o 4 Jy 2f(z) da (f.1)
1 1 1
Ay — sUo0 + U1 + o gaUn-t _ fol 22 f(z) dz _ <fa17>
AU+ sty o g ln 1 fol " f(z) dz (fiz™™h)
Since Au = 0 we have (f,1) = (f,z) = --- = (f,2""1) = 0. Since {1,x,-~-,x"‘1} is a basis for P,_1 it

follows that f € P, 1= = {0}, so f = 0 and hence u = 0.

: Let f be continuous on [0, 1] and differentiable in (0,1). Suppose there exists M > 0 such that for all

z € (0,1) we have |f(0) — f(z) + xf'(z)| < Ma?*. Prove that f is differentiable (from the right) at 0.

fz) = f(0)
z—0

Solution: Let g(z) = . To show that f is differentiable at 0, we must show that lim+ g(z) exists.
z—0

We shall prove this by showing that lim g(z,) exists for every sequence {z,} in (0,1) with =, — 0.
n—oo

We have ¢'(z) = zf(x) = igx) + f(())' Since |zf'(z) — f(z) + f(0)] < Ma? for all z € (0,1), we see

that |¢'(z)| < M for all z € (0,1). Now let {z,} be any sequence in (0,1) with 2, — 0. Let ¢ > 0. Since
{z,} is Cauchy, we can choose N so that for all integers n,m > N we have |wn — a:m| < 17 Let n,m > N.
By the Mean Value Theorem we can choose t between x,, and x,, so that ¢'(t)(z, — zm) = g(zn) — 9(m).
Then we have

£
M

Thus {g(z,)} is Cauchy, so it converges. (We remark that we did not need to use the hypothesis that f is
continuous at 0).

lg(xn> - g($7n)’ =19 Ol|zn — Tm| < M - =¢€.



