
Solutions to the Special K Problems, 2010

1: Find the minimum possible discriminant ∆ = b2− 4ac of a quadratic f(x) = ax2 + bx+ c which satisfies the
requirement that f

(
f
(
f(0)

))
= f(0).

Solution: Let f(x) = ax2 + bx+ c. Then f(0) = c so we have

f
(
f
(
f(0)

))
= f(0) ⇐⇒ f

(
f(c)

)
= c

⇐⇒ f(ac2 + bc+ c) = c

⇐⇒ a(ac2 + bc+ c)2 + b(ac2 + bc+ c) + c = c

⇐⇒ (ac2 + bc+ c)
(
a(ac2 + bc+ c) + b

)
= 0

⇐⇒ (ac2 + bc+ c)(a2c2 + abc+ ac+ b) = 0
⇐⇒ c(ac+ b+ 1)(ac+ 1)(ac+ b) = 0
⇐⇒ c = 0 , ac = −(b+ 1) , ac = −1 , or ac = −b .

When c = 0 we have ∆ = b2 − 4ac = b2 ≥ 0, when ac = −(b+ 1) we have ∆ = b2 + 4(b+ 1) = (b+ 2)2 ≥ 0,
when ac = −1 we have ∆ = b2 + 4 ≥ 4, and when ac = −b we have ∆ = b2 + 4b = (b+ 2)2 − 4 ≥ −4. Thus
the minimum possible value for ∆ is ∆ = −4, and this minimum value is attained when b = −2 and ac = 2,
for example when f(x) = x2 − 2x+ 2.

2: Show that for every integer a, there exist infinitely many perfect powers of the form

a+ 2010 t , t ∈ Z .

(A perfect power is an integer of the form nk for some integers n ≥ 0 and k ≥ 2).

Solution: Note that 2010 = 2 · 3 · 5 · 67, which is a product of distinct primes. We claim, more generally, that
if m = p1p2 · · · pl where the pi are distinct primes, then for every a ∈ Z there exist infinitely many perfect
powers of the form a + mt, t ∈ Z. Let ψ ≥ 1 be any common multiple of the numbers pi − 1 for which
pi
∣∣a (for example we could take ψ = φ(m)). For those values of i for which pi

∣∣a we have a ≡ 0 (mod pi)
and so aψ+1 ≡ 0 ≡ a (mod pi). For those values of i for which pi 6

∣∣a, by Fermat’s Little Theorem we have
aψ ≡ 1 (mod pi) and so again we have aψ+1 ≡ a (mod pi). Thus aψ+1 ≡ a (mod pi) for all i = 1, 2, · · · , l,
and so by the Chinese Remainder Theorem aψ+1 ≡ a (mod m). Finally note that for any b ≥ 0 with
b ≡ a (mod m) we have bψ+1 ≡ aψ+1 ≡ a (mod m), so we have found infinitely many perfect powers bψ+1

of the form a+mt, t ∈ Z.
We remark that the above argument does not work when m has a factor of the form p2 with p prime,

and indeed when p2
∣∣m there are no perfect powers of the form p+mt, t ∈ Z.



3: Let n be a positive integer. Evaluate
∞∑
k=0

⌊
n+ 2k

2k+1

⌋
, where bxc is the largest integer less than or equal to x.

Solution: Let Sn =
∞∑
k=0

⌊
n+ 2k

2k+1

⌋
. We claim that Sn = n for all positive integers n. Note first that

S1 = b 1+1
2 c+ b 1+2

4 c+ b 1+4
8 c+ · · · = 1 + 0 + 0 + · · · = 1 .

Let n ≥ 2 and suppose, inductively, that Sl = l for all l with 1 ≤ l < n. If n is even, say n = 2l, then

Sn = b 2l+1
2 c+ b 2l+2

4 c+ b 2l+4
8 c+ b 2l+8

16 c+ · · ·
= l + b l+1

2 c+ b l+2
4 c+ b l+4

8 c+ · · ·
= l + Sl = 2l = n.

Before considering the case that n is odd, we first claim that when a and b are both even we have ba+1
b c = bab c.

To see this, let a and b be even and use the Division Algorithm to write a = qb+r with 0 ≤ r < b. Note that
r must be odd, so r 6= 0, and so we have a = qb+ s where s = r− 1 with 0 ≤ s < b. Thus ba+1

b c = q = bab c.
Now we consider the case that n is odd, say n = 2l + 1, then

Sn = b 2l+2
2 c+ b 2l+1+2

4 c+ b 2l+1+4
8 c+ b 2l+1+8

16 c+ · · ·
= l + 1 + b 2l+2

4 c+ b 2l+4
8 c+ b 2l+8

16 c · · ·
= l + 1 + b l+1

2 c+ b l+2
4 c+ b l+4

8 c+ · · ·
= l + 1 + Sl = 2l + 1 = n .



4: A point p = (x, y) is chosen at random (with uniform distribution) in the unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
Find the probability that, in the triangle with vertices at (0, 0), (1, 0) and p, the angle at each vertex is at
most 5π

12 .

Solution: Let A = (0, 0), B = (1, 0), C = (0, 1) and D = (1, 1). Let E and F be the points on segment CD
such that 6 EAB = 5π

12 = 6 FBA. Let G be the point on segment AC such that 6 AGB = 5π
12 and let H be

the point on segment BD such that 6 BHA = 5π
12 . Let S be the circle which passes through A, B, G and H.

Let K and L be the points (other than A and B) which lie on S with A on the segment AE and L on the
segment BF . Let O be the center of the circle. (You should draw the picture).

Let P be a point in the square ABCD, To have 6 PAB ≤ 5π
12 , the point P must lie on or to the right

of the segment AE. To have 6 PBA ≤ 5π
12 , the point P must lie on or to the left of the segment BF . Since

AB is a chord of the circle S, when P lies on S we have 6 APB = 6 AGB = 6 AHB = 5π
12 , so to have

6 APB ≤ 5π
12 , the point P must lie on or outside of the circle S. Thus the required probability is equal to

the area R of the region which lies between the segments AE and BF but outside the circle S. Let T be the
area of trapezoid KLEF , let U be the area of triangle KOL, and let V be the area of the wedge which lies
inside circle S between segments OK and OL. Then the required probability is

R = T + U − V .

Since L lies on the circle S, we have 6 ALB = 5π
12 . We also know that 6 ABL = 5π

12 , and so triangle LAB is

isosceles with |AL| = |AB| = 1 and 6 LAB = π
6 . It follows that L =

(
cos π6 , sin

π
6

)
=
(√

3
2 ,

1
2

)
. By symmetry

we have K =
(

1−
√

3
2 ,

1
2

)
. Note that on line AKE, A is the origin and the x-coordinate of K is 1

2 of the

x-coordinate of E, so we have E = 2K =
(
2−
√

3, 1
)
. By symmetry, F =

(√
3− 1, 1

)
. Thus the trapezoid

KLEF has side lengths |KL| =
√

3− 1 and |EF | = 2
√

3− 3 and height 1
2 , so its area is

T = 1
4

(
|KL|+ |EF |

)
= 1

4

(
3
√

3− 4
)
.

Since 6 KAB = 5π
12 and 6 LAB = π

6 , we have 6 KAL = 5π
12 −

π
6 = π

4 . Since KL is a chord of the circle S and
O is the center, we have 6 KOL = 2 6 KAL = π

2 . Thus triangle KOL is an isosceles right triangle. In this
triangle, |KL| =

√
3− 1 and |OK| = |OL| = 1√

2
|KL| =

√
3−1√
2

. Thus the area of triangle KOL is

U = 1
4 |KL|

2 = 1
4 (4− 2

√
3) .

Finally note that since 6 KOL = π
2 , the wedge is one quarter of the circle of radius |OK| so

V = 1
4 π |OK|

2 = 2−
√

3
4 π .

Thus the required probability is
R = T + U − V =

√
3

4 −
2−
√

3
4 π .



5: Let x be an irrational number, and let M be a positive integer. Show that there exist integers a and b with
b > 0 such that ∣∣x− a

b

∣∣ < 1
Mb .

Solution: For a real number u, let 〈u〉 denote the fractional part of u, that is 〈u〉 = u − buc. Note that
〈x〉 ∈ [0, 1). We divide [0, 1) into M equal subintervals[

0, 1
M

)
,
[

1
M , 2

M

)
,
[

2
M , 3

M

)
, · · · ,

[
M−1
M , 1

)
.

Two of the numbers 〈x〉, 〈2x〉, 〈3x〉 · · · must lie in the same subinterval, say k < l and 〈kx〉 and 〈lx〉 both lie
in the same subinterval. Let a =

⌊
(k − l)x

⌋
and b = (k − l) > 0. Then

bx− a = (k − l)x−
⌊
(k − l)x

⌋
=
〈
(k − l)x

〉
= 〈kx〉 − 〈lx〉 ∈

[
0, 1

M

)
and so 0 ≤ bx− a < 1

M and hence 0 ≤ x− a
b <

1
Mb .

6: Let f be continuous on [0, 1] and differentiable in (0, 1). Suppose there exists M > 0 such that for all
x ∈ (0, 1) we have

∣∣f(0)− f(x) + xf ′(x)
∣∣ < Mx2. Prove that f is differentiable (from the right) at 0.

Solution: Let g(x) =
f(x)− f(0)

x− 0
. To show that f is differentiable at 0, we must show that lim

x→0+
g(x) exists.

We shall prove this by showing that lim
n→∞

g(xn) exists for every sequence {xn} in (0, 1) with xn → 0.

We have g′(x) =
xf ′(x)− f(x) + f(0)

x2
. Since

∣∣xf ′(x) − f(x) + f(0)
∣∣ < Mx2 for all x ∈ (0, 1), we see

that
∣∣g′(x)

∣∣ < M for all x ∈ (0, 1). Now let {xn} be any sequence in (0, 1) with xn → 0. Let ε > 0. Since
{xn} is Cauchy, we can choose N so that for all integers n,m ≥ N we have

∣∣xn − xm∣∣ < ε
M . Let n,m ≥ N .

By the Mean Value Theorem we can choose t between xn and xm so that g′(t)(xn − xm) = g(xn)− g(xm).
Then we have ∣∣g(xn)− g(xm)

∣∣ = |g′(t)||xn − xm| < M · ε
M

= ε .

Thus
{
g(xn)} is Cauchy, so it converges. (We remark that we did not need to use the hypothesis that f is

continuous at 0).



Solutions to the Big E Problems, 2010

1: Find the minimum possible discriminant ∆ = b2− 4ac of a quadratic f(x) = ax2 + bx+ c which satisfies the
requirement that f

(
f
(
f(0)

))
= f(0).

Solution: Let f(x) = ax2 + bx+ c. Then f(0) = c so we have

f
(
f
(
f(0)

))
= f(0) ⇐⇒ f

(
f(c)

)
= c

⇐⇒ f(ac2 + bc+ c) = c

⇐⇒ a(ac2 + bc+ c)2 + b(ac2 + bc+ c) + c = c

⇐⇒ (ac2 + bc+ c)
(
a(ac2 + bc+ c) + b

)
= 0

⇐⇒ (ac2 + bc+ c)(a2c2 + abc+ ac+ b) = 0
⇐⇒ c(ac+ b+ 1)(ac+ 1)(ac+ b) = 0
⇐⇒ c = 0 , ac = −(b+ 1) , ac = −1 , or ac = −b .

When c = 0 we have ∆ = b2 − 4ac = b2 ≥ 0, when ac = −(b+ 1) we have ∆ = b2 + 4(b+ 1) = (b+ 2)2 ≥ 0,
when ac = −1 we have ∆ = b2 + 4 ≥ 4, and when ac = −b we have ∆ = b2 + 4b = (b+ 2)2 − 4 ≥ −4. Thus
the minimum possible value for ∆ is ∆ = −4, and this minimum value is attained when b = −2 and ac = 2,
for example when f(x) = x2 − 2x+ 2.

2: Show that for every integer a, there exist infinitely many perfect powers of the form

a+ 2010 t , t ∈ Z .

(A perfect power is an integer of the form nk for some integers n ≥ 0 and k ≥ 2).

Solution: Note that 2010 = 2 · 3 · 5 · 67, which is a product of distinct primes. We claim, more generally, that
if m = p1p2 · · · pl where the pi are distinct primes, then for every a ∈ Z there exist infinitely many perfect
powers of the form a + mt, t ∈ Z. Let ψ ≥ 1 be any common multiple of the numbers pi − 1 for which
pi
∣∣a (for example we could take ψ = φ(m)). For those values of i for which pi

∣∣a we have a ≡ 0 (mod pi)
and so aψ+1 ≡ 0 ≡ a (mod pi). For those values of i for which pi 6

∣∣a, by Fermat’s Little Theorem we have
aψ ≡ 1 (mod pi) and so again we have aψ+1 ≡ a (mod pi). Thus aψ+1 ≡ a (mod pi) for all i = 1, 2, · · · , l,
and so by the Chinese Remainder Theorem aψ+1 ≡ a (mod m). Finally note that for any b ≥ 0 with
b ≡ a (mod m) we have bψ+1 ≡ aψ+1 ≡ a (mod m), so we have found infinitely many perfect powers bψ+1

of the form a+mt, t ∈ Z.
We remark that the above argument does not work when m has a factor of the form p2 with p prime,

and indeed when p2
∣∣m there are no perfect powers of the form p+mt, t ∈ Z.



3: Evaluate
∞∑
n=0

∫ π

0

(−1)n sin2n x dx.

Solution: Using integration by parts, then replacing cos2 x by 1− sin2 x, we have∫
sinn x dx =

∫
sinn−1 x sinx dx

= − sinn−1 x cosx+
∫

(n− 1) sinn−2 x cos2 x dx

= − sinn−1 x cosx+ (n− 1)
∫

sinn−2 x dx− (n− 1)
∫

sinn x dx .

Adding (n− 1)
∫

sinn x dx to both sides then dividing by n gives∫
sinn x dx = − 1

n sinn−1 x cosx+ n−1
n

∫
sinn−2 x dx

and so we have ∫ π

0

sinn x dx = n−1
n

∫ π

0

sinn−2 x dx .

This recursion formula gives
∫ π

0

sin0 x dx = π,
∫ π

0

sin2 x dx = 1
2 π,

∫ π

0

sin4 x dx = 3
4 ·

1
2 · π, and so on, so∫ π

0

sin2n x dx =
(

1
2 ·

3
4 ·

5
6 · · ·

2n−1
2n

)
π = (−1)n (− 1

2 )(− 3
2 )(− 5

2 )···(− 2n−1
2 )

n! π = (−1)n
(
−1/2
n

)
π .

By the Binomial Theorem and Abel’s Theorem we have
∞∑
n=0

∫ π

0

(−1)n sin2n x dx = π

∞∑
n=0

(
−1/2
n

)
= π(1 + 1)−1/2 = π√

2
.

4: Two points p and q are chosen at random (with uniform distribution) in the unit ball x2 + y2 + z2 ≤ 1. Find
the probability that the triangle with vertices at p, q and the origin is an acute-angled triangle.

Solution: Let P0 be the probability that the angle at 0 is at least π
2 , let Pp be the probability that the angle

at p is at least π
2 , and let Pq be the probability that the angle at q is at least π

2 . Since at most one of the
three angles of triangle 0pq can be obtuse, the required probability P is equal to

P = 1− P0 − Pp − Pq .

We note that P0 = 1
2 since for each choice of p (with p 6= 0 if we wish to avoid a degenerate triangle), the

angle at the origin is at least π
2 if and only if q lies in the half-ball given by q . p ≤ 0 (with q 6= tp for any t

if we wish to avoid a degenerate triangle). We also note that Pp = Pq by symmetry. Thus

P = 1
2 − 2Pq .

For r > 0, the volume of spherical shell of radius r and infinitesimal thickness dr is 4πr2 dr, so the probability

that p lies in this shell is
4πr2 dr

4
3π

= 3r2 dr. Given that p lies in this shell, the points q for which the angle at

q in the triangle 0pq is at least 1
2 are the points q which lie in or on the ball with diameter 0p (with q 6= tp

for any t if we wish to avoid a degenerate triangle). The volume of this ball is 4
3π
(
r
2

)3, so the probability

that q lies in or on the ball is
4
3π
(
r
2

)3
4
3π

= 1
8 r

3. Thus

Pq =
∫ 1

r=0

1
8r

3 · 3r2 dr = 3
8

∫ 1

0

r5 dr = 3
8 ·

1
6 = 1

16

and hence P = 1
2 − 2 · 1

16 = 3
8 .



5: Let A be the n× n matrix whose (i, j)th entry is Ai,j = 1
i+j . Show that A is invertible.

Solution: We show that Null(A) = 0. Suppose that Au = 0 where u =


u0

u1
...

un−1

 and let f(x) =
n−1∑
k=0

ukx
k.

Let Pn−1 denote the vector space of polynomials of degree at most n− 1 with the inner product given by〈
f, g
〉

=
∫ 1

0

x f(x)g(x) dx .

Notice that

Au =


1
2u0 + 1

3u1 + · · · + 1
n+1un−1

1
3u0 + 1

4u1 + · · · + 1
n+2un−1

...
1

n+1u0 + 1
n+2u1 + · · ·+ 1

2nun−1

 =


∫ 1

0
xf(x) dx∫ 1

0
x2f(x) dx

...∫ 1

0
xnf(x) dx

 =


〈f, 1〉
〈f, x〉

...
〈f, xn−1〉

 .

Since Au = 0 we have 〈f, 1〉 = 〈f, x〉 = · · · = 〈f, xn−1〉 = 0. Since
{

1, x, · · · , xn−1
}

is a basis for Pn−1 it
follows that f ∈ Pn−1

⊥ = {0}, so f = 0 and hence u = 0.

6: Let f be continuous on [0, 1] and differentiable in (0, 1). Suppose there exists M > 0 such that for all
x ∈ (0, 1) we have

∣∣f(0)− f(x) + xf ′(x)
∣∣ < Mx2. Prove that f is differentiable (from the right) at 0.

Solution: Let g(x) =
f(x)− f(0)

x− 0
. To show that f is differentiable at 0, we must show that lim

x→0+
g(x) exists.

We shall prove this by showing that lim
n→∞

g(xn) exists for every sequence {xn} in (0, 1) with xn → 0.

We have g′(x) =
xf ′(x)− f(x) + f(0)

x2
. Since

∣∣xf ′(x) − f(x) + f(0)
∣∣ < Mx2 for all x ∈ (0, 1), we see

that
∣∣g′(x)

∣∣ < M for all x ∈ (0, 1). Now let {xn} be any sequence in (0, 1) with xn → 0. Let ε > 0. Since
{xn} is Cauchy, we can choose N so that for all integers n,m ≥ N we have

∣∣xn − xm∣∣ < ε
M . Let n,m ≥ N .

By the Mean Value Theorem we can choose t between xn and xm so that g′(t)(xn − xm) = g(xn)− g(xm).
Then we have ∣∣g(xn)− g(xm)

∣∣ = |g′(t)||xn − xm| < M · ε
M

= ε .

Thus
{
g(xn)} is Cauchy, so it converges. (We remark that we did not need to use the hypothesis that f is

continuous at 0).


