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1 Introduction
Geometric invariant theory involves in particular the study of invariant polynomials for the action of a
reductive algebraic group G on a linear representation V over a field k, and the relation between these
invariants and the G-orbits on V , usually under the hypothesis that the base field k is separably closed.
In favorable cases, one can determine the geometric quotient V//G = Spec(Sym∗(V ∨))G and identify
certain fibers of the morphism V → V//G with certain G-orbits on V . For general fields k the situation
is more complicated. The additional complexity in the orbit picture, when k is not separably closed, is
what we refer to as arithmetic invariant theory.
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In a previous paper [4], we studied the arithmetic invariant theory of a reductive group G acting
on a linear representation V over a general field k. Let ks denote a separable closure of k. When the
stabilizer Gv of a vector v is smooth, the k-orbits inside of the ks-orbit of v are parametrized by classes
in the kernel of the map of pointed sets in Galois cohomology γ : H1(k,Gv)→ H1(k,G) (cf. [23]).

We produced elements in the kernel of γ for three representations of the split odd orthogonal
groupG = SO(W ) = SO(2n+1): the standard representation V = W , the adjoint representation V =
∧2(W ), and the symmetric square representation V = Sym2W . For all three representations the ring
of G-invariant polynomials on V is a polynomial ring and the categorical quotient V//G is isomorphic
to affine space. Furthermore, in each case there is a natural section of the morphism π : V → V//G, so
the k-rational points of V//G lift to k-rational orbits of G on V .

Such a section may not exist for the action of the odd orthogonal groups G′ = SO(W ′) that are
not split over k. The corresponding representations V ′ = W ′, ∧2(W ′), and Sym2W ′ have the same
ring of polynomial invariants, so V ′//G′ = V//G, but there may be rational points in this affine space
that do not lift to rational orbits of G′ on V ′.

The groups G′ = SO(W ′) are the pure inner forms of G. These are the forms of G over k
corresponding to cohomology classes c in the pointed set H1(k,G), as opposed to inner forms of G
which correspond to classes in H1(k,Gad). We show that any representation V of G determines a
representation V ′ of G′ which becomes isomorphic to V over ks (this is not true for general inner
forms). Suppose that the image of v in V//G is equal to f , and that G(ks) acts transitively on the
ks-rational points of the fiber above f . Then we show that the k-orbits for G′ on V ′ with invariant f
are parametrized by the elements in the fiber of the map γ : H1(k,Gv)→ H1(k,G) above the class c.

We also consider representations where there is an obstruction to lifting k-rational invariants in
V//G to k-rational orbits on V , for all pure inner forms of G. Let f be a rational invariant in V//G,
and assume that there is a single orbit over ks with invariant f , whose stabilizers Gv are abelian.
We show that these stabilizers are canonically isomorphic to a fixed commutative group scheme Gf ,
which is determined by f and is defined over k. We then construct a class df in the cohomology group
H2(k,Gf ), whose non-vanishing obstructs the descent of the orbit to k, for all pure inner forms of G.
On the other hand, if df = 0, we show that there is least one pure inner form of G that has k-rational
orbits with invariant f .

When the stabilizer Gv is trivial, so the action of G(ks) on elements with invariant f over ks is
simply transitive, the obstruction df clearly vanishes. In this case, we show that there is a unique pure
inner form G′ for which there exists a unique k-rational orbit on V ′ with invariant f . We give a number
of examples of such representations, such as the action of SO(W ) = SO(n + 1) on n copies of the
standard representation W , and the action of SL(W ) = SL(5) on three copies of the exterior square
representation ∧2(W ).

It is also possible that the stabilizer Gv is abelian and nontrivial, and yet the obstruction df still
vanishes. This scenario occurs frequently; for example, it occurs for all representations arising in
Vinberg’s theory of θ-groups (see [20] and [18]). These representations are remarkable in that the
morphism π : V → V//G has an (algebraic) section (called the Kostant section). This implies that the
obstruction df vanishes. The representations ∧2(W ) and Sym2W of the odd split orthogonal group
SO(W ) studied in [4] indeed shared this property. (For a treatment of many such representations of
arithmetic interest, involving rational points and Selmer groups of Jacobians of algebraic curves, see
[7], [5], [11], [25], and [26].)

Finally, it is possible that the stabilizer Gv of a stable vector v is abelian and nontrivial, and
the obstruction class df is also nontrivial in H2(k,Gv). Fewer such representations occur in the litera-

2



ture, but they too appear to be extremely rich arithmetically especially when the generic stabilizers are
naturally subgroup schemes of abelian varieties. In this paper, we give a detailed study of such a repre-
sentation, namely the action of G = SL(W ) = SL(n) on the vector space V = Sym2W

∗ ⊕ Sym2W
∗

of pairs of symmetric bilinear forms on W . Like the representation Sym2W of SO(W ), the ring of
polynomial invariants is a polynomial ring, and there are stable orbits in the sense of geometric invari-
ant theory. In fact, the stabilizer Gv of any vector v in one of the stable orbits is a finite commutative
group scheme isomorphic to (Z/2Z)n−1 over ks, and G(ks) acts transitively on the vectors in V (ks)
with the same invariant f as v. However, when the dimension n = 2g + 2 of W is even, it may not be
possible to lift k-rational points f of the quotient V//G to k-rational orbits of G on V . We relate this
obstruction to the arithmetic of 2-coverings of Jacobians of hyperellipic curves of genus g over k.

In [3], this connection with hyperelliptic curves was used to show that most hyperelliptic curves
over Q of genus g ≥ 2 have no rational points. In a forthcoming paper [6], we will use the full
connection with 2-coverings of Jacobians of hyperelliptic curves to study the arithmetic of hyperelliptic
curves; in particular, we will prove that a positive proportion of hyperelliptic curves over Q have points
locally over Qν for all places ν of Q, but have no points globally over any odd degree extension of Q.

This paper is organized as follows. In Section 2, we describe the notion of a pure inner form G′

of a reductive group G over a field k, and the corresponding twisted form V ′ of a given representation
V of G. We also discuss in detail the problem of lifting k-rational points of V//G to k-rational orbits
of G (and its pure inner forms) in the case where the generic stabilizer Gv is abelian, and we describe
the cohomological obstruction to lifting invariants lying in H2(k,Gf ). The obstruction element in
H2(k,Gf ) can also be deduced from the theory of residual gerbes on algebraic stacks (see [10] and
[15, Chapter 11]). Since we have not seen any concise reference to the specific results needed in this
context, we felt it would be useful to give a self-contained account here.

In Section 3, we then consider three examples of representations where the stabilizer Gv is
trivial. These representations are:

1. the split orthogonal group SO(W ) acting on n copies of W , where dim(W ) = n+ 1;

2. SL(W ) acting on three copies of ∧2W , where dim(W ) = 5;

3. the unitary group U(n) acting on the adjoint representation of U(n+ 1).

In each of these three cases, the cohomological obstruction clearly vanishes and we see explicitly how
the orbits, over all pure inner forms of the group G, are classified by the elements of the space V//G
of invariants. The third representation and its orbits have played an important role in the work of
Jacquet–Rallis [14] and Wei Zhang [30] in connection with the relative trace formula approach to the
conjectures of Gan, Gross, and Prasad [12].

In Section 4, we study three examples of representations where the stabilizer Gv is nontrivial
and abelian, and where there are cohomological obstructions to lifting invariants. These representations
are:

1. Spin(W ) acting on n copies of W , where dim(W ) = n+ 1;

2. SL(W ) acting on Sym2W
∗ ⊕ Sym2W

∗;

3. (SL /µ2)(W ) acting on Sym2W
∗ ⊕ Sym2W

∗ (this group acts only when dim(W ) is even).

3



In the first case, we show that the obstruction is the Brauer class of a Clifford algebra determined by
the invariants. In the second and third cases, we show that when n is odd, there is no cohomological
obstruction to lifting invariants, but when n is even, the obstruction can be nontrivial. We parametrize
the orbits for both groups in terms of arithmetic data over k, and describe the resulting criterion for
the existence of orbits over k. We describe the connection between the cohomological obstruction and
the arithmetic of two-covers of Jacobians and hyperelliptic curves over k, which will play an important
role in [6]. Finally we give a description for the integral orbits for the second case and as we will see,
new techniques are required to study them.

As in [4], the heart of this paper lies in the examples that illustrate the various scenarios that
can occur, and how one can treat each scenario in order to classify the orbits, over a field that is not
necessarily separably closed, in terms of suitable arithmetic data.

We thank Jean-Louis Colliot-Thélène, Bas Edixhoven, Wei Ho, Bjorn Poonen, and Jean-Pierre
Serre for useful conversations and for their help with the literature. It is a great pleasure to submit this
paper to a volume in honor of David Vogan, who taught one of us (BHG) about pure inner forms in
1991, and used them to give an elegant reformulation of the local Langlands conjecture.

2 Lifting results
In this section, we assume that G is a reductive group with a linear representation V over the field k.
We will study the general problem of lifting k-rational points of V//G to k-rational orbits of pure inner
forms G′ of G on the corresponding twists V ′ of V . For stable orbits over the separable closure ks with
smooth abelian stabilizers Gv, we will show how these stabilizers descend to a group scheme Gf over
k and describe a cohomological obstruction to the lifting problem lying in H2(k,Gf ).

2.1 Pure inner forms
We begin by recalling the notion of a pure inner form Gc of G and the action of Gc on a twisted
representation V c ([23, Ch 1 §5]).

Suppose (σ → cσ) is a 1-cocycle on Gal(ks/k) with values in the group G(ks). That is,
cστ = cσ · σcτ for any σ, τ ∈ Gal(ks/k). We define the pure inner form Gc of G over k by giving its
ks-points and describing a Galois action. Let Gc(ks) = G(ks) with action

σ(h) = cσ
σhc−1

σ (1)

for any σ ∈ Gal(ks/k) and any h ∈ G(ks). Since c is a cocycle, we have στ(h) = σ(τ(h)).
Let g be an element of G(ks). If bσ = g−1cσ

σg is a cocycle in the same cohomology class
as c, then the map on ks-points Gb → Gc defined by h→ ghg−1 commutes with the respective Galois
actions, so defines an isomorphism over k. Hence the isomorphism class of the pure inner form Gc

over k depends only on the image of c in the pointed set H1(k,G).

2.2 Twisting the representation
If we compose the cocycle c with values in G(ks) with the homomorphism ρ : G→ GL(V ), we obtain
a cocycle ρ(c) with values in GL(V )(ks). By the generalization of Hilbert’s Theorem 90, we have
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H1(k,GL(V )) = 1 ([24, Ch X]). Hence there is an element g in GL(V )(ks), well-defined up to left
multiplication by GL(V )(k), such that

ρ(cσ) = g−1σg (2)

for all σ in Gal(ks/k).
We use the element g to define a twisted representation of the group Gc on the vector space V

over k. The homomorphism
ρg : Gc(ks)→ GL(V )(ks)

defined by ρg(h) = gρ(h)g−1 commutes with the respective Galois actions, so defines a representation
over k. We emphasize that the Galois action on Gc(ks) is as defined in (1), whereas the Galois action
on GL(V )(ks) is the usual action.

The isomorphism class of the representation ρg : Gc → GL(V ) over k is independent of the
choice of g in (2) which trivializes the cocycle. If g′ = ag is another choice, with a in GL(V )(k), then
conjugation by a gives an isomorphism from ρg to ρ′g. Since the isomorphism class of this representa-
tion depends only on the cocycle c, we will write V c for the representation ρg of Gc.

The fact that the cocycle cσ takes values in G, and not in the adjoint group, is crucial to defining
the twist V c of the representation V . For 1-cocycles c with values in Gad ↪→ Aut(G), one can define
the inner form Gc, but one does not always obtain a twisted representation V c. For example, consider
the case of G = SL2 with V the standard two-dimensional representation. The nontrivial inner forms
of G are obtained from nontrivial cohomology classes in H1(k, PGL2). These are the groups Gc of
invertible elements of norm 1 in quaternion division algebras D over k. The group Gc does not have
a faithful two-dimensional representation over k—this representation is obstructed by the quaternion
algebra D. Since H1(k, SL2) is trivial, there are no nontrivial pure inner forms of G.

2.3 Rational orbits in the twisted representation
We now fix a rational point f in the canonical quotient V//G, and let Vf be the fiber in V . For the rest
of this subsection, we assume that the set Vf (k) of rational points in the fiber is nonempty, and that
G(ks) acts transitively on the points in Vf (ks). In particular, this orbit is closed (as it is defined by the
values of the invariant polynomials). Let v be a point in Vf (k) and let Gv denote its stabilizer in G.

The groupG(k) acts on the rational points of the fiber over f . In Proposition 1 of [4] we showed
that the orbits of G(k) on the set Vf (k) correspond bijectively to elements in the kernel of the map

γ : H1(k,Gv)→ H1(k,G)

of pointed sets in Galois cohomology. In this section, we will generalize this to a parametrization of
certain orbits of Gc(k), where c ∈ H1(k,G). Note that by our hypothesis and the definition of Gc, the
group Gc(ks) = G(ks) acts transitively on the set gVf (ks) in V (ks), where g is as in (2). We define
the set

V c
f (k) := V (k) ∩ gVf (ks),

which admits an action of the rational points of the pure inner form Gc.
Here is a simple example, which illustrates many elements of the theory of orbits for pure inner

twists with a fixed rational invariant f . Assume that the characteristic of k is not equal to 2, and let G
be the étale group scheme µ2 of order 2 over k. Let V be the nontrivial one-dimensional representation

5



of G on the field k. (This is the standard representation of the orthogonal group O(1) over k.) The
polynomial invariants of this representation are generated by q(x) = x2, so the canonical quotient V//G
is the affine line. Let f be a rational invariant in k with f 6= 0. Then the fiber Vf is the subscheme of
V defined by {x : x2 = f}, so Vf (k) is nonempty if and only if f is a square in k×. This is certainly
true over the separable closure ks of k, and the group G(ks) acts simply transitively on Vf (ks).

An element c in k× defines a cocycle cσ = σ
√
c/
√
c with values in G(ks), whose class in the

cohomology group H1(k,G) = k×/k×2 depends only on the image of c modulo squares. The element
g =
√
c in GL(V )(ks) trivializes this class in the group H1(k,GL(V )). Although the inner twist Gc

and the representation V c remain exactly the same, we find that

V c
f (k) = V (k) ∩ gVf (ks) = {x ∈ k× : x2 = fc}.

Hence the set V c
f (k) is nonempty if and only if the element fc is a square in k×. Note that there is a

unique inner twist Gc where the fiber V c
f has k-rational points, and in that case the group Gc(k) acts

simply transitively on V c
f (k).

Returning to the general case, we have the following generalization of Proposition 1 in [4]
(which is the case c = 1 below).

Proposition 1 Let G be a reductive group with representation V . Suppose there exists v ∈ V (k) with
invariant f ∈ (V//G)(k) and stabilizer Gv such that G(ks) acts transitively on Vf (ks). Then there is a
bijection between the set of Gc(k)-orbits on V c

f (k) and the fiber γ−1(c) of the map

γ : H1(k,Gv)→ H1(k,G)

above the class c ∈ H1(k,G). In particular, the image of H1(k,Gv) in H1(k,G) determines the set of
pure inner forms of G for which the k-rational invariant f lifts to a k-rational orbit of Gc on V c.

Before giving the proof, we illustrate this with an example from [4]. LetW be a split orthogonal
space of dimension 2n+ 1 and signature (n+ 1, n) over k = R, let G = SO(W ) = SO(n+ 1, n). The
pure inner forms of G are the groups Gc = SO(p, q) with p + q = 2n + 1 and q ≡ n (mod 2), and the
representation W c of Gc is the standard representation on the corresponding orthogonal space W (p, q)
of signature (p, q). The group G = SO(W ) acts faithfully on the space V = Sym2(W ) of self-adjoint
operators T on W . For this representation, the inner twists Gc of G are exactly the same, and the
twisted representation V c of Gc is isomorphic to Sym2W c. The polynomial invariants f in (V//G)(R)
are given by the coefficients of the characteristic polynomial of T . Assume that this characteristic
polynomial is separable, with 2m + 1 real roots. Then the stabilizer of a point v0 ∈ Vf (R) is the
finite commutative group scheme (µ2m+1

2 × (ResC/Rµ2)
n−m)N=1. Hence H1(R, Gv0) is an elementary

abelian 2-group of order 22m. This group maps under γ to the pointed set H1(R, SO(W )), which is
finite of cardinality n + 1. The fiber over the class of SO(p, q) is nonempty if and only if both p and
q are greater than or equal to n −m. In this case, write q = n −m + a, with a ≡ m (mod 2). Then
the fiber has cardinality

(
2m+1
a

)
. For example, the kernel has cardinality

(
2m+1
m

)
. When pq = 0, so

the space W c = W (p, q) is definite, there are orbits in V c
f (R) only in the case when m = n, so the

characteristic polynomial splits completely over R. In that case there is a single orbit. This is the
content of the classical spectral theorem.

Proof of Proposition 1: Suppose c is a 1-cocycle with values in G(ks) and fix g ∈ GL(V )(ks) such
that cσ = g−1σg for all σ ∈ Gal(ks/k).When V c

f (k) is nonempty we must show that c is in the image of
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H1(k,Gv). Indeed, suppose gw ∈ V c
f (k) for some w ∈ Vf (ks). By our assumption on the transitivity

of the action on ks points, there exists h ∈ G(ks) such that w = hv. The rationality condition on gw
translates into saying that, for any σ ∈ Gal(ks/k), we have cσσhv = hv. That is, h−1cσ

σh ∈ Gv for
any σ ∈ Gal(ks/k). In other words, c is in the image of γ.

Now suppose c ∈ H1(k,G) is in the image of γ. Without loss of generality, assume that cσ ∈
Gv(k

s) for any σ ∈ Gal(ks/k). Pick any g ∈ GL(V )(ks) as in (2) above and set w = gv ∈ V c
f (ks).

Then for any σ ∈ Gal(ks/k), we have
σw = gcσv = gv = w.

This shows that w ∈ V c
f (k). Hence there is a bijection between Gc(k)\V c

f (k) and ker γc where γc is the
natural map of sets H1(k,Gc

w)→ H1(k,Gc). To prove Proposition 1, it suffices to establish a bijection
between γ−1(c) and ker γc. Consider the following two maps:

γ−1(c) → ker γc ker γc → γ−1(c)
(σ → dσ) 7→ (σ → dσc

−1
σ ) (σ → aσ) 7→ (σ → aσcσ)

We need to check that these maps are well-defined. First, suppose (σ → dσ) ∈ γ−1(c). Then we need
to show that (σ → dσc

−1
σ ) is a 1-cocycle in the kernel of γc. Note that, for any σ, τ ∈ Gal(ks/k), we

have
(dσc

−1
σ ) · σ(dτc

−1
τ ) · (dστc−1

στ )−1 = dσc
−1
σ (cσ

σdτ
σc−1
τ c−1

σ )(dστc
−1
στ )−1 = 1.

Moreover, there exists h ∈ G(ks) such that dσ = h−1cσ
σh for any σ ∈ Gal(ks/k), and thus

h−1σ(h) = h−1cσ
σhc−1

σ = dσc
−1
σ .

This shows that (σ → dσc
−1
σ ) is in the kernel of γc. Likewise, one can show that the second map is

also well-defined. The composition of these two maps in either order yields the identity map, and this
completes the proof. �

2.4 A cohomological obstruction to lifting invariants
Suppose f ∈ (V//G)(k) is a rational invariant. We continue to assume that the group G(ks) acts
transitively on the set Vf (ks). In this section, we consider the problem of determining when the set
V c
f (k) is nonempty for some c ∈ H1(k,G). That is, when does a rational invariant lift to a rational

orbit for some pure inner form of G? We resolve this problem under the additional assumption that the
stabilizer Gv of any point in the orbit Vf (ks) is abelian.

For σ ∈ Gal(ks/k), the vector σv also lies in Vf (ks), so there is an element gσ with gσσv = v.
The element gσ is well-defined up to left multiplication by an element in the subgroup Gv. Since we
are assuming that the stabilizers are abelian, the homomorphism θσ : Gσv → Gv defined by mapping α
to gσαg−1

σ is independent of the choice of gσ. This gives a collection of isomorphisms

θσ : σ(Gv)→ Gv

that satisfy the 1-cocycle condition θστ = θσ ◦ σθτ , and hence provide descent data for the group
scheme Gv. We let Gf be the corresponding commutative group scheme over k which depends only
on the rational invariant f . Let ιv : Gf (k

s)
∼−→ Gv denote the canonical isomorphisms. More precisely,

if h ∈ G(ks) and v ∈ Vf (ks) then

ιhv(b) = hιv(b)h
−1 ∀b ∈ Gf (k

s). (3)
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The descent data translates into saying for any σ ∈ Gal(ks/k) and v ∈ Vf (ks), we have
σ(ιv(b)) = ισv(

σb) ∀b ∈ Gf (k
s). (4)

Before constructing a class in H2(k,Gf ) whose vanishing is intimately related to the existence
of rational orbits, we give an alternate method (shown to us by Brian Conrad) to obtain the finite group
scheme Gf over k using fppf descent. Suppose G is a group scheme of finite type over k such that
the orbit map G × Vf → Vf is fppf. Suppose also that the stabilizer Gv ∈ G(ka) for any v ∈ Vf (ka)
is abelian where ka denotes an algebraic closure of k. Let H denote the stabilizer subscheme of
G × Vf . In other words, H is the pullback of the action map G × Vf → Vf × Vf over the diagonal
of Vf . Note that H is a Vf -scheme and its descent to k will be Gf . The descent datum amounts to
a canonical isomorphism p∗1H ' p∗2H where p1, p2 denote the two projection maps Vf × Vf → Vf .
The commutativity of Gv for any v ∈ Vf (ka) implies the commutativity of (GR)x for any k-algebra R
and any element x ∈ Vf (R). Therefore, there are canonical isomorphisms (GR)x → (GR)y for any
x, y ∈ Vf (R). This gives canonical isomorphisms p∗1H ' p∗2H locally over Vf × Vf . Being canonical,
these local isomorphisms patch together to a global isomorphism and hence yield the desired descent
datum.

We now construct a class df in H2(k,Gf ) that will be trivial whenever a rational orbit exists.
Choose v and gσ as above, with gσσv = v. Define

dσ,τ = ι−1
v (gσ

σgτg
−1
στ ).

Standard arguments show that dσ,τ is a 2-cocycle whose image df in H2(k,Gf ) does not depend on
the choice of gσ. We also check that the 2-cochain dσ,τ does not depend on the choice of v ∈ Vf (ks).
Suppose v′ = hv ∈ Vf (ks) for some h ∈ G(ks). For any σ ∈ Gal(ks/k), we have

hgσ
σh−1σv′ = hgσ

σv = hv = v′.

Moreover, for any σ, τ ∈ Gal(ks/k), we compute

hgσ
σh−1 σ(hgτ

τh−1) (hgστ
στh−1)−1 = hgσ

σgτg
−1
στ h

−1;

hence, by (3), we have

ι−1
v′ (hgσ

σh−1 σ(hgτ
τh−1) (hgστ

στh−1)−1) = ι−1
v (gσ

σgτg
−1
στ ).

If Vf (k) is nonempty, then one can take v in Vf (k). Then one can take gσ = 1 and hence df = 0. We
have therefore obtained the following necessary condition for lifting invariants to orbits.

Proposition 2 Suppose that f is a rational invariant, and that G(ks) acts transitively on Vf (ks) with
abelian stabilizers. If Vf (k) is nonempty, then df = 0 in H2(k,Gf ).

This necessary condition is not always sufficient. As shown by the following cocycle com-
putation, the class df in H2(k,Gf ) does not depend on the pure inner form of G. Indeed, suppose
c ∈ H1(k,G) and g ∈ GL(V )(ks) such that cσ = g−1σg for all σ ∈ Gal(ks/k). Note that gv ∈ V c

f (ks)
and

(ggσc
−1
σ g−1) · σ(gv) = gv.

A direct computation then gives

(gσc
−1
σ ) · σ(gτc

−1
τ ) · (cστg−1

στ ) = gσ
σgτg

−1
στ .

The fact that df is independent of the pure inner form suggests that df = 0 might be sufficient for the
existence of a rational orbit for some pure inner twist. Indeed, this is the case.

8



Theorem 3 Suppose that f is a rational invariant, and that G(ks) acts transitively on Vf (ks) with
abelian stabilizers. Then df = 0 in H2(k,Gf ) if and only if there exists a pure inner form Gc of G such
that V c

f (k) is nonempty. That is, the condition df = 0 is necessary and sufficient for the existence of
rational orbits for some pure inner twist of G. In particular, when H1(k,G) = 1, the condition df = 0
in H2(k,Gf ) is necessary and sufficient for the existence of rational orbits of G(k) on Vf (k).

Proof: Necessity has been shown in Proposition 2 and the above computation. It remains to prove
sufficiency. Fix v ∈ Vf (ks) and gσ such that gσσv = v for any σ ∈ Gal(ks/k). The idea of the proof is
that if df = 0, then one can pick gσ so that (σ → gσ) is a 1-cocycle and that rational orbits exist for the
pure inner twist associated to this 1-cocycle.

Suppose df = 0 in H2(k,Gf ). Then there exists a 1-cochain (σ → bσ) with values in Gf (k
s)

such that
gσ

σgτg
−1
στ = ιv(bσ

σbτb
−1
στ ) ∀σ, τ ∈ Gal(ks/k).

Lemma 4 There exists a 1-cochain eσ with values in Gv(k
s) such that (σ → eσgσ) is a 1-cocycle.

To see how Lemma 4 implies Theorem 3, we consider the twist of G and V using the 1-
cocycle c = (σ → eσgσ) ∈ H1(k,G). Choose any g ∈ GL(V )(ks) such that g−1σg = eσgσ for any
σ ∈ Gal(ks/k). Then gv ∈ V c

f (k). Indeed,

σ(gv) = geσgσ
σv = geσv = gv ∀σ ∈ Gal(ks/k).

We now prove Lemma 4. Consider eσ = ιv(b
−1
σ ) for any σ ∈ Gal(ks/k). Since gσσv = v, we

have by (3) and (4) that

gσ
σ(ιv(b))g

−1
σ = ιv(

σb) ∀σ ∈ Gal(ks/k), b ∈ Gf (k
s).

Hence for any σ, τ ∈ Gal(ks/k), we have

(eσgσ)σ(eτgτ )(eστgστ )
−1 = ιv(b

−1
σ )gσ

σ(ιv(b
−1
τ ))σgτg

−1
στ ιv(bστ )

= ιv(b
−1
σ )ιv(

σb−1
τ )gσ

σgτg
−1
στ ιv(bστ )

= ιv(b
−1
σ )ιv(

σb−1
τ )ιv(bσ

σbτb
−1
στ )ιv(bστ )

= 1

where the last equality follows because Gf (k
s) is abelian. �

Corollary 5 Suppose that f is a rational orbit and that G(ks) acts simply transitively on Vf (ks). Then
there is a unique pure inner form Gc of G such that V c

f (k) is nonempty. Moreover, the group Gc(k)
acts simply transitively on V c

f (k).

Proof: Since Gf = 1, we have H2(k,Gf ) = 0 and so the cohomological obstruction df vanishes. We
conclude that rational orbits exist for some pure inner twist Gc. Let v0 ∈ V c

f (k) denote any k-rational
lift. Since H1(k,Gf ) = 0, the image of γ : H1(k,Gc

v0
) → H1(k,Gc) is a single point, and hence no

other pure inner twist has a rational orbit with invariant f . Since the kernel of γ has cardinality 1, there
is a single orbit of Gc(k) on V c

f (k). �
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3 Examples with trivial stabilizer
In this section, we give several examples of representations G→ GL(V ) over k where there are stable
orbits which are determined by their invariants f in V//G and which have trivial stabilizer over ks.
Thus G(ks) acts simply transitively on the set Vf (ks). When f is rational, Corollary 5 implies that
there is a unique pure inner form G′ of G over k for which V ′f (k) is nonempty, and that G′(k) acts
simply transitively on V ′f (k).

We will describe this pure inner form, using the following results on classical groups [13]. Since
H1(k,GL(W )) and H1(k, SL(W )) are both pointed sets with a single element, there are no nontrivial
pure inner forms of GL(W ) and SL(W ). On the other hand, when the characteristic of k is not equal
to 2 and W is a nondegenerate quadratic space over k, the pointed set H1(k, SO(W )) classifies the
quadratic spaces W ′ with dim(W ′) = dim(W ) and disc(W ′) = disc(W ). The corresponding pure
inner form is the group G′ = SO(W ′). Similarly, if W is a nondegenerate Hermitian space over the
separable quadratic extension E of k, then the pointed set H1(k, U(W )) classifies Hermitian spaces
W ′ over E with dim(W ′) = dim(W ), and the corresponding pure inner form of G is the group
G′ = U(W ′).

3.1 SO(n+1) acting on the direct sum of n copies of the standard representation
In this subsection, we assume that k is a field of characteristic not equal to 2.

We first consider the action of the split group G = SO(W ) = SO(4) on three copies of the
standard representation V = W ⊕W ⊕W . Let q(w) = 〈w,w〉/2 be the quadratic form on W and
let v = (w1, w2, w3) be a vector in V . The coefficients of the ternary quadratic form f(x, y, z) =
q(xw1 + yw2 + zw3) give six invariant polynomials of degree 2 on V , which freely generate the ring of
polynomial invariants, and an orbit is stable if the discriminant ∆(f) of this quadratic form is nonzero
in ks. In this case, the group G(ks) acts simply transitively on Vf (ks). Indeed, the quadratic space
U0 of dimension 3 with form f embeds isometrically into W over ks, and the subgroup of SO(W )
that fixes U0 acts faithfully on its orthogonal complement, which has dimension 1. The condition
that the determinant of an element in SO(W ) is equal to 1 forces it to act trivially on the orthogonal
complement.

The set Vf (k) is nonempty if and only if the quadratic form f represents zero over k. Indeed, if
v = (w1, w2, w3) is a vector in this orbit over k, then the vectorsw1, w2, w3 are linearly independent and
span a 3-dimensional subspace ofW . This subspace must have a nontrivial intersection with a maximal
isotropic subspace of W , which has dimension 2. Conversely, if the quadratic form f represents zero,
let U0 be the 3-dimensional quadratic space with this bilinear form, and U the orthogonal direct sum of
U0 with a line spanned by a vector u with 〈u, u〉 = det(U0). Then U is a quadratic space of dimension
4 and discriminant 1 containing an isotropic line (from U0). It is therefore split, and isomorphic over
k to the quadratic space W . Choosing an isometry θ : U → W , we obtain three vectors (w1, w2, w3)
as the images of the basis elements of U0, and this gives the desired element in Vf (k). Note that θ is
only well-defined up to composition by an automorphism of W , so we really obtain an orbit for the
orthogonal group of W . Since the stabilizer of this orbit is a simple reflection, we obtain a single orbit
for the subgroup SO(W ).

If the form f does not represent zero, let W ′ be the quadratic space of dimension 4 that is the
orthogonal direct sum of the subspace U0 of dimension 3 with quadratic form f and a nondegenerate
space of dimension 1, chosen so that the discriminant of W ′ is equal to 1. Then G′ = SO(W ′) is
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the unique pure inner form of G (guaranteed to exist by Corollary 5) where V ′f (k) is nonempty. The
construction of an orbit for G′ is the same as above.

The same argument works for the action of the group G = SO(W ) = SO(n + 1) on n copies
of the standard representation: V = W ⊕ W ⊕ · · · ⊕ W . The coefficients of the quadratic form
f(x1, x2, . . . , xn) = q(x1w1 +x2w2 + · · ·+xnwn) give polynomial invariants of degree 2, which freely
generate the ring of invariants. The orbit of v = (w1, w2, . . . , wn) is stable, with trivial stabilizer, if and
only if the discriminant ∆(f) is nonzero in ks. If W ′ is the quadratic space of dimension n + 1 with
disc(W ′) = disc(W ), that is the orthogonal direct sum of the space U0 of dimension n with quadratic
form f and a nondegenerate space of dimension 1, then G′ = SO(W ′) is the unique pure inner form
with V ′f (k) nonempty.

3.2 SL(5) acting on 3 copies of the representation ∧2(5)

Let k be a field of characteristic not equal to 2, U a k-vector space of dimension 3, and W a k-vector
space of dimension 5. In this subsection, we consider the action of G = SL(W ) on V = U ⊗ ∧2W .

Choosing bases for U and W , we may identify U(k) and W (k) with k3 and k5, respectively,
and thus V (k) with ∧2k5⊕∧2k5⊕∧2k5. We may then represent elements of V (k) as a triple (A,B,C)
of 5 × 5 skew-symmetric matrices with entries in k. For indeterminates x, y, and z, we see that the
determinant of Ax+By + Cz vanishes, being a skew-symmetric matrix of odd dimension.

To construct the G-invariants on V , we consider instead the 4 × 4 principal sub-Pfaffians of
Ax+By+Cz; this yields five ternary quadratic formsQ1, . . . , Q5 in x, y, and z, which are generically
linearly independent over k. In basis-free terms, we obtain a G-equivariant map

U ⊗ ∧2W → Sym2 U ⊗W ∗. (5)

Now an SL(W )-orbit on Sym2 U ⊗ W ∗ may be viewed as a five-dimensional subspace of Sym2 U ;
hence we obtain a natural G-equivariant map

Sym2 U ⊗W ∗ → Sym2 U∗. (6)

The composite map π : U ⊗ ∧2W → Sym2 U∗ is thus also G-equivariant, but since G acts trivially on
the image of π, we see that the image of π gives (a 6-dimensional space of) G-invariants, and indeed
we may identify V//G with Sym2 U∗. A vector v ∈ V is stable precisely when det(π(v)) 6= 0.

Now since SL(W ) acts with trivial stabilizer on W ∗, it follows that SL(W ) acts with trivial
stabilizer on Sym2 U⊗W ∗ too. Since the map (5) isG-equivariant, it follows that the generic stabilizer
in G(k) of an element in V (k) is also trivial!

Since SL(W ) has no other pure inner forms, by Corollary 5 we conclude that every f ∈
Sym2 U∗ of nonzero determinant arises as the set of G-invariants for a unique G(k)-orbit on V (k).

3.3 U(n− 1) acting on the adjoint representation u(n) of U(n)

In this subsection, we assume that the field k does not have characteristic 2 and that E is an étale
k-algebra of rank 2. Hence E is either a separable quadratic extension field, or the split algebra k × k.
Let τ be the nontrivial involution of E that fixes k.

Let Y be a free E-module of rank n ≥ 2, and let

〈 , 〉 : Y × Y → E

11



be a nondegenerate Hermitian symmetric form on Y . In particular 〈y, z〉 = τ〈z, y〉. Let e be a vector
in Y with 〈e, e〉 6= 0, and let W be the orthogonal complement of e in Y . Hence Y = W ⊕ Ee. The
unitary group G = U(W ) = U(n − 1) embeds as the subgroup of U(Y ) that fixes the vector e. In
particular, it acts on the Lie algebra u(Y ) = u(n) via the restriction of the adjoint representation.

Define the adjoint T ∗ of an E-linear map T : Y → Y by the usual formula 〈Ty, z〉 = 〈y, T ∗z〉.
The elements of the group U(Y ) are the maps g that satisfy g∗ = g−1. Differentiating this identity,
we see that the elements of the Lie algebra are those endomorphisms of Y that satisfy T + T ∗ = 0.
The group acts on the space of skew self-adjoint operators by conjugation: T → gTg−1 = gTg∗. If
T is skew self-adjoint and δ is an invertible element in E satisfying δτ = −δ, then the scaled operator
δT is self-adjoint. Hence the adjoint representation of U(Y ) on its Lie algebra is isomorphic to its
action by conjugation on the vector space V , of dimension n2 over k, consisting of the self-adjoint
endomorphisms T : Y → Y . In this subsection, we consider the restriction of this representation to
the subgroup G = U(W ).

The ring of polynomial invariants forG = U(W ) on V is a polynomial ring, freely generated by
the n coefficients ci(T ) of the characteristic polynomial of T (which are invariants for the larger group
U(Y )) as well as the n−1 inner products 〈e, T je〉 for j = 1, 2, . . . , n−1 ([30, Lemma 3.1]). Note that
all of these coefficients and inner products take values in k, as T is self-adjoint. In particular, the space
V//G is isomorphic to the affine space of dimension 2n−1. Note that the inner products 〈T ie, T je〉 are
all polynomial invariants for the action of G. Let D be the invariant polynomial that is the determinant
of the n×n symmetric matrix with entries 〈T ie, T je〉 for 0 ≤ i, j ≤ n−1. Clearly D is nonzero if and
only if the vectors {e, Te, T 2e, . . . , T n−1e} form a basis for the space Y over E. Rallis and Shiffman
[21, Theorem 6.1] show that the condition D(f) 6= 0 is equivalent to the condition that G(ks) acts
simply transitively on the points of Vf (ks) . We can therefore conclude that when D(f) is nonzero,
there is a unique pure inner form G′ of G = U(W ) that acts simply transitively on the corresponding
points in V ′f (k), and that these spaces are empty for all other pure inner forms. To determine the pure
inner form G′ = U(W ′) for which V ′f (k) is nonempty, it suffices to determine the Hermitian space W ′

over E of rank n − 1. The rational invariant f determines the inner products 〈T ie, T je〉, and hence a
Hermitian structure on Y ′ = Ee + E(Te) + · · · + E(T n−1e). Since the nonzero value 〈e, e〉 is fixed,
this gives the Hermitian structure on its orthogonal complement W ′ in Y ′, and hence the pure inner
form G′ such that V ′f (k) is nonempty.

When the algebra E is split, the Hermitian space Y = X + X∨ decomposes as the direct sum
of an n-dimensional vector space X over k and its dual. The group U(Y ) is isomorphic to GL(X) =
GL(n). The vector e gives a nontrivial vector x in X as well as a nontrivial functional f in X∨

with f(x) 6= 0. Let X0 be the kernel of f , so X = X0 + kx. The subgroup U(W ) is isomorphic
to GL(X0) = GL(n − 1). In this case, the representation of U(W ) on the space of self-adjoint
endomorphisms of Y is isomorphic to the representation of G = GL(n − 1) by conjugation on the
space V = End(X) of all k-linear endomorphisms of X . Since GL(n − 1) has no pure inner forms,
Corollary 5 implies that GL(n−1) acts simply transitively on the points of Vf (k) whenever D(f) 6= 0.

Once we have chosen an invertible element δ in E of trace zero, the rational invariants for the
action of U(W ) = U(n− 1) on the Lie algebra of U(n) match the rational invariants for the action of
GL(X) = GL(n − 1) on the Lie algebra of GL(n). Since the stable orbits for the pure inner forms
U(W ′) and GL(X) are determined by these rational invariants, we obtain a matching of orbits. This
gives a natural explanation for the matching of orbits that plays an important role in the work of Jacquet
and Rallis [14] on the relative trace formula, where they establish a comparison of the corresponding
orbital integrals, and in the more recent work of Wei Zhang [30] on the global conjecture of Gan, Gross,
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and Prasad [12].

4 Examples with nontrivial stabilizer and nontrivial obstruction
In this section, we will provide some examples of representations with a nontrivial abelian stabi-
lizer Gf , and calculate the obstruction class df in H2(k,Gf ). The first example is a simple modifi-
cation of a case we have already considered, namely, the non-faithful representation V of Spin(W ) =
Spin(n+ 1) on n copies of the standard representation W of the special orthogonal group SO(W ). In
this case, the stabilizerGf of the stable orbits is the center µ2. We will also describe the stable orbits for
the groups G = SL(W ) and H = SL(W )/µ2 acting on the representation V = Sym2W

∗⊕ Sym2W
∗.

(The group H exists and acts when the dimension of W is even.) In these cases, the stabilizer Gf is a
finite elementary abelian 2-group, related to the 2-torsion in the Jacobian of a hyperelliptic curve.

4.1 Spin(n+ 1) acting on n copies of the standard representation of SO(n+ 1)

In this subsection, we reconsider the representation V = W n of SO(W ) studied in §3.1. There we
saw that the orbits of vectors v = (w1, w2, . . . , wn), where the quadratic form f = q(x1w1 + x2w2 +
· · · + xnwn) has nonzero discriminant, have trivial stabilizer. If we consider V as a representation of
the two-fold covering group G = Spin(W ), then these orbits have stabilizer Gf = µ2.

In the former case, we found that the unique pure inner form SO(W ′) for which V ′f (k) is
nonempty corresponded to the quadratic space W ′ of dimension n + 1 and disc(W ′) = disc(W ) that
is the orthogonal direct sum of the subspace U0 with quadratic form f and a nondegenerate space of
dimension 1. The group Spin(W ′) will have orbits with invariant f , but this group may not be a pure
inner form of the groupG = Spin(W ). If it is not a pure inner form, the invariant df must be non-trivial
in H2(k,Gf ).

Assume, for example, that the orthogonal space W is split and has odd dimension 2m + 1, so
that the spin representation U of G = Spin(W ) of dimension 2m is defined over k. Then a necessary
and sufficient condition for the group G′ = Spin(W ′) to be a pure inner form of G is that the even
Clifford algebra C+(W ′) of W ′ is a matrix algebra over k. In this case, the spin representation U ′

of G′ can also be defined over k. Hence the obstruction df is given by the Brauer class of the even
Clifford algebra of the space W ′ determined by f . Note that the even Clifford algebra C+(W ′) has an
anti-involution, so its Brauer class has order 2 and lies in the group H2(k,Gf ) = H2(k, µ2).

4.2 SLn acting on Sym2(n)⊕ Sym2(n)

Let k be a field of characteristic not equal to 2 and let W be a vector space of dimension n over k. Let
e be a basis vector of the one-dimensional vector space ∧nW . The group G = SLn acts linearly on W
and trivially on ∧nW .

The action of G on the space Sym2W
∗ of symmetric bilinear forms 〈v, w〉 on W is given by

the formula
g · 〈v, v′〉 = 〈gv, gv′〉

This action preserves the discriminant of the bilinear form A = 〈 , 〉, which is defined by the formula:

disc(A) = (−1)n(n−1)/2〈e, e〉n.
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Here 〈 , 〉n is the induced symmetric bilinear form on ∧n(W ). If {w1, w2, . . . , wn} is any basis of W
with w1 ∧w2 ∧ . . .∧wn = e, then 〈e, e〉n = det(〈wi, wj〉). The discriminant is a polynomial of degree
n = dim(W ) on Sym2W

∗ which freely generates the ring of G-invariant polynomials.
Now consider the action of G on the representation V = Sym2W

∗ ⊕ Sym2W
∗. If A = 〈 , 〉A

and B = 〈 , 〉B are two symmetric bilinear forms on W , we define the binary form of degree n over k
by the formula

f(x, y) = disc(xA− yB) = f0x
n + f1x

n−1y + · · ·+ fny
n.

The coefficients of this form are each polynomial invariants of degree n on V , and the n+1 coefficients
fj freely generate the ring of polynomial invariants for G on V . (This will follow from our determina-
tion of the orbits of G over ks in Theorem 6.) We call f(x, y) the invariant binary form associated to
(the orbit of) the vector v = (A,B).

The discriminant ∆(f) of the binary form f is defined by writing f(x, y) =
∏

(αix−βiy) over
the algebraic closure of k and setting

∆(f) =
∏
i<j

(αiβj − αjβi)2.

Then ∆(f) is a homogeneous polynomial of degree 2n − 2 in the coefficients fj , so is a polynomial
invariant of degree 2n(n − 1) on V . For example, the binary quadratic form ax2 + bxy + cy2 has
discriminant ∆ = b2 − 4ac and the binary cubic form ax3 + bx2y + cxy2 + dy3 has discriminant
∆ = b2c2 + 18abcd− 4ac3 − 4b3d− 27a2d2.

The first result shows how the invariant form and its discriminant determine the stable orbits
for G on V over ks.

Theorem 6 Let ks be a separable closure of k, and let f(x, y) be a binary form of degree n over ks

with f0 6= 0 and ∆(f) 6= 0. Then there are vectors (A,B) in V (ks) with invariant form f(x, y), and
these vectors all lie in a single orbit for G(ks). This orbit is closed, and the stabilizer of any vector in
the orbit is an elementary abelian 2-group of order 2n−1.

To begin the proof, we make a simple observation. Let A and B denote two symmetric bilinear
forms onW over ks with disc(xA−yB) = f(x, y). Then bothA andB give ks-linear mapsW → W ∗.
Our assumption that f0 is nonzero implies that the linear map A : W → W ∗ is an isomorphism, so
we obtain an endomorphism T = A−1B : W → W . The fact that both A and B are symmetric with
respect to transpose implies that T is self-adjoint with respect to the bilinear form 〈 , 〉A on W .

Write f(x, 1) = f0g(x) with g(x) monic of degree n. The characteristic polynomial det(xI −
T ) is equal to the monic polynomial g(x), and our assumption that the discriminant of f(x, y) is
nonzero in k implies that the polynomial g(x) is separable. Hence the endomorphism T of V is regular
and semisimple. The group G(ks) acts transitively on the bilinear forms with discriminant f0, and
the stabilizer of A is the orthogonal group SO(W,A). Since the group SO(W,A)(ks) acts transitively
on the self-adjoint operators T with a fixed separable characteristic polynomial g(x), there is a single
G(ks)-orbit on the vectors (A,B) with invariant form f(x, y). The stabilizer is the centralizer of T in
SO(W,A), which is an elementary abelian 2-group of order 2n−1. For proofs of these assertions, see
[4, Prop. 4].

Having classified the stable orbits of G on V over the separable closure, we now turn to the
problem of classifying the orbits with a fixed invariant polynomial f(x, y) over k.
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Theorem 7 Let f(x, y) = f0x
n + f1x

n−1y + · · · + fny
n be a binary form of degree n over k whose

discriminant ∆ and leading coefficient f0 are both nonzero in k. Write f(x, 1) = f0g(x) and let L
be the étale algebra k[x]/(g) of degree n over k. Then there is a canonical bijection (constructed
below) between the set of orbits (A,B) of G(k) on V (k) having invariant binary form f(x, y) and the
equivalence classes of pairs (α, t) with α ∈ L× and t ∈ k×, satisfying f0N(α) = t2. The pair (α, t) is
equivalent to the pair (α∗, t∗) if there is an element c ∈ L× with c2α∗ = α and N(c)t∗ = t.

The group scheme Gf obtained by descending the stabilizers GA,B for (A,B) ∈ Vf (ks) to k is
the finite abelian group scheme (ResL/kµ2)N=1 of order 2n−1 over k.

As a corollary, we see that the set of orbits with invariant form f(x, y) is nonempty if and only
if the element f0 ∈ k× lies in the subgroup N(L×)k×2. In this case, we obtain a surjective map (by
forgetting t) from the set of orbits to the set (L×/L×2)N≡f0 , where the subscript indicates that the norm
is congruent to f0 in the group k×/k×2. This map is a bijection when there is an element c ∈ L× that
satisfies c2 = 1 and N(c) = −1. Such an element c will exist if and only if the polynomial g(x) has a
monic factor of odd degree over k. If no such element c exists, then the two orbits (α, t) and (α,−t)
are distinct and map to the same class α in (L×/L×2)N≡f0 . In that case, the map is two-to-one.

When n = 2g + 1 is odd, the set of orbits is always nonempty and has a natural base point
(α, t) = (f0, f

(n+1)/2
0 ). Using this base point, and the existence of an element c with c2 = 1 and

N(c) = −1, we can identify the set of orbits with invariant form f(x, y) with the group (L×/L×2)N≡1.
This group classifies the principal homogeneous spaces for the group scheme (ResL/kµ2)N=1. In fact,
each orbit with invariant form f(x, y) gives rise to a (geometrically) abelian cover of P1 of degree 22g

with an action of this group scheme, which is ramified to order 2 at the 2g + 1 points cut out by the
equation f(x, y) = 0 and unramified elsewhere. The principal homogeneous space is the fiber over the
point∞ of P1, which is unramified in the cover by our hypothesis that f0 6= 0.

When n = 2g + 2 is even, f0 may not lie in the subgroup N(L×)k×2 of k×. In this case, there
may be no orbits over k with invariant polynomial f(x, y). For example, when n = 2 there are no
orbits over R with invariant form f(x, y) = −x2 − y2. However, there is a close relation between the
existence of an orbit with invariant f(x, y) and the arithmetic of the smooth hyperelliptic curve C of
genus g over k, defined by the equation z2 = f(x, y) in the weighted projective plane P(1, 1, g + 1).
For example, every k-rational point P = (u, 1, v) on C with v 6= 0 (so P is not a Weierstrass point)
gives rise to an orbit [3, §2]. Indeed, write f(x, 1) = f0 · g(x) and let θ be the image of x in the algebra
L = k[x]/(g(x)). The orbit associated to P has α = u− θ ∈ L× and t = v ∈ k×. Then N(α) = g(u),
so t2 = f0 · N(α). This is the association used in [3] to show that most hyperelliptic curves over Q
have no rational points.

Proof of Theorem 7: Assume that we have a vector (A,B) in V (k) with disc(xA − yB) = f(x, y).
Using the k-linear maps W → W ∗ given by the bilinear forms A and B and the assumption that f0 is
nonzero, we obtain an endomorphism T = A−1B : W → W which is self-adjoint for the pairing 〈, 〉A
and has characteristic polynomial g(x). Since ∆(f) is nonzero, the polynomial g(x) is separable and
W has the structure of a free L = k[T ] = k[x]/(g) module of rank one. Let β denote the image of x in
L, and let {1, β, β2, · · · , βn−1} be the corresponding power basis of L over k.

The k-bilinear forms A and B both arise as the traces of L-bilinear forms on the rank one L
module W . Choose a basis vector m of W over L and consider the k-linear map L → k defined by
λ → 〈m,λm〉A. Since g(x) is separable, the element g′(β) is a unit in L and the trace map from L to
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k is nonzero. Hence there is a unique element κ in L× such that

〈m,λm〉A = Trace(κλ/g′(β))

for all λ in L. Since all elements of L are self-adjoint with respect to the form 〈, 〉A, we find that the
formula

〈µm, λm〉A = Trace(κµλ/g′(β))

holds for all µ and λ in L. Since the discriminant f0 of the bilinear form 〈, 〉A is nonzero in k, we
conclude that κ is a unit in the algebra L, so is an element of the group L×. We define α = κ−1 ∈ L×,
so that

〈µm, λm〉A = Trace(µλ/αg′(β)).

A famous formula due to Euler [24, Ch III, §6] then shows that for all µ and λ in L, the value
〈µm, λm〉A is the coefficient of βn−1 in the basis expansion of the product µλ/α. It follows that
the value 〈µm, λm〉B is the coefficient of βn−1 in the basis expansion of the product βµλ/α.

We define the element t ∈ k× by the formula

t(m ∧ βm ∧ β2m ∧ . . . ∧ βn−1m) = e

in the one-dimensional vector space ∧n(W ). Then 〈e, e〉n = t2 det(〈βim,βjm〉A). Since 〈e, e〉n =
(−1)n(n−1)/2f0 and det(〈βim,βjm〉A) = (−1)n(n−1)/2N(α)−1, we have that t2 = f0N(α).

We have therefore associated to the binary form f(x, y) an étale algebra L, and to the vector
(A,B) with discriminant f(x, y) an element α ∈ L× and an element t ∈ k× satisfying t2 = f0N(α).
The definition of α and t required the choice of a basis vector m for W over L. If we choose instead
m∗ = cm with c in L×, then α = c2α∗ and t = N(c)t∗. Hence the vector (A,B) only determines the
equivalence class of the pair (α, t) as defined above.

It is easy to see that every equivalence class (α, t) determines an orbit. Since the dimension n of
L over k is equal to the dimension n of W , we can choose a linear isomorphism θ : L→ W that maps
the element 1 ∧ β ∧ β2 . . . ∧ βn−1 in ∧n(L) to the element t−1e in ∧n(V ). Every other isomorphism
with this property has the form hθ, where h is an element in the subgroup G = SL(W ). Using θ we
define two bilinear forms on W :

〈θ(µ), θ(λ)〉A = Trace(µλ/(αg′(β)))

〈θ(µ), θ(λ)〉B = Trace(βµλ/(αg′(β))).

The G(k)-orbit of the vector (A,B) in V (k) is well-defined and has invariant polynomial f(x, y).
To complete the proof, we need to determine the stabilizer of a point (A,B) ∈ V (ks) in an orbit

with binary form f(x, y). Let Ls = ks[x]/(g(x)) denote the ks-algebra of degree n. Since the bilinear
form 〈 , 〉A is nondegenerate, the stabilizer of A in G is the special orthogonal group SO(W,A) of this
form. The stabilizer of B in the special orthogonal group SO(W,A) is the subgroup of those g that
commute with the self-adjoint transformation T . Since T is regular and semisimple, the centralizer of
T in GL(W ) is the subgroup ks[T ]× = Ls×, and the operators in Ls× are all self-adjoint. Hence the
intersection of Ls× with the special orthogonal group SO(W,A)(ks) consists of those elements g that
are simultaneously self-adjoint and orthogonal, so consists of those elements g in Ls× with g2 = 1 and
N(g) = 1. The same argument works over any ks-algebra E. The elements in G(E) stabilizing (A,B)
are the elements h in (E ⊗ Ls)× with h2 = 1 and N(h) = 1. Hence the stabilizer GA,B is isomorphic
to to the finite étale group scheme (ResLs/ksµ2)N=1 over ks.

16



To show that these group schemes descend to (ResL/kµ2)N=1, it remains to construct isomor-
phisms ιv : (ResL/kµ2)N=1(k

s) → Gv compatible with the descent data for every v ∈ Vf (k
s), i.e.,

satisfying (3) and (4). Let α1, . . . , αn ∈ ks denote the roots of g(x). For any i = 1, . . . , n, define

hi(x) =
g(x)

x− αi
, gi(x) = 1− 2

hi(x)

hi(αi)
.

For any linear operator T on W with characteristic polynomial g(x), the operator gi(T ) acts as −1 on
the αi-eigenspace of T and acts trivially on all the other eigenspaces. Then for any v = (A,B) ∈
Vf (k

s), the map ιv sends an n-tuple (m1, . . . ,mn) of 0’s or 1’s, such that
∑
mi is even, to

ιv(m1, . . . ,mn) =
n∏
i=1

gi(T )mi ,

where T = A−1B as before. �

In [29], Wood has classified the elements of the representation Sym2R
n ⊕ Sym2R

n, for any
base ring (or even any base scheme) R, in terms of suitable algebraic data involving ideals classes of
“rings of rank n” over R; see §4.6 for more details on the case R = Z. The special case where R is a
field, and a description of the resulting orbits under the action of SLn(R), is given by Theorem 7.

4.3 Some finite group schemes and their cohomology
To give a cohomological interpretation of Theorem 7 and to make preparations for the study of the
orbits of the action of SLn /µ2 on Sym2(n)⊕Sym2(n) in the next two subsections, we collect some re-
sults on the cohomology of ResL/kµ2 and other closely related finite group schemes. A good reference
for much of this material is section 6 the recent preprint [9].

Fix an integer n ≥ 1, and consider the action of the symmetric group Sn on the vector space
N = (Z/2Z)n by permutation of the natural basis elements ei. The nondegenerate symmetric bilinear
form

〈n,m〉 =
∑

nimi

is Sn-invariant. We have the stable subspace N0 of elements with
∑
ni = 0, and on this subspace the

bilinear form is alternating. It is also nondegenerate when n is odd.
When n is even the kernel of the form on N0 is the one-dimensional subspace M spanned by

the vector n = (1, 1, . . . , 1), and we obtain a nondegenerate alternating pairing

N0 ×N/M → Z/2Z.

This induces an alternating duality which is Sn-invariant on the subquotient N0/M .
We want to translate these results on finite elementary abelian 2-groups with an action of Sn

to finite étale group schemes over a field k whose characteristic is not equal to 2. Let L be an étale
k-algebra of rank n, and let R be the finite group scheme ResL/kµ2. Let ks be a fixed separable
closure of k. The Galois group of ks over k permutes the n distinct homomorphisms L→ ks, and this
determines a homomorphism Gal(ks/k)→ Sn up to conjugacy. We have an isomorphism R(ks) ∼= N
of Gal(ks/k) modules. If L = k[x]/g(x) = k[β] with g(x) monic and separable of degree n, then
the distinct homomorphisms L → ks are obtained by mapping β to the distinct roots βi of g(x) in ks.
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Hence the points of R over an extension K of k correspond bijectively to the monic factors h(x) of
g(x) over K.

Let R0 = (ResL/kµ2)N=1 be the subgroup scheme of elements of norm 1 to µ2. The above iso-
morphism maps R0(k

s) to the Galois module N0, and the points of R0 over an extension K correspond
to the monic factors h(x) of g(x) of even degree over K.

The diagonally embedded µ2 → R corresponds to the trivial Galois submodule M of N , and
the points of R/µ2 over K correspond to the monic factorizations g(x) = h(x)j(x) that are rational
over K. This means that either h(x) and j(x) have coefficients in K, or that they have conjugate
coefficients in some quadratic extension of K.

When n is even, the subgroup µ2 of R is actually a subgroup of R0. The points of R0/µ2 over
K correspond to the monic factorizations g(x) = h(x)j(x) of even degree that are rational over K.

Since the pairings defined above are all Sn-invariant, we obtain Cartier dualities

R×R→ µ2,

R0 ×R/µ2 → µ2.

Since the Cartier dual of R0 is the finite group scheme R/µ2, we obtain a cup product pairing

H2(k,R0)×H0(k,R/µ2) −→ H2(k,Gm)[2] = H2(k, µ2).

When n is odd, we obtain an alternating duality on R0
∼= R/µ2. When n is even, we obtain an

alternating duality
R0/µ2 ×R0/µ2 → µ2.

We now consider the Galois cohomology of these étale group schemes. For R = ResL/kµ2 we
have

H0(k,R) = L×[2], H1(k,R) = L×/L×2, H2(k,R) = Br(L)[2].

ForR0 = (ResL/kµ2)N=1, we haveH0(k,R0) = L×[2]N=1 and the long exact sequence in cohomology
gives an exact sequence

1→ 〈±1〉/N(L×[2])→ H1(k,R0)→ L×/L×2 → k×/k×2 → H2(k,R0)→ Br(L)[2]. (7)

The group H1(k,R0) maps surjectively to the subgroup (L×/L×2)N≡1 of elements in L×/L×2 whose
norm to k×/k×2 is a square. The kernel of this map has order one if −1 is the norm of an element of
L×[2], or equivalently if g(x) has a factor of odd degree. If g(x) has no factor of odd degree, then the
kernel has order two.

This computation allows us to give a cohomological interpretation to Theorem 7. For each
rational invariant f(x, 1) = f0g(x) with nonzero ∆(f) and f0, the stabilizer Gf is isomorphic to the
finite group scheme (ResL/kµ2)N=1 = R0. The quotient group k×/k×2(NL×) is the kernel of the map
from H2(k,R0) to H2(k,R). In Theorem 9, we will show that the class of f0 ∈ k×/k×2N(L×) maps
to the class df ∈ H2(k,R0) defined in §2.4. Since H1(k, SLn) = 0, by Theorem 3 the nontriviality
of df in H2(k,R0) is the only obstruction to the existence of an SLn(k)-orbit with invariant form
f(x, y). This gives another proof that rational orbits with invariant f(x, y) exist if and only if f0 ∈
N(L×)k×2. When the class df vanishes, the orbits of SLn(k) with this rational invariant f form a
principal homogeneous space for the group H1(k,R0).
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4.4 SLn /µ2 acting on Sym2(n)⊕ Sym2(n)

When the dimension n of W is odd, we have obtained a bijection from the set of orbits for SL(W ) with
invariant f to the elements of the group (L×/L×2)N≡1

In this section, we consider the more interesting situation when the dimension n of W is even.
In this case, the central subgroup µ2 in SL(W ) acts trivially on V = Sym2W

∗+Sym2W
∗, and we can

consider the orbits of the group H = SL(W )/µ2 on V over k. Since H1(k, SL(W )) = 1, the group of
k-rational points of H lies in the exact sequence

1→ SL(W )(k)/〈±1〉 → H(k)→ k×/k×2 → 1.

A representative in H(k) of the coset of d in k×/k×2 can be obtained as follows. Lift d ∈ k×/k×2 to an
element d ∈ k× and let K = k(

√
d) be the corresponding quadratic extension. Let τ be the nontrivial

involution of K over k and let g(d) be any element of SL(W )(K) whose conjugate τ(g(d)) is equal to
−g(d). For example, one can take a diagonal matrix with n/2 entries equal to

√
d and n/2 entries equal

to 1/
√
d. Then the image of g(d) in the quotient group H(K) gives a rational element in H(k). The

elements g(d) for d in k×/k×2 give coset representatives for the subgroup SL(W )(k)/〈±1〉 of H(k).
If v is any vector in Vf (k) and d represents a coset of k×/k×2, then

τ(g(d)(v)) = τ(g(d))(v) = −g(d)(v) = g(d)(v)

so the vector g(d)(v) is also an element of Vf (k). Since the coset of g(d) is well-defined, and g(d)2

is an element of SL(W )(k), we see that the action of g(d) gives an involution (possibly trivial) on the
orbits of SL(W )(k) = G(k) on Vf (k).

We have seen that the orbits of G(k) with invariants f(x, y) are determined by two invariants:
α ∈ L× and t ∈ k× that satisfy f0N(α) = t2. The pair (α, t) is equivalent to the pair (c2α,N(c)t).
Under this bijection, the element represented by g(d) in H(k) maps the equivalence class of (α, t) to
the equivalence class (dα, dn/2t). This gives the following result.

Theorem 8 Assume that n is even and let f(x, y) = f0x
n + f1x

n−1y + · · · + fny
n be a binary form

of degree n over k whose discriminant ∆ and leading coefficient f0 are both nonzero in k. Write
f(x, 1) = f0g(x) and let L be the étale algebra k[x]/(g) of degree n over k. Then there is a bijection
between the set of orbits (A,B) of H(k) on V (k) having invariant binary form f(x, y) and the set of
equivalence classes of pairs (α, t) with α ∈ L× and t ∈ k× satisfying f0N(α) = t2. The pair (α, t) is
equivalent to the pair (α∗, t∗) if there is an element c ∈ L× and an element d ∈ k× with c2dα∗ = α
and N(c)dn/2t∗ = t.

The group scheme Hf obtained by descending the stabilizers HA,B for (A,B) ∈ Vf (ks) to k is
finite abelian group scheme (ResL/kµ2)N=1 = R0/µ2 of order 2n−2 over k.

Theorem 8 implies that orbits for H(k) exist with invariant binary form f(x, y) if and only if the
leading coefficient f0 lies in the subgroup k×2N(L×) of k×. When orbits do exist, we can associate to
each H(k)-orbit the class of α in the set

(L×/L×2k×)N≡f0 .

This is a surjective map, which is a bijection when there are elements c ∈ L× and d ∈ k× satisfying
c2d = 1 and N(c)dn/2 = −1. Such a pair (c, d) exists if and only if the monic polynomial g(x) has an

19



odd factorization over k. If g(x) has a rational factor of odd degree, then there is a pair with c2 = 1 and
d = 1. On the other hand, if g(x) has no rational factor of odd degree, but has a rational factorization,
then n/2 is odd and the factorization occurs over the unique quadratic extension K = k(

√
d) which is

a sub-algebra of L. If g(x) has no odd factorization, the two orbits (α, t) and (α,−t) are distinct and
the surjective map from the set of H(k)-orbits to the set (L×/L×2k×)N≡f0 is two-to-one.

We can also reinterpret this result in terms of the Galois cohomology of the stabilizerHf = R0/µ2.
We assume that there exists rational (A,B) ∈ V (k) with invariant binary form f(x, y). In the next
subsection, we study the obstruction to this existence. The set of rational orbits with invariant f is in
bijection with the kernel of the composite map γ : H1(k,HA,B)→ H1(k,H) ↪→ H2(k, µ2) of pointed
sets. We now give another description of γ and in particular show that it is a group homomorphism;
hence the set ofH(k)-orbits forms a principal homogenous space for ker γ. Note that even though both
the source and target of γ are groups, there is a priori no reason for γ to be a group homomorphism.
The short exact sequence

1→ µ2 → R0 → R0/µ2 → 1 (8)

of finite abelian group schemes over k gives rise to the long exact sequence in cohomology

1→ 〈±1〉 → R0(k)→ R0/µ2(k)→ k×/k×2 → H1(k,R0)→ H1(k,R0/µ2)
δ−→ H2(k, µ2)=Br(k)[2].

By the definition of the connecting homomorphism, we see that δ = γ. Let H1(k,R0/µ2)ker := ker δ
denote the kernel. Then we have the following short exact sequence

1→ k×/k×2〈H〉 → H1(k,R0)→ H1(k,R0/µ2)ker → 1, (9)

where 〈H〉 denotes the image of R0/µ2(k) in k×/k×2. The group 〈H〉 can be nontrivial only when n
is divisible by 4; in this case 〈H〉 is a finite elementary abelian 2-group corresponding to the quadratic
field extensions K of k that are contained in the algebra L. In that case, a factorization of g(x) into two
even degree polynomials conjugate overK gives a rational point ofR0/µ2(k) which is not in the image
of R0(k). Recall that R0 = Gf is the stabilizer for the action of the group G = SL(W ) (Theorem 7).
Therefore, (9) describes how G(k)-orbits combine into H(k)-orbits and reflects the extra relations in
Theorem 8.

We now give a more concrete description of H1(k,R0/µ2)ker in terms of the algebras L and k.
The above short exact sequence maps surjectively to the short exact sequence

1→ k×/k×2〈I〉 → (L×/L×2)N≡1 → (L×/L×2k×)N≡1 → 1,

where 〈I〉 is the finite elementary abelian subgroup corresponding to all of the quadratic extensions K
of k that are contained in L. We have 〈I〉 = 〈H〉 except in the case when n is not divisible by 4 and
there is a (unique) quadratic extension fieldK contained in L, in which case, the kernel of the map from
H1(k,R0) to (L×/L×2)N≡1 has order 2 whereas the map from H1(k,R0/µ2)ker to (L×/L×2k×)N≡1 is
a bijection. In all other cases, these maps have isomorphic kernels (of order 1 or 2).

The existence and surjectivity of the map from H1(k,R0/µ2)ker to (L×/L×2k×)N≡1 in the
above paragraph follows formally from exactness. More canonically, (L×/L×2k×)N≡1 can be viewed
as the subgroup ofH1(k,R/µ2) consisting of elements that map to 0 inH2(k, µ2) under the connecting
homomorphism in Galois cohomology and to 0 inH1(k, µ2) under the map induced byN :R/µ2 → µ2.
The natural map H1(k,R0/µ2) → H1(k,R/µ2) sends H1(k,R0/µ2)ker to this subgroup. The kernel
of this map is generated by a class WH ∈ H1(k,R0/µ2). The points of the principal homogeneous
space WH over an extension field E are the odd factorizations of g(x) that are rational over E.
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Since the finite group scheme HA,B = R0/µ2 is self-dual, we obtain a cup product pairing

H1(k,R0/µ2)×H1(k,R0/µ2)→ H2(k, µ2).

The connecting homomorphism δ : H1(k,R0/µ2)→ H2(k, µ2) (and hence also γ) is given by the cup
product against the class WH in H1(k,R0/µ2) ([19, Proposition 10.3]).

Theorems 7 and 8 have a number of applications to the arithmetic of hyperelliptic curves,
which we study in a forthcoming paper [6]. A binary form f(x, y) of degree n = 2g + 2 with nonzero
discriminant determines a smooth hyperelliptic curve C : z2 = f(x, y) of genus g. Here we view C
as embedded in weighted projective space P(1, 1, g + 1). Denote the Jacobian of C by J . Then J [2]
is canonically isomorphic to R0/µ2. Under this isomorphism, the self-duality of R0/µ2 is given by the
Weil pairing on J [2]. In [6], we use this connection to show that a positive proportion of hyperelliptic
curves over Q of a fixed genus g have points locally at every place of Q but have no points over any
odd degree extension of Q.

4.5 Obstructions for the existence of orbits
In the previous section, we assumed that rational orbits with invariant f exist and studied the set of
H(k)-orbits on Vf (k). By Theorem 3, we know that there are two obstructions to existence of a H(k)-
orbit with invariant f : the nonvanishing of a class df ∈ H2(k,Hf ), and the possibility that we are not
working with the correct pure inner form. In this subsection, we compute the class df ∈ H2(k,Hf )
and when df = 0, and describe the set of pure inner forms Hc of H for which V c

f (k) is nonempty.

Theorem 9 Let f(x, y) = f0x
n + · · · + fny

n be a binary form of even degree n such that ∆(f) and
f0 are both nonzero. Write f(x, 1) = f0g(x) for some monic polynomial g(x) and let L = k(x)/(g) =
k[β] be the associated étale algebra of rank n over k. The groups G = SLn and H = SLn /µ2 act on
V = Sym2(n)⊕Sym2(n). The stabilizer Gf (resp. Hf ) associated to an element of Vf (ks) is the finite
group scheme (ResL/kµ2)N=1 (resp. (ResL/kµ2)N=1/µ2). Let δ0 denote the connecting homomorphism
H1(k, µ2) → H2(k,Gf ) appearing in (7). Let dGf ∈ H2(k,Gf ) (resp. dHf ∈ H2(k,Hf )) denote the
obstruction class for the existence of G(k)- (resp. H(k)-) orbits with invariant f as defined in §2.4.
Then dGf is the image of f0 under δ0, and the natural map H2(k,Gf )→ H2(k,Hf ) sends dGf to dHf .

Proof: The statement regarding the stabilizer schemes Gf and Hf has been proved in Theorems 7
and 8, respectively. We now compute dGf following its definition given in §2.4. Let A0 denote the
matrix with 1’s on the anti-diagonal and 0’s elsewhere. Let h(x) ∈ ks[x] be a polynomial such that
NLs/ks(h(β)) = f0. Let T be a k-rational linear operator onW that is self-adjoint with respect toA0 and
has characteristic polynomial g(x) ([25, §2.2]). Then the element v = (A0h(T ), A0Th(T )) ∈ Vf (ks)
has invariant f . We need to pick gσ ∈ G(ks) such that gσσv = v for every σ ∈ Gal(ks/k). We take
gσ to be of the form gσ = jσ(T ) for some polynomial jσ(x) ∈ ks[x] such that jσ(β)2 = (σh)(β)/h(β).
By writing (σh)(β), we wish to emphasize that σ is not acting on β, and hence for any polynomial
h′(x) ∈ ks[x], we have

σ(NLs/ks(h
′(β))) = NLs/ks((

σh′)(β)).

Let
√
h(x) ∈ ks[x] denote a polynomial such that (

√
h(β))2 = h(β). Set jσ(x) ∈ ks[x] to be the

polynomial such that jσ(β) = (σ
√
h)(β)/

√
h(β). By definition, dGf is then the 2-cocycle

(σ, τ) 7→ jσ(β)σ(jτ (β))jστ (β)−1.
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On the other hand, let
√
f0 denote the square root of f0 such that

√
f0 = NLs/ks(

√
h(β)). Then the

1-cocycle σ 7→ σ
√
f0/
√
f0 corresponds to the class of f0 ∈ k×/k×2. To compute δ0(f0), for each

σ ∈ Gal(ks/k) we need to find an element in Ls whose norm to ks is σ
√
f0/
√
f0. A natural choice

is jσ(β). The equality dGf = δ0(f0) is then clear. The second statement is also clear from the above
computation for dGf . �

Since G has no nontrivial pure inner forms, the vanishing of dGf is sufficient for the existence
of rational orbits. For H , there is a second (Brauer-type) obstruction coming from the pure inner forms
of H .

Theorem 10 Let f(x, y) = f0x
n + · · · + fny

n be a binary form of even degree n such that ∆(f) is
nonzero. Let dGf ∈ H2(k,Gf ) (resp. dHf ∈ H2(k,Hf )) denote the obstruction class for the existence of
G(k)- (resp. H(k)-) orbits with invariant f . Consider the following diagram:

H1(k,H)

δ2
��

H1(k,Hf )
δ // H2(k, µ2)

α // H2(k,Gf ),

where δ, δ2 are the connecting homomorphisms in Galois cohomology and α is induced by the diagonal
inclusion µ2 → Gf . Suppose dHf = 0. Then dGf is the image of some d ∈ H2(k, µ2), where d lies in the
image of δ2. The pure inner forms of H for which rational orbits exist with invariant f correspond to
classes c ∈ H1(k,H) such that αδ2(c) = dGf in H2(k,Gf ).

Proof: Fix any v ∈ Vf (ks). Choose gσ ∈ H(ks) for each σ ∈ Gal(ks/k) such that gσσv = v. Since
dHf = 0, by Lemma 4 we may pick gσ such that c = (σ → gσ) is a 1-cocycle in H1(k,H). Lift each
gσ arbitrarily to g̃σ ∈ G(ks). Since the center of G(ks) acts trivially on V , we have g̃σσv = v for every
σ ∈ Gal(ks/k). The 2-cocycle dGf in H2(k, µ2) is then given by

(dGf )σ,τ = g̃σ
σg̃τ g̃

−1
στ , (10)

which is exactly the image of c under δ2.
For the second statement, choose g ∈ GL(V )(ks) such that gσ = g−1σg for every σ ∈

Gal(ks/k). From the definition of gσ, we see that gv ∈ V c
f (k). For every v′ ∈ Vf (k

s), let ιv′ :
Hf (k

s) → Hv′ denote the canonical isomorphism. Then we have a Galois invariant isomorphism
Hf (k

s)→ Hc
gv(k

s) sending b ∈ Hf (k
s) to ιv(b). Let ι denote the following composition:

ι : H1(k,Hf )
∼−→ H1(k,Hc

gv)→ H1(k,Hc)
∼−→ H1(k,H),

where the last map is the bijection given by (σ → dσ) 7→ (σ → dσgσ).

Lemma 11 For any b ∈ H1(k,Hf ), we have

δ2(ι(b)) = δ(b) + δ2(c).

This lemma follows from a direct computation similar to the proof of Lemma 4.
Proposition 1 states that the set of pure inner forms of H for which rational orbits exist with

invariant f is in bijection with the image of H1(k,Hf ) under ι. Since δ2 is injective, Lemma 11
implies that this set is in bijection with δ(H1(k,Hf )) + δ2(c), which equals α−1(αδ2(c)) by exactness.
Theorem 10 now follows since, by (10), we have dGf = αδ2(c). �
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4.6 Integral orbits
In this section, we discuss the orbits of the group G(Z) = SLn(Z) on the free Z-module V (Z) =
Sym2 Zn ⊕ Sym2 Zn of symmetric matrices (A,B) having entries in Z. Even though Galois cohomol-
ogy was very useful in the previous sections to study rational orbits, we will see in this section that one
will generally need different techniques to study integral orbits.

Associated to an integral orbit we have the invariant binary n-ic form f(x, y) = disc(xA −
yB) = f0x

n + · · · + fny
n with integral coefficients. We assume as above that the integers ∆(f) and

f0 are both nonzero, and write f(x, 1) = f0g(x). The polynomial g(x) is separable over Q, but its
coefficients will not necessarily be integers (when f0 6= ±1). In this case, the image θ of x in the étale
algebra L = Q[x]/g(x) will not necessarily be an algebraic integer.

The rational orbits with this binary form f correspond to equivalence classes of pairs (γ, t).
Here γ is an invertible element in the étale algebra L and t is an invertible element of Q satisfying
t2 = f0N(γ). The equivalence relation is (γ, t) ∼ (c2γ,N(c)t) for all c ∈ L×. In this section, we
specify the additional data that determines an integral orbit in this rational orbit.

Recall that an order R in L is a subring that is free of rank n over Z and generates L over Q.
The ring Z[θ] generated by θ will not be an order in L when the coefficients of g(x) are not integers.
However, there is a natural order Rf contained in L which is determined by the integral binary form
f(x, y). This order Rf as a Z-module was first introduced by Birch and Merriman [8] and proved to be
an order by Nakagawa [17]. A basis-free description was discovered by Wood [28], namely, Rf is the
ring of the global sections of the structure sheaf of the subscheme Sf of P1 defined by the homogeneous
equation f(x, y) = 0 of degree n. The ring Rf possesses a natural Z-basis, namely,

Rf = SpanZ{1, ζ1, ζ2, . . . , ζn−1},

where
ζk = f0θ

k + f1θ
k−1 + · · ·+ fk−1θ. (11)

Note that the ζk are all algebraic integers, even though θ might not be. One easily checks ([8]) the
remarkable equality disc(f) = disc(Rf ).

A fractional ideal I for an order R is a free abelian subgroup of rank n in L, which is stable
under multiplication by R. The norm N(I) is defined to be the positive rational number that is the
quotient of the index of I in M by the index of R in M , where M is any lattice in L that contains
both I and R. If the fractional ideal I is contained in R, so defines an ideal of R in the usual sense,
then N(I) is its index in R. An oriented fractional ideal for an order R is a pair (I, ε), where I is
any fractional ideal of R and ε = ±1 gives the orientation of I . The norm of an oriented ideal (I, ε)
is defined to be the nonzero rational number εN(I). For an element κ ∈ L×, the product κ(I, ε) is
defined to be the oriented fractional ideal (κI, sgn(N(κ))ε). Then N(κ(I, ε)) = N(κ)N(I, ε) in Q×.
In practice, we denote an oriented ideal (I, ε) simply by I , with the orientation ε = ε(I) on I being
understood.

We say that a fractional ideal I is based if it comes with a fixed ordered basis over Z. If the
order R and the fractional ideal I are both based, then we can define the orientation of I as the sign
of the determinant of the Z-linear transformation taking the chosen basis of I to the basis of R. The
norm of this oriented fractional ideal is then equal to the actual determinant. Changing the basis by an
element of SLn(Z) does not change the orientation ε of I or the norm N(I) in Q×.

The binary form f(x, y) not only defines an order Rf in L, but also a collection of based
fractional ideals If (k) for k = 0, 1, 2 . . . , n − 1 (see [28]). The ideal If (0) = Rf and for k > 0 the

23



ideal If (k) has a Z-basis {1, θ, θ2, . . . , θk, ζk+1, . . . , ζn−1}. This gives If (k) an orientation relative to
Rf , and the norm of the oriented ideal If (k) is equal to 1/fk0 . We have inclusions Rf ⊂ If (1) ⊂
If (2) ⊂ · · · ⊂ If (n− 1).

Let If = If (1). Then we find by explicit computation that If (k) = Ikf . As shown by Wood [28],
abstractly the fractional ideal If is the module of global sections of the pullback of the line bundle
O(1) on P1 to the subscheme Sf defined by the equation f(x, y) = 0, and the ideals If (k) are the
global sections of the pullbacks of the line bundles O(k) . We say that the form f(x, y) is primitive
if the greatest common divisor of its coefficients is equal to 1. When f(x, y) is primitive, the scheme
Sf = Spec(Rf ) has no vertical components and is affine. In this case, the pullbacks of these line
bundles have no higher cohomology, and the ideals If (k) = Ikf are all projective Rf -modules.

The oriented fractional ideal If (n − 1) has a power basis {1, θ, θ2, . . . , θn−1}. When the form
f(x, y) is primitive, this fractional ideal is a projective, hence a proper, Rf -module. In this case, the
ring Rf has a simple definition as the endomorphism ring of the lattice SpanZ{1, θ, θ2, . . . , θn−1} in
the algebra L.

There is also a nice interpretation of the oriented fractional ideal If (n− 2) = In−2
f in terms of

the trace pairing on L. Define a nondegenerate bilinear pairing 〈 , 〉f : Rf×In−2
f → Z by taking 〈λ, µ〉f

as the coeffiecient of ζn−1 in the product λµ. Define f ′(θ) in L× by the formula f ′(θ) = f0g
′(θ). Then

f ′(θ) lies in the fractional ideal In−2
f . A computation due to Euler shows that the above bilinear pairing

is given by the formula
〈λ, µ〉f = Trace(λµ/f ′(θ)),

where the trace is taken from L to Q. We have an inclusion Rf ⊂ (1/f ′(θ))In−2
f and the index is the

absolute value of ∆(f). In fact, the oriented fractional ideal (1/f ′(θ))In−2
f has norm 1/∆(f). This is

precisely the “inverse different”—the dual module to Rf in L under the trace pairing. When f(x, y) is
primitive, the dual module is projective and the ring Rf is Gorenstein.

The oriented fractional ideal If (n − 3) = In−3
f appears in the study of integral orbits. Before

introducing the action of SLn(Z), we first describe the elements in V (Z) using a general theorem of
Wood (see [29, Theorems 4.1 & 5.7], or [1, Theorem 16] and [2, Theorem 4] for the special cases
n = 2 and n = 3):

Theorem 12 (Wood) The elements of Sym2(Zn) ⊕ Sym2(Zn) having a given invariant binary n-ic
form f with nonzero discriminant ∆ and nonzero first coefficient f0 are in bijection with the equivalence
classes of pairs (I, α), where I ⊂ L is a based fractional ideal ofRf , α ∈ L×, I2 ⊆ αIn−3

f as fractional
ideals, andN(I)2 = N(α)N(In−3

f ) = N(α)/fn−3
0 ∈ Q×. Two pairs (I, α) and (I∗, α∗) are equivalent

if there exists κ ∈ L× such that I∗ = κI and α∗ = κ2α.

The way to recover a pair (A,B) of symmetric n × n matrices from a pair (I, α) above is by
taking the coefficients of ζn−1 and ζn−2 in the image of the map

1

α
× : I × I → In−3

f (12)

in terms of the Z-basis of I .
Next, note that the group G(Z) = SLn(Z) acts naturally on V (Z) = Sym2(Zn) ⊕ Sym2(Zn).

It also acts on the bases of the based fractional ideals I in the corresponding pairs (I, α), and preserves
the norm and orientation. Thus, when considering SLn(Z)-orbits, we may drop the bases of I and view
I simply as an oriented fractional ideal ideal. We thus obtain:
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Corollary 13 The orbits of SLn(Z) on Sym2(Zn) ⊕ Sym2(Zn) having a given invariant binary n-ic
form f with nonzero discriminant ∆ and nonzero first coefficient f0 are in bijection with equivalence
classes of pairs (I, α), where I ⊂ L is an oriented fractional ideal of Rf , α ∈ L×, I2 ⊆ αIn−3

f , and
N(I)2 = N(α)N(In−3

f ) = N(α)/fn−3
0 . Two pairs (I, α) and (I∗, α∗) are equivalent if there exists

κ ∈ L× such that I∗ = κI and α∗ = κ2α. The stabilizer in SLn(Z) of a nondegenerate element
in Sym2(Zn) ⊕ Sym2(Zn) having invariant binary form f is the finite elementary abelian 2-group
S×[2]N=1, where S is the endomorphism ring of I in L.

We can specialize this result to the case when the order Rf is maximal in L (which occurs, for
example, when the discriminant ∆(f) is squarefree). Then the set of oriented fractional ideals of Rf

form an abelian group under multiplication, and the principal oriented ideals form a subgroup. The
oriented class group C∗ is then defined as the quotient of the group of invertible oriented ideals by
the subgroup of principal oriented ideals. The elements of this group are called the invertible oriented
ideal classes of Rf , and two oriented ideals (I, ε) and (I ′, ε′) of Rf are in the same oriented ideal class
if (I ′, ε′) = κ · (I, ε) for some κ ∈ L×. Note that the oriented class group is isomorphic to the usual
class group of Rf if there is an element of R×f with norm −1; otherwise, it is an extension of the usual
class group by Z/2Z, where the generator of this Z/2Z is given by the oriented ideal (Rf ,−1) of Rf .
(In the case of a binary form with positive discriminant, when Rf is an order in a real number field, the
oriented class group coincides with what is usually called the narrow class group).

When Rf is maximal, integral orbits (A,B) with invariant f will exist if and only if the class
of the oriented ideal If (n − 3) = In−3

f is a square in the oriented ideal class group (this will certainly
hold when n is odd). If the class of In−3

f is a square, we can find a pair (I, α) satisfying I2 = αIn−3
f

and N(I)2 = N(α)/fn−3
0 . In this case, the set of orbits is finite and forms a principal homogeneous

space for an elementary abelian 2-group that is an extension of the group of elements of order 2 in the
oriented class group by the group (R×f /R

×2
f )N=1. The number of distinct integral orbits with binary

form f(x, y) is given by the formula
2r1+r2−1#C∗[2]

where r1 and r2 are the number of real and complex places of L respectively and C∗[2] is the subgroup
of elements of order 2 in the oriented class group C∗.

We end with a comparison of the integral and rational orbits with a fixed invariant form f for
the action of G = SLn on V = Sym2(n) ⊕ Sym2(n). Let f(x, y) = f0x

n + f1x
n−1y + · · · + fny

n

be an integral binary form of degree n with ∆(f) 6= 0 and f0 6= 0. Write f(x, 1) = f0g(x) with
g(x) ∈ Q[x] and let L = Q[x]/(g(x)). Recall from §4.1 that the orbits v = (A,B) of SLn(Q) on
V (Q) with invariant f correspond bijectively to the equivalence classes of pairs (γ, t), with γ ∈ L×

and t ∈ Q× satisfying t2 = f0N(γ). More precisely, the SLn(Q)-orbit of the bilinear form A is given
by the pairing

〈λ, µ〉γ = Trace(λµ/γg′(θ)).

using the oriented basis t(1 ∧ θ ∧ θ2 ∧ . . . ∧ θn−1) of ∧nL. It follows that 〈λ, µ〉A is equal to the
coefficient of θn−1 in the expansion of the product λµ/γ using this oriented basis.

On the other hand, an integral orbit (A,B) is given by the equivalence class of the pair (I, α)
with I2 ⊂ αIn−3

f and N(I)2 = N(α)/fn−3
0 . For λ and µ in the oriented fractional ideal I , the bilinear

form 〈λ, µ〉A is equal to the coefficient of ζn−1 in the expansion of the product λµ/α with respect to
the natural basis of If (n − 3). Since ζn−1 = f0θ

n−1 + f1θ
n−2 + · · · + fn−2θ in L, we see that the
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corresponding rational orbit has parameters

γ = f0α,

t = fn−1
0 N(I).

Similarly, the bilinear form 〈λ, µ〉B is equal to the coefficient of ζn−2 in the expansion of the product
λµ/α with respect to the natural basis of If (n − 3). Note that we obtain Gram matrices for these two
bilinear forms by using the basis of the ideal I that maps to the basis element

N(I)(1 ∧ ζ1 ∧ ζ2 ∧ . . . ∧ ζn−1) = N(I)fn−1
0 (1 ∧ θ ∧ θ2 ∧ . . . θn−1) = t(1 ∧ θ ∧ θ2 ∧ . . . θn−1)

of the top exterior power of I over Z.
If we fix a rational orbit with integral form f(x, y), then the parameters (γ, t) determine both

α and N(I) by the above formulae. The rational orbit has an integral representative if and only if one
can find an oriented fractional ideal I for Rf satisfying I2 ⊆ αIn−3

f and N(I) = N(α)N(In−3
f ) =

N(α)/fn−3
0 . The distinct integral orbits in this rational orbit correspond to the different possible

choices for the oriented fractional ideal I satisfying these two conditions. We note that there is at
most one choice when the order Rf is maximal in L. In that case, the fractional ideal I is determined
by the identity I2 = αIn−3

f , and its orientation by the identity N(I) = N(α)/fn−3
0 .

When n is odd, there is a canonical integral orbit with invariant binary n-ic form f(x, y).
This has parameters (I, α) = (I

(n−3)/2
f , 1). The corresponding rational orbit has parameters (γ, t) =

(f0, f
(n+1)/2
0 ).
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