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Maximal linear spaces contained in the base loci

of pencils of quadrics
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Abstract

The geometry of the Fano variety of maximal linear spaces contained in the base locus
of a pencil of quadrics has been studied by algebraic geometers when the base field is
algebraically closed. In this paper, we work over an arbitrary base field of character-
istic not equal to 2 and show how these Fano varieties are related to the Jacobians of
hyperelliptic curves. In particular, if B is the base locus of a generic pencil of quadrics
in P2n+1 and F is the Fano variety of (n−1)-planes contained in B, then F is a compo-
nent of a disconnected commutative algebraic group G = Pic0(C) ∪̇F ∪̇ Pic1(C) ∪̇F ′,
where C is the hyperelliptic curve defined by the discriminant form of the pencil. In the
second half of this paper, we study regular pencils of quadrics, where the hyperelliptic
curve defined by the discriminant may be singular.

1. Introduction

Let k be a field of characteristic not 2. Let L = {xQ1− yQ2 | [x, y] ∈ P1} be a pencil of quadrics
in PN−1 for N > 3, where Q1 and Q2 are two linearly independent quadrics defined over k. Let
B = Q1 ∩Q2 denote the base locus. In this paper, we study the general geometry of the variety
F of linear subspaces contained in B of maximal dimension. Let A1 and A2 denote two Gram
matrices of Q1 and Q2 with respect to the same choice of basis. Let f(x) be the polynomial of
degree at most N defined by

f(x) = disc(xA1 −A2) = (−1)N(N−1)/2 det(xA1 −A2) .

We shall assume that f(x) splits completely over a separable closure ks of k.

The geometry depends very much on the parity of N and how “singular” the pencil is.
A pencil is generic if L has transverse intersection with the hypersurface of singular quadrics in
P(H0(OPN−1(2))). Equivalently, L contains precisely N singular quadrics over ks, all of which
are simple cones. This is also equivalent to saying that f(x) has degree at least N − 1 with
no repeated roots. Suppose that L is generic. Denote by C the hyperelliptic curve with affine
equation y2 = f(x). The isomorphism type of C over k is independent of the choice of the basis
used to obtain the Gram matrices A1 and A2.

WhenN = 2n+1 is odd, the dimension of maximal linear subspaces contained inB is n−1. We
assume that k has at least N + 1 elements, which implies that there is a rational non-degenerate
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quadric over k in the pencil. After renaming, we may assume that Q1 is non-degenerate and hence
the genus of C is n. It is well known from intersection theory that geometrically over ks, there
are 22n such (n − 1)-planes. The arithmetic theory over k was studied in [BG14], where it was
shown that F is a torsor of J [2], where J denotes the Jacobian of C. Note that the isomorphism
type of C over k depends on the choice of the two quadrics Q1 and Q2 in L, while the group
scheme J [2] is independent of this choice.

When N = 2n + 2 is even, the theory is richer. The dimension of maximal linear subspaces
contained in B is still n − 1, and the genus of C is still n. The rational function x defines
a degree 2 morphism C → P1. Let D0 denote the hyperelliptic class obtained from pulling back
the hyperplane section on P1. It was proved by Desale and Ramanan [DR76], Reid [Rei72], and
Donagi [Don80] that geometrically over ks, the variety F is isomorphic to the Jacobian J of C.
Gauthier had also studied this in [Gau54]. The arithmetic theory when C has genus 1 is known
and is used heavily in studying the 4-descent of elliptic curves. The genus 2 case was known
to Cassels [Cas93]. The main result of this paper is that for arbitrary n > 1, the variety F is
a torsor of J over k and, moreover, that the following theorem holds.

Theorem 1.1. Let G be the disconnected variety

G = Pic0(C) ∪̇F ∪̇ Pic1(C) ∪̇F ′ ,

where F ′ is a copy of F . Then there is a commutative algebraic group structure on G over k
such that

1. G0 = Pic0(C) with component group G/G0 ' Z/4;

2. F ′ is isomorphic to F as varieties via the inversion map −1G;

3. the group law extends that on H = Pic(C)/ZD0 ' Pic0(C) ∪̇ Pic1(C).

Moreover, we will show that this structure is unique once we impose one more condition. See
Theorem 2.25 for the complete statement.

When k is algebraically closed, Donagi put a group law on F in [Don80]. In light of Theo-
rem 1.1, to put a group law on F amounts to choosing a point X0 on F (k) as the identity. The
identity that Donagi picked is an element of F [4] = {X ∈ F | X +G X +G X +G X = 0}. By
studying the variety G and putting a canonical group structure on it, we no longer need to make
this choice.

For arithmetic applications, it is of significance that Theorem 1.1 implies that as classes of
torsors of J , we have 2[F ] = [Pic1(C)] in H1(k, J). In particular, if Pic1(C)(k) 6= ∅, then F is
a torsor of J of order dividing 2 and for any [D1] ∈ Pic1(C)(k), one has a lift of [F ] to a torsor
of J [2] by taking

F [2][D1] = {X ∈ F | X +G X = [D1]} .
When the class [D1] comes from a rational point P on C, the lift F [2]P can also be described
geometrically; see Examples 2.27 and 2.30.

When the curve C has a rational Weierstrass point P , it turns out that all torsors of J [2] arise
from pencils of quadrics as some F [2]P . This is the key geometric input in [BG13], where Bhargava
and Gross obtained the average sizes of the 2-Selmer groups of Jacobians of hyperelliptic curve
with a rational Weierstrass point. When the curve C only has a rational non-Weierstrass point P ,
not all torsors of J [2] arise this way in general. However, when k is a global field, all of the locally
soluble torsors of J [2], namely ones that correspond to elements of the 2-Selmer group, arise from
pencils of quadrics. This is used in [SW18], where Shankar and the author obtained the average
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sizes of the 2-Selmer groups of Jacobians of hyperelliptic curves with rational non-Weierstrass
points.

In general, when restricted to F , the multiplication-by-2 map on G gives an unramified
map from F to Pic1(C) of degree 22n. Such a map is a twist of the multiplication-by-2 map
from Pic0(C) to itself and is called a two-cover of Pic1(C). When k = Q is a global field and the
curve C has points locally everywhere, all locally soluble two-covers of Pic1(C) arise this way. By
counting these locally soluble two-covers of Pic1(C) and comparing them to locally soluble two-
covers of Pic0(C), Bhargava, Gross, and the author [BGW17] showed that Pic0(C) and Pic1(C)
are non-isomorphic a positive proportion of the time and so the curve C has no points over any
odd-degree extension of Q a positive proportion of the time.

In the second half of the paper, we generalize these results to the case where the pencil L
is “slightly singular,” or regular. A pencil L is regular if it only has simple cones as singu-
lar members. In other words, L could intersect tangentially to the discriminant hypersurface
in P(H0(OPN−1(2))) but does not contain any quadrics with higher degeneracy degree than
simple cones. Let U denote the underlying k-vector space of dimension N , and view the two
generating quadrics Q1, Q2 as linear operators A1, A2 : U → U∨. When Q1 is smooth, A1 is an
isomorphism and the composite

T : U
A2−−→ U∨

A−1
1−−→ U

is self-adjoint with respect to A1. We call T the self-adjoint operator associated to the pencil.
The pencil spanned by Q1 and Q2 is regular if and only if T is regular, which by definition means
that all the eigenspaces of T are 1-dimensional. Note that the pencil is generic if and only if T
is regular semi-simple.

Suppose that L is regular with Q1 non-degenerate and that N = 2n+ 1 is odd. Factor f(x)
as f(x) = c

∏r+1
i=1 (x − αi)mi over ks. Let Ui,T denote the generalized eigenspace over ks of T

with eigenvalue αi. Since T is self-adjoint with respect to A1, its generalized eigenspaces are
pairwise orthogonal. A projective (n − 1)-plane contained in the base locus B can be viewed
as a linear n-plane X such that X ⊂ X⊥ and TX ⊂ X⊥, where ⊥ is taken with respect to
A1. For each i = 1, . . . , r + 1, we define dimi,T (X) to be the dimension of the maximal T -stable
subspace of (X⊗ks)∩Ui,T . Since each Ui,T is mi-dimensional and A1 restricts to a non-degenerate
quadratic form on Ui,T , we have

dimi,T (X) 6 mi/2 .

For any sequence of integers d1, . . . , dr+1 such that 0 6 di 6 mi/2, we define

LT{d1,...,dr+1}(k
s) =

{
X ' (ks)n | X ⊂ X⊥, TX ⊂ X⊥, dimi,T (X) = di

}
.

Note that the singular locus of B consists of the projectivization of the eigenspaces of T whose
associated eigenvalues have multiplicity at least 2. Hence LT{0,...,0}(k

s) is the set of ks-points of

the variety of projective (n−1)-planes contained in the smooth locus of B. We have the following
counting result on the size of LT{d1,...,dr+1}(k

s).

Theorem 1.2. Let a denote the number of di equal to mi/2. Then∣∣LT{d1,...,dr+1}(k
s)
∣∣ = 2r/2a .

Now, for any field k′ containing k, one defines LT{d1,...,dr+1}(k
′) similarly. Let J = Pic0(C)

denote the generalized Jacobian of the (possibly singular) complete curve C defined by the affine
equation y2 = f(x).
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Theorem 1.3. For any field k′ containing k, the group J [2](k′) acts on LT{d1,...,dr+1}(k
′) simply

transitively if a = 0 and transitively if a > 0.

As before, the case when N = 2n+ 2 is even is more interesting. In what follows, we write X
for a linear subspace of U and write PX for its projectivization. For any v ∈ U ⊗ ks, denote by
[v] the point of P(U)(ks) corresponding to the line spanned by v. As before, let C denote the
hyperelliptic curve defined by the affine equation y2 = f(x). Then C is smooth if and only if
the pencil is generic. When all the roots of f have multiplicity at most 2, the curve C is nodal.
Denote by pg the geometric genus of C, defined as the genus of the normalization C̃. As we will
see in Proposition 3.12, when pg = −1, the curve C is reducible and the base locus B contains
a unique Pn. When pg > 0, the base locus B contains no Pn and we define

F0 = {PX | dimPX = n− 1, PX ⊂ B} .

As in the odd case, we need to impose certain open conditions to obtain interesting relations
with the Jacobian of C. Consider

F = {PX ∈ F0 | [v] /∈ PX for all singular points [v] ∈ B} .

Bhosle [Bho90] proved that when C only has nodal singularities, F is isomorphic to the gener-
alized Jacobian of C over ks. Over the base field k, we have the following result.

Theorem 1.4. Suppose pg > 0 and that C only has nodal singularities. LetG be the disconnected
variety

G = Pic0(C) ∪̇F ∪̇ Pic1(C) ∪̇F ′ ,
where F ′ is a copy of F . There is a commutative algebraic group structure on G over k such that

1. G0 = Pic0(C) with component group G/G0 ' Z/4;

2. F ′ is isomorphic to F as varieties via the inversion map −1G;

3. the group law extends that on H = Pic(C)/ZD0 ' Pic0(C) ∪̇ Pic1(C), where D0 is the
hyperelliptic class.

Corollary 1.5. Over ks, one can take F0 as a compactification of the generalized Jaco-
bian Pic0(C).

We expect Theorem 1.4 to be true without the nodal condition on C. Let F̃ denote the torsor
of J(C̃) obtained from certain reductions (see Section 3) on the pencil L to the generic case.
Without the condition on C, we can prove the following result.

Theorem 1.6. Suppose pg > 0. Then there is a surjection F → F̃ . Over ks, the pre-image of

every point has a filtration with Ga- and Gm-factors. The kernel of the natural map J(C)→ J(C̃)
has a filtration with the same factors.

The theory of regular pencils is used in [BGW17] for the study of two-covers of Pic1(C).
As noted by Poonen and Schaefer in [PS97, footnote 2], it is not always enough to study only
unramified covers of the hyperelliptic curve C when studying 2-descent on its Jacobian when C
has no rational Weierstrass points; one also needs covers of C unramified away from the two
points above some fixed point on P1. Identifying these two points gives a nodal curve, and
regular pencils help in understanding two-covers for the generalized Jacobian of this nodal curve.

The paper is organized as follows. In Section 2, we focus on the case of generic pencils. We
first recall from [BG14] the results in the case when N is odd. We then study the case when N
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is even and prove Theorem 1.1. We finish with examples of special pencils in relation to the
applications in [BG13] and [SW18]. In Section 3, we perform the parallel analysis in the case of
regular pencils and prove Theorems 1.2–1.6.

2. Generic pencils

Let k be a field of characteristic not 2. Let Q1 and Q2 be two linearly independent quadratic
forms on a k-vector space U of dimension N . In this section, we study the general geometry of
the maximal isotropic subspaces with respect to both quadrics.

There are three equivalent ways to formulate this problem. We call the above formulation
the (Q1, Q2)-setup. Now, suppose that Q1 is non-degenerate. Let b1 and b2 denote the bilinear
forms corresponding to Q1 and Q2, respectively. More explicitly,

bi(v, w) =
1

2

(
Qi(v + w)−Qi(v)−Qi(w)

)
.

Let T : U → U be the unique operator such that for all v, w ∈ U ,

b2(v, w) = b1(v, Tw) . (2.1)

Note that T is self-adjoint with respect to b1 since b1 and b2 are symmetric.

To say that a linear subspace X is isotropic with respect to both Q1 and Q2 is the same as
saying

X ⊂ X⊥Q1 , TX ⊂ X⊥Q1 . (2.2)

Therefore, instead of starting with a pair of quadratic forms, we could have started with a non-
degenerate quadratic form along with a self-adjoint operator. We call this formulation the (Q1, T )-
setup.

Lastly, we could view Q1 and Q2 as quadrics in P(U) and take a pencil L = {xQ1 − yQ2 |
[x, y] ∈ P1} of quadrics in P(U). Let B = Q1 ∩ Q2 denote the base locus. The above problem
regarding common isotropic subspaces translates into studying the Fano variety of maximal linear
subspaces contained in the base locus. We call this formulation the (P(U),L)-setup.

We define the notion of generic in each of the three formulations. With the (Q1, Q2)-setup,
we require f(x) = (−1)N(N−1)/2 det(xA1 −A2) to have no repeated roots, where A1 and A2 are
Gram matrices for Q1 and Q2 with respect to the same choice of basis. With the (Q,T )-setup,
we require the characteristic polynomial fT (x) = det(xI − T ) of the self-adjoint operator T to
have no repeated roots. We will also assume that k has at least N + 1 elements, for otherwise
there might not exist a rational non-degenerate Q in the pencil. With the (P(U),L)-setup, we
require that the pencil L intersects the hypersurface of singular quadrics in P(H0(OPN−1(2)))
transversely. Equivalently, L contains precisely N singular quadrics over ks, all of which are
simple cones.

2.1 Odd dimension

We first consider the case when U has dimension N = 2n+1. Suppose that Q1 is non-degenerate.
Let C be the hyperelliptic curve of genus n defined by the affine equation

y2 = f(x) = (−1)n det(xA1 −A2) .

The isomorphism type of C over k is independent of the choice of the basis used for the Gram
matrices A1 and A2. Let J denote the Jacobian of C. Suppose that the pencil is generic and f(x)
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splits completely over ks. Let Q = Q1, and let T denote the corresponding self-adjoint operator.
Let WT denote the k-scheme of (linear) n-dimensional planes X ⊂ U such that X ⊂ X⊥ and
TX ⊂ X⊥.

The geometry over ks is well known using classical intersection theory [Don80, Section 1.2].
We thank Elkies for the following explicit description of the 22n elements of WT (ks). After
a change of basis over ks, one can assume that the two quadrics are given by

Q1(x) = x21 + x22 + · · ·+ x22n+1 ,

Q2(x) = c1x
2
1 + c2x

2
2 + · · ·+ c2n+1x

2
2n+1

for some pairwise distinct c1, . . . , c2n+1 ∈ ks. The following system of linear equations in D1, . . .,
D2n+1 has a 1-dimensional kernel:

D1 +D2 + · · ·+D2n+1 = 0 ,

c1D1 + c2D2 + · · ·+ c2n+1D2n+1 = 0 ,

...

c2n−11 D1 + c2n−12 D2 + · · ·+ c2n−12n+1D2n+1 = 0 .

Choose a basis (D1, . . . , D2n+1) for the kernel and note that Di 6= 0 for all i. For each i =
1, . . . , 2n + 1, let di be a square root of Di. Any choice of a system of square roots gives an
element of WT (ks) by taking

X = {(d1P (c1), . . . , d2n+1P (c2n+1)) | P is any polynomial of degree at most n− 1} .

Note that if (d1P (c1), . . . , d2n+1P (c2n+1)) = (d′1P
′(c1), . . . , d

′
2n+1P

′(c2n+1)), where di = ±d′i for
all i = 1, . . . , 2n+ 1 and P and P ′ are polynomials of degree at most n− 1, then either P + P ′

or P − P ′ vanishes on at least n+ 1 elements out of c1, . . . , c2n+1, implying that either P = P ′,
in which case di = d′i for all i, or P = −P ′, in which case di = −d′i for all i. This shows that
negating all of the di is the only way to produce the same n-plane. Hence we obtain 22n such
n-planes from the different choices of square roots.

The arithmetic aspect of the theory has been studied by Bhargava and Gross in [BG14]; we
list the results without proof. Consider the following two schemes over k:

Vf = {T : U → U | T is self-adjoint with respect to Q

with characteristic polynomial f} ⊂ A(2n+1)2 ,

Wf = {(T,X) ∈ Vf ×Gr(n,U) | X ⊂ X⊥ and TX ⊂ X⊥} .

Note that WT is the fiber of Wf above a fixed T . The group PO(U,Q) = O(U,Q)/(±1) acts on
Vf and Wf via

g.T = gTg−1, g.(T,X) =
(
gTg−1, gX

)
.

Proposition 2.1. Suppose that f(x) splits completely in ks with no repeated roots. Then the
action of PO(U,Q) on Vf has a unique geometric orbit. For any T ∈ Vf (k′) defined over some
field k′ over k, its stabilizer scheme Stab(T ) is isomorphic to ResL′/k′ µ2/µ2 ' J [2] as group
schemes over k′, where L′ = k′[x]/f(x).

For general Q, there might not be a self-adjoint operator defined over k with the prescribed
characteristic polynomial. For example, over R, operators self-adjoint with respect to a positive-
definite form have real eigenvalues. This is not a problem if Q is split, that is, if there exists
a linear space of dimension n over k isotropic with respect to Q.

364



Pencils of quadrics and hyperelliptic curves

Proposition 2.2. Suppose that f(x) splits completely in ks with no repeated roots. If Q is split
over k, then Vf (k) and Wf (k) are non-empty. Furthermore, there exists (T0, X0) ∈ Wf (k) with
trivial stabilizer in PO(U,Q)(ka), where ka denotes an algebraic closure of k.

Theorem 2.3. Suppose that k is separably closed of characteristic not 2, and suppose that f(x)
splits completely in ks with no repeated roots. Then PO(U,Q)(k) acts simply transitively on
Wf (k).

Corollary 2.4. Suppose that k is arbitrary of characteristic not 2, and suppose that f(x) splits
completely in ks with no repeated roots. If Wf (k) is non-empty, then PO(U,Q)(k′) acts simply
transitively on Wf (k′) for any field k′ over k.

Corollary 2.5. Suppose that k is arbitrary of characteristic not 2, and suppose that f(x) splits
completely in ks with no repeated roots. Let T ∈ Vf (k), and let J denote the Jacobian of the
hyperelliptic curve defined by y2 = f(x). Then WT is a torsor for J [2].

Remark 2.6. We now write down an explicit formula for the identification

J [2] ' Stab(T ) . (2.3)

We work over ks, and it will be clear that the map is Galois-equivariant. Denote the roots
of f(x) over ks by α1, . . . , α2n+1, and the Weierstrass point corresponding to the root αi by Pi
for i = 1, . . . , 2n + 1. Recall that J [2] is an elementary 2-group generated by the (Pi) − (∞)
with the only relation being that their sum is trivial. For each generator (Pi) − (∞), one looks
for a polynomial gi(x) such that gi(αi) = −1 and gi(αj) = 1 for all j 6= i. Then gi(T ) is the
image of (Pi)− (∞) in Stab(T ). The image does not depend on the choice of the polynomial gi
because any two choices differ by some multiples of f(x) and f(T ) = 0. More explicitly, we
define hi(x) = f(x)/(x− αi) and take

gi(x) = 1− 2
hi(x)

hi(αi)
.

In other words, on the level of ks-points, (2.3) is given by∑
((αi)− (∞)) 7→

∏(
1− 2

hi(T )

hi(αi)

)
= 1− 2

∑ hi(T )

hi(αi)
.

The summations and product are written without indices, meaning that the equality holds for
any (finite) collection of matching indices.

See Remark 2.29 for a different viewpoint of (2.3).

2.2 Even dimension

Next, consider the case when U has dimension 2n + 2. The projective formulation is easier to
work with in this case.

Let L = {xQ1 − yQ2 | [x, y] ∈ P1} be a rational generic pencil of quadrics in P2n+1 = P(U).
Rationality means that it is generated by two quadrics Q1 and Q2 defined over k. The cone
points of the 2n+ 2 singular quadrics are best understood in terms of the self-adjoint operator T
defined in (2.1), assuming that Q1 is non-degenerate. The quadric λQ1 − Q2 is singular if and
only if λ is an eigenvalue of T . If we denote a corresponding eigenvector by vλ, then the cone
point of λQ1 −Q2 is [vλ] ∈ P(U). In particular, the 2n+ 2 cone points span the entire P(U).

Since L is generic, the maximal (projective) dimension of any linear space contained in the
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base locus B is n− 1. Consider the following variety defined over k:

F = {PX | dim(PX) = n− 1, PX ⊂ B} .

The hyperelliptic curve C. For any rational generic pencil L, there is an associated hyperel-
liptic curve defined as follows.

For any quadric Q in P2n+1, one defines its Lagrangian variety by

LQ = {PY | PY ⊂ Q, dim(PY ) = n} ⊂ Gr(n,P(U)) .

We recall some facts about LQ; see also [Har92, Lecture 22]. When Q is smooth, LQ has two
connected components, also called the rulings of n-planes in Q. Two n-planes in Q lie in the
same ruling if and only if their intersection codimension is even. If Q is defined over some field k′,
its discriminant is defined by

disc(Q) = (−1)n+1 det(Q)k′×2 ∈ k′×/k′×2 .

The connected components of LQ are defined over k′(
√

disc(Q)). In other words, LQ(k′s) hits
both rulings, and the Gal(k′s/k′(

√
disc(Q)))-action on LQ(k′s) preserves the rulings.1 When Q

is singular, LQ has only one connected component.

Consider the variety

F̃ =
{

(xQ1 − yQ2,PY ) | [x, y] ∈ P1, PY ∈ LxQ1−yQ2

}
⊂ L×Gr(n,P(U)) .

There is an obvious projection map p1 : F̃ → P1. The fiber over [x, y] ∈ P1 is isomorphic to
LxQ1−yQ2 . Let

ε : F̃ → C , π : C → P1

denote the Stein factorization of p1. In other words, ε has connected fibers, while the fibers of π
correspond bijectively to the connected components of the fibers of p1. Hence C is a double cover
of P1 branched over the 2n + 2 points that correspond to the singular quadrics on the pencil.
A homogeneity analysis as in [Don80, Lemma 1.6] shows that C is smooth at the ramification
points. Hence C is a hyperelliptic curve of genus n parameterizing the rulings in the pencil. We
call C the hyperelliptic curve associated to the pencil. The Weierstrass points of C correspond
to the 2n + 2 points on P1 cut out by the binary form det(xQ1 − yQ2) of degree 2n + 2. The
curve C is isomorphic over k to the hyperelliptic curve defined by the affine equation

y2 = (−1)n+1 det(xQ1 −Q2),

canonically up to the hyperelliptic involution.

It was known to algebraic geometers [Rei72, DR76, Don80] that when k is separably closed,
F is isomorphic to J , the Jacobian of the curve C defined above. Therefore, it is natural to
expect that over a general field, F is a torsor of J .

1We give a proof of this fact. Let Q be a non-degenerate quadric in P2n+1 over k′. Then by diagonalization, we
may fix a basis {e1, . . . , e2n+2} with respect to which Q is given by the quadratic form a1x

2
1 + · · · + a2n+2x

2
2n+2.

The Lagrangian variety LQ of Q is the disjoint union of two irreducible components. An element in Gal(k′s/k′)
either fixes the components, or interchanges them. One may then take the isotropic (linear) (n + 1)-plane
Y = Span{(1/√a1)e1 + (1/

√
−a2)e2, . . . , (1/

√
a2n+1)e2n+1 + (1/

√
−a2n+2)e2n+2} and observe that an element

of Gal(k′s/k′) sends Y to an element in the same ruling if and only if it fixes an even number of the square
roots

√
a1,
√
−a2, . . . ,

√
a2n+1,

√
−a2n+2. The proof is now complete on noting that the discriminant of Q is

(−1)n+1a1 · · · a2n+2 = a1(−a2) · · · a2n+1(−a2n+2).
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A morphism τ : C ×F → F that will serve as subtraction. Given any pair (c,PX) ∈ C ×F ,
there is a unique n-plane PY containing PX in the ruling of the quadric defined by c. Let Q be
another quadric in the pencil. Since the base locus contains no n-planes, PY ∩ B = PY ∩ Q is
a quadric in PY containing PX. Hence PY ∩ B = PX ∪ PX ′ is the union of two possibly equal
(n− 1)-planes. We define τ(c,PX) to be PX ′. For any c ∈ C, define the involution τ(c) : F → F
by τ(c)PX = τ(c,PX).

We can write down a more explicit formula for τ as follows. Given any (c,PX) ∈ C × F ,
let PY denote the unique n-plane containing PX in the ruling of the quadric specified by c.
Since PY * Q, there exists p ∈ Y \X such that b(p, p) 6= 0, where b is the bilinear form associated
to Q. There is a linear map on U ⊗ ks given by reflection about p⊥Q , namely

reflp : v 7→ v − 2
b(v, p)

b(p, p)
p .

Then reflp(X) ⊂ Y is isotropic with respect to Q and we have

τ(c,PX) = P(reflp(X)) .

Our goal is to put a natural group structure on G = Pic0(C) ∪̇F ∪̇ Pic1(C) ∪̇F ′, where
F ′ is a copy of F as algebraic varieties. We do so by defining a simply transitive action of
H = Pic(C)/ZD0 on F ∪̇F ′, for then we can define +G as follows: for any x, x′ ∈ F ∪̇F ′,
[D], [D′] ∈ H,

1. [D] +G [D′] is the usual addition in H;

2. x+G [D] = x+ [D] is the image of x under the action of [D];

3. x+G x
′ is the unique element in H that sends −x′ to x.

An action of Div(C) on F ∪̇F ′. For any x ∈ F , write suggestively −x for the corresponding
element of F ′. We start from the following action of C on F ∪̇F ′:

PX + (c) = −τ(c)PX , −PX + (c) = τ(c)PX , (2.4)

where c 7→ c denotes the hyperelliptic involution. The second equality follows the idea that
τ : C × F → F serves as a subtraction, and the first equality was rigged so that divisors linearly
equivalent to the hyperellipitic class D0 act trivially. Lemma 2.7 allows one to extend this action
to the semi-group of effective divisors on C. Negating (2.4) then gives the extension to the entire
group of divisors.

Lemma 2.7. For any x ∈ F ∪̇F ′ and c1, c2 ∈ C,

(x+ (c1)) + (c2) = (x+ (c2)) + (c1) .

Proof. Unwinding the above definition, we need to prove that for any PX ∈ F and any c1, c2 ∈ C,

τ(c2)τ(c1)PX = τ(c1)τ(c2)PX .

As both sides are defined by polynomial equations, it suffices to prove this equality for generic PX,
c1, c2 over the algebraic closure; in particular, we may assume that no tangency is involved. This
is proved in [Don80, Proof of Decomposition Lemma 2.6, p. 232] by looking at the intersection

Span{PX, τ(c1)PX, τ(c2)PX} ∩B .

Theorem 2.8. The above action of Div(C) descends to a simply transitive action of H on F ∪̇F ′.
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Remark 2.9. First, note that +G is defined over k, because τ is defined over k. Moreover, from
the definition of the action of Div(C) on F ∪̇F ′, we see that [D] sends −x′ to x if and only if it
sends −x to x′. Hence +G is commutative.

Before proving Theorem 2.8, we give some concrete examples of +G in certain simple cases.

Example 2.10. Suppose n = 1. Then F is the variety of points in the intersection of two
generic quadrics in P3 and C is a genus 1 curve. Given two points PX,PX ′ ∈ F , let PY denote
the line passing through them. Then PY lies on a unique ruling on a unique quadric in the
pencil. Such data determines a point on C. Identifying C with Pic1(C) naturally gives the
map +G : F × F → Pic1(C).

Example 2.11. Now, suppose that n is general and PX,PX ′ ∈ F intersect in codimension 1.
Let PY = Span{PX,PX ′} denote their linear span. Then PY ' Pn. Let p be a point on PY \(PX∪
PX ′). There is a quadric Q in L containing p. Its intersection with PY contains two Pn−1 and
a point not on them. Hence Q contains the entire PY . Furthermore, since the pencil is generic,
the base locus contains no Pn. Hence PY is contained in the unique quadric Q in L and a unique
ruling on Q. Once again, such data determines a point on c ∈ C, and our group law says

PX +G PX ′ = (c) ∈ Pic1(C) .

Example 2.12. For any PX ∈ F , since B is a complete intersection,

TPXB = TPXQ1 ∩ TPXQ2 = P
(
X⊥Q1 ∩X⊥Q2

)
.

As Lemma 2.13 shows, TPXB has dimension at most n. If PX ∈ F is such that TPXB ' Pn, then
just as in the above example, TPXB lies on a unique ruling on a unique quadric in the pencil.
Such data determines a point c ∈ C, and our group law says

PX +G PX = (c) ∈ Pic1(C) .

As we will see in Example 2.27, for each Weierstrass point, there are 22n such PX for which
TPXB is isomorphic to Pn and is contained in the corresponding singular quadric.

Lemma 2.13. For a generic pencil L, we have dim(TPXB) 6 n.

Proof. Suppose, without loss of generality, that Q1 and Q2 are non-degenerate. As dim(X) = n,
it follows that dim(X⊥Qi ) = n+ 2 for i = 1, 2. Suppose, for a contradiction, dim(TPXB) > n+ 1.
Then X⊥Q1 = X⊥Q2 , and we denote this common linear (n+ 2)-plane by H. For any quadric Q
in the pencil, we have H ⊂ X⊥Q . Since the cone points span the entire P(U), there exists a cone
point [vλ] of a singular quadric Qλ ∈ L such that vλ /∈ H. Since Qλ descends to a quadratic form
on the 2-dimensional vector space H/X, there exists a vector v ∈ H\X such that Qλ(v) = 0.
Now,

Span{X, v, vλ} ⊂ U
is an (n + 2)-dimensional isotropic subspace with respect to Qλ. However, since Qλ is a simple
quadric cone, its maximal isotropic subspace has dimension n+1, so we have a contradiction.

We will prove Theorem 2.8 by proving the following three propositions.

Proposition 2.14. The group Div(C) acts transitively on F ∪̇F ′.

Proposition 2.15. The principal divisors act trivially on F ∪̇F ′. Since [D0] acts trivially, we
now have a transitive action of H on F ∪̇F ′.
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Proposition 2.16. If [D] ∈ H acts trivially, then [D] = 0.

Without loss of generality, we assume that k is algebraically closed. The following two lemmas
proved in [Don80] are crucial in proving these propositions.

Lemma 2.17 ([Don80, Lemma 2.6]). Suppose that PX,PX ′ ∈ F intersect at codimension r > 1.
There exists a unique effective divisor D of degree r such that

PX +D = PX ′ if r is even , PX +D = −PX ′ if r is odd .

In particular, there exists PX ′′ ∈ F intersecting PX at codimension 1 while intersecting PX ′ at
codimension r − 1.

Lemma 2.18 ([Don80, Lemma 3.2]). Suppose that D is an effective divisor with

h0(D) = dimH0(OC(D)) > 2 ,

where H0(OC(D)) = {f ∈ k(C) | D + div(f) > 0}. Then [D]− [D0] is also effective.

Proof of Proposition 2.14. It suffices to show that for any PX1,PX2 ∈ F , there exists an element
D ∈ Div(C) sending −PX1 to PX2. Let PX0 be an element of F such that TPX0B is an n-plane.
By Example 2.27, there are 22n such that PX0. Then by Example 2.12, there exists a point e ∈ C
such that −PX0 + (e) = PX0. We claim that for any PX ∈ F , there exists a divisor D ∈ Div(C)
sending −PX0 to PX. Indeed, we induct on the intersection codimension r of PX0 and PX. The
base case r = 0 is when PX = PX0, in which case D = (e) does the job. Suppose that the claim
is true for all PX ′ intersecting PX0 at codimension at most r−1, and suppose that PX intersects
PX0 at codimension r. By Lemma 2.17, there exists PX ′ ∈ F intersecting PX at codimension 1
while intersecting PX0 at codimension r − 1. By Example 2.11, there exists a point e′ ∈ C such
that (e) sends −PX ′ to PX. Let D′ ∈ Div(C) be a divisor sending −PX0 to PX ′. It is then easy
to see that the divisor (e)−D′ + (e′) does the job.

Now, suppose that PX1,PX2 ∈ F are arbitrary. Let D1 and D2 denote divisors sending −PX0

to PX1 and PX2, respectively. It is easy to see that the divisor D1 − (e) + D2 sends −PX1

to PX2.

Lemma 2.19. If D ∈ Div(C) fixes some x0 ∈ F ∪̇F ′, then D acts trivially.

Proof. This follows immediately from the transitivity of the action and the commutativity of
Div(C).

Lemma 2.20. If D and E are effective divisors of degree at most n and D − E = div(f) is a
principal divisor, then D − E acts trivially.

Proof. Applying Lemma 2.18 repeatedly to D, one obtains a unique effective divisor D1 with
h0(D1) = 1 and such that D and E are in the linear system D1 + 1

2(deg(D)− deg(D1))D0. Since
deg(D) 6 n, the set H0

(
OC
(
1
2(deg(D)− deg(D1))D0

))
consists entirely of functions pulled back

from P1. Hence D − E is a linear combination of divisors of the form (P ) + (P ), which all act
trivially on F ∪̇F ′ by construction.

In what follows, we fix a Weierstrass point ∞ of C (defined over ks).

Lemma 2.21. Suppose D = (P1) + · · ·+ (Pr)− r(∞) ∈ Div(C) with P1, . . . , Pr 6=∞ and r 6 n.
If D is linearly equivalent to E = (Q1) + · · · + (Qr′)− r′(∞) with Q1, . . . , Qr′ 6= ∞ and r′ 6 r,
then x+D = x+ E for all x ∈ F ∪̇F ′.
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Proof. Apply Lemma 2.20 to (P1) + · · ·+ (Pr) and (Q1) + · · ·+ (Qr′) + (r − r′)(∞).

Every divisor class [D] ∈ J = Pic0(C) can be represented by a divisor of the form (P1)+ · · ·+
(Pr)− r(∞) with P1, . . . , Pr 6=∞ and r 6 n. Lemma 2.21 says that two different representations
of [D] have the same action on F ∪̇F ′. Since deg(D) is even, it sends F to F . Hence we have
a morphism of varieties

α : J → Aut(F ) .

The image of α lies in a commutative subvariety of Aut(F ). Since J is complete and α([0]) = id,
rigidity [Mum70, II.4, pp. 40–41] implies that α is a group homomorphism.

Proof of Proposition 2.15. Let β : Div0(C)→ Aut(F ) denote the action map. To show that the
principal divisors act trivially, it suffices to show that β factors through α : J → Aut(F ). Since
both are group homomorphisms, it suffices to check

β((c)− (c′)) = α([(c)− (c′)])

for any c, c′ ∈ C. For any PX ∈ F ,

α([(c)− (c′)])(PX) = PX + (c) + (c′)− 2(∞)

= PX + (c)− (c′)

= β((c)− (c′))(PX) .

We now work toward the proof of Proposition 2.16. Given two elements x = ±PX and
x′ = ±PX ′ of F ∪̇F ′, we define their intersection codimension as the intersection codimension
of PX and PX ′ and write

codim(x, x′) = codim(PX,PX ′) .
In this notation, Lemma 2.17 can be stated as follows.

Lemma 2.22. Suppose x, x′ ∈ F or x, x′ ∈ F ′. Then there exists a unique effective divisor D of
degree r = codim(x, x′) such that

x+D = (−1)rx′ .

Lemma 2.23. Suppose that D is an effective divisor of degree r with 1 6 r 6 n. Then there
exists x ∈ F such that

codim(x, x+D) ≡ r (mod 2) .

There also exists x ∈ F ′ satisfying the same condition.

Proof. The case when r = 1 follows immediately from Example 2.11. Now, suppose r > 2.
Suppose, for a contradiction, that for all x ∈ F ,

codim(x, x+D) ≡ r − 1 (mod 2) . (2.5)

Consider the closed variety

Σ = {(x, c1, . . . , cr−1) | x ∈ F, ci ∈ C, x+D = −x+ (c1) + · · ·+ (cr−1)} ⊂ F × Symr−1(C) .

Denote the two projections to F and Symr−1(C) by π1 and π2, respectively. We claim that π1
is surjective. Indeed, let x be any element of F . Let r′ denote the intersection codimension of x
and x + D. Then r′ 6 r. By Lemma 2.22, there exists an effective divisor D′ of degree r′ such
that

x+D = (−1)r−r
′
(x+D′) .
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Assumption (2.5) says that r − r′ is odd for all x. Replacing D′ by D′ + (r − 1 − r′)(∞) shows
that π1 is surjective. Since dim(F ) = n and dim(Symr−1(C)) = r − 1 < n, there exists a fiber
of π2 of positive dimension. In other words, there exists a divisor D̃ of odd degree such that for
infinitely many x ∈ F ,

x+ D̃ = −x . (2.6)

Let D1 be a divisor such that 2D1 − (∞) is linearly equivalent to D̃. Since we have shown
that the principal divisors act trivially, (2.6) implies that for infinitely many x ∈ F ,

(x+D1) = −(x+D1) + (∞) .

Hence for infinitely many PX ∈ F ,

PX = τ(∞)PX .

However, as we will see in Example 2.27, there are only 22n such PX, so we have a contradiction.

The statement for F ′ follows from the same argument, which is the main reason why we have
used x to denote an element of F instead of the usual PX.

Proof of Proposition 2.16. Suppose that D = (P1) + · · · + (Pr) − r(∞) acts trivially on F
with P1, . . ., Pr 6=∞ and r 6 n minimal.

First, suppose that r = 2r′ is even. Then for all PX ∈ F ,

PX + (P1) + · · ·+ (Pr′) = PX + (P r′+1) + · · ·+ (P r) . (2.7)

By Lemma 2.23, there exists PX0 ∈ F such that

codim(PX0,PX0 + (P1) + · · ·+ (Pr′)) = r′′ ≡ r′ (mod 2) .

By the existence part of Lemma 2.17, there exist points Q1, . . . , Qr′′ ∈ C such that

PX0 + (P1) + · · ·+ (Pr′) = PX0 + (Q1) + · · ·+ (Qr′′) .

The divisor (Q1) + · · ·+ (Qr′′) + (Pr′+1) + · · ·+ (Pr)− (r′′ + r′)(∞) then fixes PX0 and so acts
trivially on F by Lemma 2.19. The minimality of r forces r′′ = r′. That is,

codim(PX0,PX0 + (P1) + · · ·+ (Pr′)) = r′ .

By the uniqueness part of Lemma 2.17, we have

(P1) + · · ·+ (Pr′) = (P r′+1) + · · ·+ (P r)

as effective divisors of degree r′. Therefore, D is principal.

Now, suppose that r = 2r′ + 1 is odd. Then for all PX ∈ F ,

PX + (P1) + · · ·+ (Pr′+1) = PX + (P r′+2) + · · ·+ (P r) + (∞) . (2.8)

Arguing just like in the even case, we see that the minimality of r implies that for some PX0 ∈ F ,

codim(PX0,PX0 + (P1) + · · ·+ (Pr′+1)) = r′ + 1 .

Then Lemma 2.17 implies

(P1) + · · ·+ (Pr′+1) = (P r′+2) + · · ·+ (P r) + (∞)

as effective divisors of degree r′ + 1. Therefore, D is principal.

We have completed the proofs of Propositions 2.14, 2.15, and 2.16. Before moving on to state
the main theorem, we describe a stronger form of Lemma 2.23 for completeness.
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Lemma 2.18 implies that if (P1)+· · ·+(Pr)−r(∞) and (Q1)+· · ·+(Qr)−r(∞), with r 6 n, are
two distinct divisors representing the same divisor class [D] ∈ J , then [D] can also be represented
by a divisor of the form (R1) + · · ·+ (Rr−2)− (r − 2)(∞). Hence if r is minimal among all such
representations of [D], there is a unique effective divisor D′ of degree r such that

[D′ − r(∞)] = [D] .

We call D′ the ∞-minimal form of [D].

Corollary 2.24. Let D′ be the ∞-minimal form of a non-zero divisor class [D]. Then there
exists x ∈ F such that

codim(x, x+D′) = deg(D′) .

There also exists x ∈ F ′ satisfying the same condition.

Proof. Let r denote the degree of D′. Lemma 2.23 allows us to pick an x ∈ F such that

codim(x, x+D′) =: r′ ≡ r (mod 2) .

By Lemma 2.22, there exists an effective divisor D′′ of degree r′ such that x + D′ = x + D′′.
Hence D′ − D′′ fixes x and by Lemma 2.19, D′ − D′′ acts trivially on F . By Proposition 2.16,
D′ is linearly equivalent to D′′. Since D′ is the ∞-minimal form of [D], we see that r′ = r.

The statement for F ′ follows from the same argument.

We now state our theorem in its complete form.

Theorem 2.25. Let G be the disconnected variety

G = Pic0(C) ∪̇F ∪̇ Pic1(C) ∪̇F ′ ,

where F ′ is a copy of F . There is a unique commutative algebraic group structure +G on G
over k such that

1. G0 = Pic0(C) with component group G/G0 ' Z/4;

2. F ′ is isomorphic to F as varieties via the inversion map −1G;

3. the group law extends that on H = Pic(C)/D0 ' Pic0(C) ∪̇ Pic1(C), where D0 is the
hyperelliptic class;

4. the group law defines a simply transitive action of H on F ∪̇F ′ extending the following
action of C:

PX + (c) = −τ(c)PX , −PX + (c) = τ(c)PX ,

with respect to which x +G x
′, for x, x′ ∈ F ∪̇F ′, is the unique divisor class sending −x

to x′.

Proof. The only thing left to check is the associativity, which amounts to the four equalities

[D1] +G ([D2] +G [D3]) = ([D1] +G [D2]) +G [D3] ,

x+G ([D2] +G [D3]) = (x+G [D2]) +G [D3] ,

x+G (x′ +G [D3]) = (x+G x
′) +G [D3] ,

x+G (x′ +G x
′′) = (x+G x

′) +G x
′′

for any [D1], [D2], [D3] ∈ H and any x, x′, x′′ ∈ F ∪̇F ′.
The first one is the associativity of the group law on H. The second follows from the definition

of the action of H. The third follows as both sides send −x to x′ + [D3]. For the fourth one,
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denote the two sides by xL and xR and add x′ to both sides. The third associativity tells
us x′ +G xL = (x′ +G x) +G (x′ +G x

′′) and likewise, xR +G x
′ = (x +G x

′) +G (x′′ +G x
′). The

commutativity of +G implies that these two elements of Pic0(C) are equal. Therefore, xL = xR
is the image of −x′ under the action of x′ +G xL = x′ +G xR.

Corollary 2.26. The class [F ] ∈ H1(k, J) is 4-torsion, twice of which is [Pic1(C)]. One can
lift [F ] to a torsor of J [4] by taking

F [4] := {PX ∈ F | PX +G PX +G PX +G PX = 0} .

When Pic1(C)(k) 6= ∅, the class [F ] is 2-torsion. For each [D1] ∈ Pic1(C)(k), we obtain a lift
of F to a torsor of J [2] by taking

F [2][D1] = {PX ∈ F | PX +G PX = [D1]} .

For the remainder of this section, we consider special cases where [D1] = (c) comes from a point c
on the curve C.

2.2.1 Example: Rational Weierstrass point

Example 2.27. Suppose that C has a rational Weierstrass point or, equivalently, that L has a
rational singular quadric. By moving this point to ∞, we assume that Q1 is singular with cone

point [v∞]. Let H = v
⊥Q2∞ be the hyperplane in U orthogonal to v∞ with respect to Q2. Then

τ(∞) is induced by the linear map on U that fixes H and sends v∞ to −v∞. Hence

F [2]∞ = {PX ∈ F | PX ⊂ B ∩ PH} . (2.9)

Notice that when restricted to the (2n+ 1)-dimensional vector space H, the two quadrics Q1

and Q2 span a generic pencil LH . Moreover, Q1|H is non-degenerate. Let T be the self-adjoint
operator on H associated to the pencil LH as defined in (2.1). Then the right-hand side of (2.9)
is precisely WT as defined in the odd-dimension case. Now J [2] acts on F [2]∞ via the action of
J on F and on WT via the identification J [2] ' StabPO(H,Q1|H)(T ). It is not a priori clear that
these two actions are the same, for the action of J on F is not induced by an action on the
underlying vector space. The following result says that these two actions in fact coincide.

Proposition 2.28. As J [2]-torsors, we have F [2]∞ = WT .

Proof. It suffices to show that for any (P ) − (∞) ∈ J [2](ks) with P a Weierstrass point, the
two actions are the same. Let α denote the root of f(x) corresponding to P , and set h(x) =
f(x)/(x − α). On WT (ks), by Remark 2.6, the action of (P ) − (∞) is induced by the following
map on H ⊗ ks:

x 7→ x− 2
h(T )

h(α)
x .

We now compute the action of (P )− (∞) on F [2]∞(ks). The singular quadric corresponding
to P is αQ1 − Q2. Let wP ∈ H ⊗ ks be an eigenvector of T with eigenvalue α. The cone point
of αQ1 − Q2 is [(wP , 0)]. Here, we have decomposed U ⊗ ks as H ⊕ U∞,T , where U∞,T is the
kernel of the degenerate quadric Q1. Let b denote the bilinear form associated to Q1, and let b1
denote the bilinear form associated to the restriction of Q1 to H. From the definition of τ earlier,
we see that the action of (P )− (∞) is induced by the following map on U ⊗ ks:

x 7→ x− 2
b(x, (wP , 0))

b((wP , 0), (wP , 0))
(wP , 0) .
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If we view each PX ∈ F [2]∞(ks) as sitting inside PH, then the action of (P ) − (∞) is induced
by the following map on H ⊗ ks:

x 7→ x− 2
b1(x,wP )

b1(wP , wP )
wP .

To prove Proposition 2.28, it remains to show that for any x ∈ H ⊗ ks, we have

h(T )

h(α)
x =

b1(x,wP )

b1(wP , wP )
wP .

Since both sides are killed by T − α, and since T has 1-dimensional eigenspaces, they are both
scalar multiples of wP . Now

b1

(
h(T )

h(α)
x,wP

)
= b1

(
x,
h(T )

h(α)
wP

)
= b1(x,wP ) = b1

(
b1(x,wP )

b1(wP , wP )
wP , wP

)
.

Therefore, they are the same scalar multiple of wP .

Remark 2.29. Equation (2.9) offers another viewpoint for the canonical identification of J [2] with
the stabilizer of a self-adjoint operator: they share a common principal homogeneous space. Fix
any k-rational T , and form the corresponding pencil of quadrics. Then J [2] acts on F [2]∞ simply
transitively and Stab(T ) acts on WT simply transitively. Identifying F [2]∞ and WT by Propo-
sition 2.28, we see from the definitions that these two actions commute. Fix some X0 ∈ F [2]∞;
one can define the map

ι : J [2]→ Stab(T )

by taking ι([D]), for any [D] ∈ J [2], to be the unique element of Stab(T ) sending X0 to X0 +[D].
The commutativity of the two actions and the commutativity of J [2] show that this map is
independent of the choice of X0. Proposition 2.28 then implies that ι is given by the map we
defined in Remark 2.6.

2.2.2 Example: Rational non-Weierstrass point

Example 2.30. Suppose that C has a rational non-Weierstrass point or, equivalently, that L
has a rational quadric with discriminant 1. By moving this point to infinity, we assume that
Q1 has discriminant 1. The two rulings of Q1 are then defined over k. Let Y0 denote one of the
rulings, and let ∞ ∈ C(k) denote the point corresponding to the quadric Q1 and the ruling Y0.
Denote by∞′ the conjugate of∞ under the hyperelliptic involution. Let T denote the self-adjoint
operator on U associated to the pencil L as defined in (2.1). The next result gives a geometric
interpretation for the torsor F [2]∞ of J [2].

Proposition 2.31.

F [2]∞ = {PX ∈ F | PX = τ(∞)PX} =
{
PX ' Pn−1 | Span{PX,P(TX)} ∼ Y0

}
.

The latter condition means that Span{PX,P(TX)} ' Pn is contained in Q1 in the ruling Y0.

Proof. First, suppose that PX is an (n− 1)-plane with Span{PX,P(TX)} ∼ Y0. We show PX ∈
F [2]∞. Indeed, since Span{PX,P(TX)} is isotropic with respect to Q1, we have TX ⊂ X⊥Q1

and hence PX ∈ F . Since Span{PX,P(TX)} ⊃ PX is an n-plane contained in Q1 in the ruling
Y0, we see that τ(∞)PX is the residual intersection of Span{PX,P(TX)} with Q2. Finally,
Span{PX,P(TX)} intersects Q2 tangentially at PX because

TX ⊂ TX⊥Q1 ⇒ TX ⊂ X⊥Q2 ⇒ TPXQ2 ⊃ Span{PX,P(TX)} .
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Therefore, PX ∈ F [2]∞.

Conversely, suppose PX ∈ F [2]∞. Let Span{PX, [p]} denote the n-plane contained in Q1 in
the ruling Y0, for some p ∈ U ⊗ ka. We show

Span{PX,P(TX)} = Span{PX, [p]} . (2.10)

Let b1 denote the bilinear form associated to Q1. Since τ(∞)PX = PX, we have the following
orthogonality conditions:

b1(x, p) = b1(x, Tp) = b1(p, p) = 0 ∀x ∈ X .

Since Span{PX, [p]} does not lie in the base locus, we have b1(p, Tp) = Q2(p) 6= 0. Hence Tp is
not orthogonal to p with respect to Q1, implying Tp /∈ Span{X, p}. However, as Tp ∈ X⊥Q1 , we
have

X⊥Q1 = Span{X, p, Tp} .
Since TX ⊂ p⊥Q1∩X⊥Q1 , we have TX ⊂ Span{X, p}. Hence to obtain the desired equality (2.10),
it remains to rule out the possibility TX ⊂ X. Suppose, for a contradiction, TX ⊂ X. Then X,
being T -stable, contains an eigenvector of T . Since T is regular semi-simple, its eigenvectors form
an orthogonal basis with respect to Q1. However, since Q1 is non-degenerate, we see that none
of the eigenvectors of T can be isotropic. We therefore have a contradiction.

In parallel to the odd-dimension case, Proposition 2.31 suggests fixing the monic polyno-
mial f(x) of degree 2n+2 having no repeated roots and splitting completely over ks, the quadratic
form Q1 of discriminant 1, and considering the following k-schemes:

Vf = {T : U → U | T is self-adjoint with characteristic polynomial f(x)} ,
Wf = {(T,X) ∈ Vf ×Gr(n,U) | Span{X,TX} ∼ Y0} .

Here Span{X,TX} ∼ Y0 means that Span{X,TX} is a linear (n + 1)-plane isotropic with
respect to Q1 lying in the ruling Y0. Let WT denote the fiber of Wf above T . Proposition 2.31
then says that F [2]∞ = WT as Gal(ks/k)-modules. In what follows, we show that WT is also
naturally a J [2]-torsor, where J is the Jacobian of the hyperelliptic curve C defined by the affine
equation y2 = f(x), and that F [2]∞ = WT as J [2]-torsors.

The group SO(U,Q1) preserves the rulings. Hence it acts on Wf via

g.(T,X) =
(
gTg−1, gX

)
.

Since the central (±1) acts trivially, we consider instead the action of the quotient PSO(U,Q1) =
SO(U,Q1)/(±1).

Proposition 2.32. The action of PSO(U,Q1) on Vf has a unique geometric orbit. For any
T ∈ Vf (k′) defined over some field k′ over k, its stabilizer scheme Stab(T ) is isomorphic to
(ResL′/k′ µ2)N=1/µ2 ' J [2] as group schemes over k′, where L′ = k′[x]/f(x).

Proof. We prove the second statement first. Fix any T in Vf (k′). Since T is regular semi-simple,
its stabilizer scheme in GL(Uk′) is a maximal torus. It contains, and hence is equal to, the
maximal torus ResL′/k′ Gm. For any k′-algebra K,

StabO(Uk′ ,Q1)(T )(K) = {g ∈ (K[T ]/f(T ))× | g∗g = 1}
= {g ∈ (K[T ]/f(T ))× | g2 = 1} .
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Hence

StabO(Uk′ ,Q1)(T ) ' ResL′/k′ µ2 ,

StabSO(Uk′ ,Q1)(T ) ' (ResL′/k′ µ2)N=1 ,

StabPSO(Uk′ ,Q1)(T ) ' (ResL′/k′ µ2)N=1/µ2 .

Suppose T1, T ∈ Vf (ks). There exists g ∈ GL(U)(ks) such that T1 = gTg−1. Since T1 and T
are both self-adjoint, g∗g centralizes T and hence lies in (ks[T ]/f(T ))×, which is a product
of ks× since f splits. Since the characteristic of k is not 2, there exists h ∈ (ks[T ]/f(T ))× such
that g∗g = h2. Then gh−1 is an element of O(U,Q1)(k

s) conjugating T to T1. Multiplying h
by (−1, 1, . . . , 1) ∈ (ks[T ]/f(T ))× if necessary, we may assume gh−1 ∈ SO(U,Q1)(k

s). Its image
in PSO(U,Q1)(k

s) does the job.

For general Q1, just like in the odd-dimension case, there might not be a self-adjoint operator
defined over k with the prescribed characteristic polynomial. The next result states that there is
no obstruction when Q1 is split.

Lemma 2.33. If Q1 is split over k, then both Vf (k) and Wf (k) are non-empty. Furthermore,
there exists (T0, X0) ∈Wf (k) with trivial stabilizer in PSO(U,Q1)(k

a).

Proof. The main idea is to find a model space for the quadratic space (U,Q1). Consider the
(2n+ 2)-dimensional étale k-algebra L = k[x]/f(x). Let β denote the image of x in L. Then {1, β,
β2, . . . , β2n+1} forms a basis for L. On L, there is the following bilinear form:

〈λ, µ〉 = Tr(λµ/f ′(β)) = coefficient of β2n+1 in λµ .

This form defines a split quadratic form Q0 since Y = Spank{1, β, . . . , βn} is a rational isotropic
subspace of dimension n + 1. Hence there exists an isometry from (L,Q0) to (U,Q1) defined
over k. Under this isometry, the multiplication-by-β operator maps to a self-adjoint operator,
denoted by T0, on L, while the n-plane X = Spank{1, β, . . . , βn−1} maps to an n-plane, denoted
by X0, in L. Then (T0, X0) ∈ Wf (k). Since (·β,X) has trivial stabilizer in PSO(L,Q0)(k

a), its
image (T0, X0) has trivial stabilizer in PSO(U,Q1)(k

a).

Theorem 2.34. Suppose that k is separably closed of characteristic not 2. Then PSO(U,Q1)(k)
acts simply transitively on Wf (k).

Proof. Proposition 2.32 shows that it suffices to prove that for the T0 ∈ Vf (k) obtained in
Lemma 2.33, the group Stab(T0)(k) acts simply transitively on WT0(k). Since (T0, X0) has trivial
stabilizer, it suffices to show that WT0(k) and Stab(T0)(k) have the same size. As a consequence
of Proposition 2.31, for any k, the set WT (ka) ' F [2]∞(ka) ' J [2](ka) has 22n elements for any
T . Hence we are done, because

22n = |(ResL/k µ2/µ2)N=1(k)| = |Stab(T0)(k)| 6 |WT0(k)| 6 |WT0(ka)| = 22n .

Corollary 2.35. Suppose that k is any field of characteristic not 2 and Wf (k) is non-empty.
Then PSO(U,Q1)(k

′) acts simply transitively on Wf (k′) for any field k′ over k.

Proof. It suffices to prove transitivity. Suppose that (T1, X1) and (T2, X2) are in Wf (k′). Let g ∈
PSO(U,Q1)(k

′s) be the unique element sending (T1, X1) to (T2, X2). Then for any σ∈Gal(k′s/k′),
the element σg also sends (T1, X1) to (T2, X2). Hence g = σg and so g ∈ PSO(U,Q1)(k

′) by
separable descent.
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Remark 2.36. One can write down an explicit formula for the identification

Stab(T ) ' (ResL/k µ2)N=1/µ2 ' J [2] . (2.11)

The method is the same as the odd case in Remark 2.6. Denote the roots of f(x) over ks

by α1, . . . , α2n+2, and for each i, define hi(x) = f(x)/(x − αi). Then on the level of ks-points,
(2.11) is given by sending∑

ni(αi)−
∑
ni

2
((∞) + (∞′)) ,

∑
ni even ,

to the image in PSO2n+2(k
s) of∏(

1− 2
hi(T )

hi(αi)

)ni
= 1− 2

∑
ni
hi(T )

hi(αi)
. (2.12)

Just as in Proposition 2.28, the map 1 − 2hi(T )/hi(αi) is a reflection and so has determinant
−1. The assumption that

∑
ni is even ensures that the product in (2.12) lies in SO.

Just as in the odd case, J [2] acts on F [2]∞ via the action of J and on WT via the identification
J [2] ' StabPSO(U,Q1)(T ). The following result says that these two actions coincide.

Proposition 2.37. As J [2]-torsors, F [2]∞ = WT .

Proof. It suffices to show that for any (P1)−(P2) ∈ J [2], where P1 and P2 are any two Weierstrass
points, the two actions are the same. Let αi denote the root of f(x) corresponding to Pi, and
set hi(x) = f(x)/(x− αi) for i = 1, 2. On WT (ka), by Remark 2.36, the action of (P1)− (P2) is
induced by the following map on U ⊗ ks:

x 7→ x− 2
h1(T )

h1(α1)
x− 2

h2(T )

h2(α2)
x .

For i = 1, 2, let wi ∈ U ⊗ ks be an eigenvector of T with eigenvalue αi. The cone point of
the singular quadric corresponding to Pi is then [wi]. Let b1 denote the bilinear form associated
to Q1. Then on F (ks), the action of τ(Pi) is induced by the following map on U ⊗ ka:

reflPi : x 7→ x− 2
b1(x,wi)

b1(wi, wi)
wi .

Composing two such reflections, we see that the action of τ(P1)τ(P2) is induced by the following
map on U ⊗ ka:

x 7→ x− 2
b1(x,w1)

b1(w1, w1)
w1 − 2

b1(x,w2)

b1(w2, w2)
w2 +

4b1(x,w1)b1(w1, w2)

b1(w1, w1)b1(w2, w2)
w2 .

Since self-adjoint operators have pairwise orthogonal eigenspaces, the last term is 0. Also as in
the proof of Proposition 2.28, for i = 1, 2,

hi(T )

hi(αi)
x =

b1(x,wi)

b1(wi, wi)
wi .

Therefore, the two actions are equal.

Remark 2.38. In parallel to the odd case, the equality F [2]∞ = WT as Gal(ks/k)-sets provides
a different viewpoint on the identification of J [2] with Stab(T ), as they share a common principal
homogeneous space. Proposition 2.37 implies that this new identification coincides with the
formula given by Remark 2.36.
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3. Regular pencils

For the rest of the paper, we focus on regular pencils. Let Ω1 denote the discriminant hyper-
surface in P(H0(OPN−1(2))) parameterizing singular quadrics, and let Ω2 denote the subvariety
parameterizing quadrics with higher degeneracy degree. Recall that a pencil L is generic if and
only if L is a generic line intersecting Ω1 transversely at N points and missing Ω2. A pencil is
regular if it misses Ω2 but is allowed to intersect Ω1 tangentially.

In the (Q1, T )-setup, where Q1 is non-degenerate and T is self-adjoint with respect to Q1,
regularity of the pencil is equivalent to regularity of T . An operator T is regular if and only
if its characteristic polynomial coincides with its minimal polynomial if and only if all of its
eigenspaces are 1-dimensional. Let f(x) = det(xI − T ) denote the minimal polynomial of T ; as
before, we assume that f(x) splits completely over ks.

The following reduction step is crucial to the study of the variety of maximal linear spaces
contained in the base locus over ks. Suppose, temporarily, that k is separably closed. Let U
denote the underlying N -dimensional k-vector space. Let v ∈ U denote an eigenvector of T
whose eigenvalue α has multiplicity at least 2, and write 〈v〉 for the line spanned by v. Since
v is an eigenvector and T is self-adjoint, T descends to a linear operator T on U = v⊥/〈v〉,
where ⊥ is taken with respect to Q1. The quadratic form Q1 descends to a non-degenerate
quadratic form Q1 on U with respect to which T is regular self-adjoint with minimal polynomial
f(x)/(x−α)2. Suppose N = 2n+ 1 or 2n+ 2. Let X be an n-plane in U such that X ⊂ X⊥ and

TX ⊂ X⊥. Define X to be the image of X ∩ v⊥ in v⊥/〈v〉. Then X ⊂ X⊥ and TX ⊂ X⊥. As we
will see in what follows, either v ∈ X or X * v⊥, and so dimX = n− 1. The strategy will be to
apply this reduction repeatedly until T becomes regular semi-simple, in which case one can use
the result in the previous section on generic pencils.

Factor f(x) as f(x) =
∏r+1
i=1 (x − αi)mi over ks. Let Ui,T denote the generalized eigenspace

over ks of T with eigenvalue αi, and let vi be an eigenvector of T with eigenvalue αi. Regularity
is equivalent to saying that each vi is unique up to scalars. The singular locus of B consists
precisely of all the [vi] with mi > 2. For any linear n-plane X such that X ⊂ X⊥ and TX ⊂ X⊥
and for each i = 1, . . . , r + 1, we define dimi,T (X) to be the dimension of the maximal T -stable
subspace of (X ⊗ ks)∩Ui,T . The generalized eigenspaces of T are pairwise orthogonal and so Q1

restricts to a non-degenerate quadratic form on Ui,T . Since each Ui,T is mi-dimensional, we have

dimi,T (X) 6 mi/2 .

For any sequence of integers d1, . . . , dr+1 such that 0 6 di 6 mi/2, we define for any field k′

containing k,

Lf,T{d1,...,dr+1}(k
′) =

{
X ' (k′)n | X ⊂ X⊥, TX ⊂ X⊥, dimi,T (X) = di

}
.

The superscript f is unnecessary, but it serves in making the reduction step clearer. Observe
that Lf,T{0,0,...,0}(k

′) is the set of k′-points of the variety of projective (n − 1)-planes contained in
the smooth locus of B.

3.1 Odd dimension

Suppose that N = 2n+1 is odd. For ease of notation, we write Q for the non-degenerate quadratic
form Q1. By multiplying Q by a constant, we also assume that Q has discriminant 1. Fix the
minimal polynomial f(x) of degree 2n+ 1. Let C be the hyperelliptic curve defined by the affine
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equation y2 = f(x). We define the k-scheme

Vf = {T : U → U | T is self-adjoint and regular with characteristic polynomial f(x)} .

Note that regularity is equivalent to requiring that there are no linear relations among 1, T , . . . ,
T 2n. The same argument as in the proof of Lemma 2.33 gives that Vf (k′) is non-empty for any
field k′ over which Q is split.

For every field k′ containing k and every T ∈ Vf (k′), let WT (k′) denote the set of (linear)
n-dimensional k′-subspaces X of U ⊗ k′ such that X ⊂ X⊥ and TX ⊂ X⊥. As before, we define

Wf (k′) = {(T,X) | T ∈ Vf (k′), X ∈WT (k′)} .

There is a Galois-equivariant action of PO(U,Q) = O(U,Q)/(±1) on Wf :

g.(T,X) =
(
gTg−1, gX

)
.

For any sequence of integers d1, . . . , dr+1 such that 0 6 di 6 mi/2, we define

W f
{d1,...,dr+1}(k

′) =
{

(T,X) | T ∈ Vf (k′), X ∈ Lf,T{d1,...,dr+1}(k
′)
}
.

The rest of the section is dedicated to proving the follow two theorems.

Theorem 3.1. Let a denote the number of di equal to mi/2. Then∣∣Lf,T{d1,...,dr+1}(k
s)
∣∣ = 2r/2a .

The action of PO(U,Q) preserves the decomposition of U ⊗ ks into generalized eigenspaces,
in the sense that

Ui,gTg−1 = gUi,T ∀T ∈ Vf (ks), ∀ g ∈ PO(U,Q)(ks), ∀ i = 1, . . . , r + 1 .

Hence one obtains a Galois-equivariant action of PO(U,Q)(ks) on W f
{d1,...,dr+1}(k

s).

Theorem 3.2. The group PO(U,Q)(ks) acts on W f
{d1,...,dr+1}(k

s) simply transitively if a = 0 and
transitively if a > 0.

Corollary 3.3. For any field k′ over k such that W f
{0,...,0}(k

′) is non-empty, PO(U,Q)(k′) acts

simply transitively on W f
{0,...,0}(k

′).

Proof. Given Theorem 3.2, the corollary follows by the same descent argument as in the proof
of Corollary 2.35.

We begin by studying the conjugation action of PO(U,Q) on Vf and computing the stabilizers.
This allows us to reduce Theorem 3.2 to two counting results: Theorems 3.1 and 3.6.

Proposition 3.4. The action of PO(U,Q) on Vf has a unique geometric orbit. For any T ∈ Vf (k′)
defined over some field k′ over k, its stabilizer scheme Stab(T ) is isomorphic to ResL′/k′ µ2/µ2 '
J [2] as group schemes over k′, where L′ = k′[x]/f(x). In particular, StabPO(U,Q)(T )(ks) is an
elementary abelian 2-group of order 2r, where r+ 1 is the number of distinct roots f(x) over ks.

Proof. The first statement follows in the same way as in the proof of Proposition 2.32, except
that now, ks[x]/f(x) is a product of algebras of the form ks[x]/(xmi). Every unit in ks[x]/(xmi)
is a square as char(k) 6= 2.

The second statement follows from the structure theory of finitely generated modules over
principal ideal domains. One can view U ⊗ k′ as a module over k′[x], with x acting via the
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operator T . The elements in GL(U)(k) commuting with T are precisely the automorphisms of
U as k′[x]-modules. Since T is regular, the structure theory of finitely generated modules over
principal ideal domains says that U ⊗ k′ is isomorphic to k′[x]/f(x) as a k′[x]-module. As a
module of k′[x] generated by the element 1, the automorphisms of U are precisely multiplication
by elements in (k′[x]/f(x))×. Then as in the proof of Proposition 2.32, we write ∗ for the operation
of taking adjoint with respect to Q, and we have

StabO(U,Q)(T )(k′) = {g(T ) | g ∈ k′[x], g(T )∗g(T ) = 1}
= µ2(k

′[T ]×) ,

StabPO(U,Q)(T )(k′) = µ2(k
′[T ]×)/(±1) .

For the last statement, from the factorization of f(x), we know

ks[x]/f(x) '
r+1∏
i=1

ks[x]/(x− αi)mi .

Hence StabO(U,Q)(T )(ks) ' (Z/2Z)r+1 is an elementary abelian 2-group of order 2r+1. Modding
out the diagonally embedded Z/2Z gives StabPO(U,Q)(T )(ks).

Remark 3.5. Just as in Remark 2.6, we can give a more explicit description for the stabilizer in
terms of polynomials in T . For each i = 1, . . . , r + 1, define hTi (x) = f(x)/(x− αi)mi . Then

µ2(k
s[T ]×) =

{∏
i∈I

(
1− 2

hTi (T )

hTi (αi)

)}
I⊂{1,...,r+1}

=

{
1− 2

∑
i∈I

hTi (T )

hTi (αi)

}
I⊂{1,...,r+1}

.

Note that for any I ⊂ {1, . . . , r + 1} and any j /∈ I, since (x− αj)mj divides hTi (x) in ks[x] and
(T − αj)mj kills the generalized eigenspace Uj,T , we see that

1− 2
∑
i∈I

hTi (T )

hTi (αi)

acts trivially on Uj,T .

For any T ∈ Vf (ks), its stabilizer JT in PO(U,Q)(ks) acts on Lf,T{d1,...,dr+1}(k
s). We rephrase

Theorem 3.2 as follows.

Theorem 3.6. Let a denote the number of di equal to mi/2. Then for any X ∈ Lf,T{d1,...,dr+1}(k
s),

|StabJT (X)| = 2a .

Theorem 3.2 follows from Theorems 3.1 and 3.6 because the size of each orbit is

|JT |/|StabJT (X)| = 2r/2a =
∣∣Lf,T{d1,...,dr+1}(k

s)
∣∣ .

We will prove Theorems 3.1 and 3.6 via a series of reductions to the case of generic pencils.

Reduction on d1, . . . , dr+1. Let X be any element of Lf,T{d1,...,dr+1}(k
s) with di > 1 for some i.

Let vi denote an eigenvector of T corresponding to αi. Since T is regular, vi is unique up to
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scaling. The assumption di > 1 then implies vi ∈ X. Let b denote the bilinear form associated
to Q. Note that we have vi ∈ v⊥i since there exists some v′i such that (T − αi)v′i = vi, and hence

b(vi, vi) = b(vi, (T − αi)v′i) = b((T − αi)vi, v′i) = 0 .

For any w ∈ v⊥i ,

b(vi, Tw) = b(Tvi, w) = b(αivi, w) = 0 .

Hence T descends to a linear map

T i : v
⊥
i /〈vi〉 → v⊥i /〈vi〉 =: U i .

The quadratic form Q descends to a non-degenerate quadratic form Qi with respect to which T i
is regular self-adjoint with characteristic polynomial f(x)/(x−αi)2. Note that this reduction can
be described projectively as intersecting the quadric defined by Q with the tangent plane to vi,
then projecting away from vi.

Since vi ∈ X and X is isotropic, we see X ⊂ v⊥i . Let Xi denote the image of X in U i. It is
immediate from the definition that Xi is (n− 1)-dimensional, satisfying

Xi ⊂ X
⊥Qi
i , T iXi ⊂ X

⊥Qi
i ,

and the dimensions of the maximal T i-stable subspaces in its intersection with the generalized
eigenspaces are d1, . . . , di − 1, . . . , dr+1. We denote this reduction step by

δi : L
f,T
{d1,...,dr+1}(k

s)
∼−−→ L

f/(x−αi)2,T i
{d1,...,di−1,...,dr+1}(k

s) .

Observe that δi is bijective with its inverse given by taking the pre-image of the projection
map v⊥i → v⊥i /〈vi〉.

How are the stabilizers affected by this reduction? If h(x) is any polynomial in ks[x], then
δ(h(T )X) = h(T i)Xi. Since δ is bijective, we conclude that h(T ) stabilizes X if and only if h(T i)
stabilizes Xi. Note that if mi > 3, then

hTi (x) =
f(x)

(x− αi)mi
=
f(x)/(x− αi)2

(x− αi)mi−2
= hT ii (x) .

Hence according to the explicit description given in Remark 3.5,

h(T ) ∈ JT ⇐⇒ h(T i) ∈ JT i ; hence | StabJT (X)| = | StabJTi
(Xi)| .

When mi = 2 and di = 1, we no longer have αi as an eigenvalue for T i. In this case,

JT =
〈
h(T ), 1− 2hi(T )/hi(αi) | h(T i) ∈ JT i

〉
.

Now Ui,T = Span{vi, v′i} with b(vi, v
′
i) 6= 0. Since vi ∈ X and X is isotropic, we have

X = Span{vi, X ∩ Span{Uj,T }j 6=i} .

Now 1 − 2hi(T )/hi(αi) sends vi to −vi and fixes every element in Span{Uj,T }j 6=i. Hence it
stabilizes X and so

|StabJT (X)| = 2
∣∣ StabJTi

(Xi)
∣∣ .

Note that this case is precisely when a decreases by 1 in this reduction step.

We summarize this reduction step in the following proposition.

Proposition 3.7. Suppose di > 1; then there is a bijection

δi : L
f,T
{d1,...,dr+1}(k

s)
∼−−→ L

f/(x−αi)2,T i
{d1,...,di−1,...,dr+1}(k

s) .
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When mi > 3, the map δi does not change the sizes of the stabilizers. When mi = 2, the map δi
lowers the sizes of the stabilizers by a factor of 2.

Reduction on f . By the above reduction step, it remains to study Lf,T{0,0,...,0}(k
s). We do so

by applying similar reduction steps to remove the repeated factors from f(x). Most of the proofs
in this subsection are purely linear algebra. We recommend the interested readers to prove these
linear algebra statements themselves.

Suppose that α is a root of f of multiplicity m > 2. Let X ∈ Lf,T{0,0,...,0}(k
s) be arbitrary. Let v

denote an eigenvector of T with eigenvalue α. As before, we can consider the descent to U =
v⊥/〈v〉. As in the above reduction step, Q descends to a non-degenerate quadratic form Q on U ,
and T descends to a regular self-adjoint operator T with characteristic polynomial f(x)/(x−α)2.

Observe that we have v /∈ X since X contains no T -stable subspace. Hence the map U →
U/〈v〉 is bijective when restricted to X. Consequently, X * v⊥, for otherwise the (2n − 1)-
dimensional vector space v⊥/〈v〉 would contain an n-dimensional isotropic subspace, which is
impossible. Now, X ∩ v⊥ has dimension n− 1, and we denote its bijective image in v⊥/〈v〉 by X.

Proposition 3.8. The above map sending X to X defines a surjection

Lf,T{0,0,...,0}(k
s) −−→ L

f/(x−α)2,T
{0,0,...,0} (ks) .

This map is bijective if m > 3 and is two-to-one if m = 2. In both cases,

|StabJT (X)| = |StabJT (X)| for any X ∈ Lf,T{0,...,0}(k
s) .

Proof. It is clear that X satisfies X ⊂ X⊥ and TX ⊂ X⊥. We claim that X contains no T -stable
subspace. Since X contains no T -stable subspace, the only T -stable subspace X could possibly
contain is the line spanned by v′+ 〈v〉, where v′ is an element of U with (T −α)v′ = v. Suppose,
for a contradiction, that X contains v′ + cv for some c ∈ ks. Then v = (T − α)(v′ + cv) ∈ X⊥,

contradicting X * v⊥. Hence X ∈ Lf/(x−α)
2,T

{0,0,...,0} (ks).

Next, we prove surjectivity, compute the sizes of the fibers, and compare the sizes of the

stabilizers. Suppose X ∈ Lf/(x−α)
2,T

{0,0,...,0} (ks). Let bα denote the bilinear form on U defined by

bα(u, u′) = b(u, (T − α)u′) .

The kernel of bα is 〈v〉. Hence bα descends to a non-degenerate bilinear form on the (2n)-
dimensional vector space U/〈v〉. Denote by ⊥α the operation of taking the perpendicular space
with respect to bα. Since X is (n−1)-dimensional, bα further descends to a non-degenerate bilin-

ear form on the 2-dimensional vector space X
⊥α
/X. There are then two 1-dimensional isotropic

lines. Denote by X1 and X2 their pre-images in X
⊥α

. The following lemma tells us how to “lift”
to Lf,T{0,...,0}(k

s).

Lemma 3.9. Let X be an element of L
f/(x−α)2,T
{0,0,...,0} (ks). Let w ∈ U be an element such that Xw :=

Span{w+ 〈v〉, X} is isotropic with respect to bα. Suppose, further, b(w, v) 6= 0. Then there exists

a unique Xw ∈ Lf,T{0,0,...,0}(k
s) such that the image of Xw under the map U → U/〈v〉 is Xw.

Proof. After scaling w, we assume b(w, v) = 1. Then w− 1
2b(w,w)v is the unique element of the

form w+ cv such that b(w+ cv, w+ cv) = 0. Hence by replacing w with w− 1
2b(w,w)v, we may
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assume b(w,w) = 0. As a consequence, any lift of Xw must contain w. The following n-plane is
then the only lift of Xw that is isotropic with respect to b:

Xw = Span{w, u− b(w, u)v}u+〈v〉∈X ⊂ U .

It is easy to see that we have (T −α)Xw ⊂ Xw⊥. Since w /∈ v⊥, the n-plane Xw does not contain

v and so contains no non-zero T -stable subspace. Hence Xw ∈ Lf,T{0,0,...,0}(k
s).

We first consider the case when m > 3. Let v′′ be an element of U such that (T − α)v′′ = v′.
Then

bα(v′, v′) = b(v′, v) = b((T − α)v′′, v) = b(v′′, (T − α)v) = 0 .

Hence we may assume, without loss of generality, X1 = Span{v′+ 〈v〉, X} ⊂ v⊥/〈v〉. Let w be an
element of U such that X2 = Span{w + 〈v〉, X}. Since Span{X1, X2} has dimension n+ 1, it is
not isotropic with respect to bα. Hence bα(w, v′) = b(w, v) 6= 0. After scaling w, we may assume
b(w, v) = 1. Since b(v′, v) = 0, we cannot hope to lift X1 to some X * v⊥. Lemma 3.9 implies
that X2 admits a unique lift. This proves the surjectivity.

Now, suppose that X ′ ∈ Lf,T{0,...,0}(k
s) maps to X. Then the image of X ′ in U/〈v〉, denoted by

X ′/〈v〉, is an n-plane isotropic to bα, contains X, and is bα-orthogonal to X. Since it does not
contain v′ + 〈v〉, we conclude that X ′/〈v〉 = X2. The uniqueness part of Lemma 3.9 then shows
that the fibers have size 1.

Just as in the previous reduction step, when m > 3, the stabilizers JT and JT consist of
elements that are represented by the same set of polynomials in T and T . It is clear that if
g(T ) stabilizes X, then g(T ) stabilizes X. Conversely, if g(T ) stabilizes X, then g(T ) sends X
to another n-plane that also maps to X. Since there is only one such n-plane, we conclude that
g(T ) also stabilizes X. Hence |StabJT (X)| = |StabJT (X)|.

We now deal with the casem = 2. WriteX1 = Span{w1+〈v〉, X} andX2 = Span{w2+〈v〉, X}
for some w1, w2 ∈ U . We claim w1 /∈ v⊥ and likewise w2 /∈ v⊥. Suppose, for a contradiction,
w1 ∈ v⊥; then X1 ⊂ v⊥/〈v〉. When m = 2, the quotient v⊥/〈v〉 is the orthogonal (with respect
to b) direct sum of all the generalized eigenspaces not containing v and v′. Since T − α acts
invertibly on generalized eigenspaces not containing v and v′, we see that bα descends to a non-
degenerate bilinear form on v⊥/〈v〉. However, X1 is isotropic of dimension n while v⊥/〈v〉 has
dimension 2n− 1, so we have a contradiction.

We may now apply Lemma 3.9 to Xw1 = X1 and Xw2 = X2 to obtain two unique lifts Xw1

and Xw2 . Hence we have proved the surjectivity and showed that the fibers have size 2.

Regarding stabilizers, we are in the situation where compared to JT , the group JT has an
extra generator h0(T ) = 1 − 2h(T )/h(α), where h(x) = f(x)/(x − α)2. This extra generator
fixes all the generalized eigenspaces not containing v. Hence h0(T )X equals X, and a simple
computation shows that h0(T )X switches X1 and X2. If g(T ) stabilizes X, then either g(T )
stabilizes Xw1 , or it sends Xw1 to Xw2 , in which case g(T )h0(T ) stabilizes Xw1 . Therefore, the
sizes of the stabilizers remain unchanged.

Corollary 3.10. We have |Lf,T{0,0,...,0}(k
s)| = 2r, and every element has trivial stabilizer in JT .

Proof. This follows from induction on the degree of f and the classical result on generic intersec-
tion in odd dimension recalled in Section 2.1. We write out the proof slightly differently from an
induction argument so we can point out the differences between the contributions coming from
roots of f with odd multiplicity and the contributions from roots with even multiplicity. Rewrite
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the factorization of f(x) as

f(x) =

s1+1∏
i=1

(x− βi)2ni+1
s2∏
j=1

(x− β′j)
2n′j ,

where each βi is a root of f(x) of odd multiplicity and each β′j is a root of even multiplicity.
Since f(x) has odd degree, we know s1 > 0 and s1 +s2 = r. Applying Proposition 3.8 repeatedly,
one obtains the sequence of maps

Lf,T{0,0,...,0}(k
s)

1 to 1−−−−→ L
∏
i(x−βi)·

∏
j(x−β′j)2,T ′

{0,0,...,0} (ks)
2s2 to 1−−−−−→ L

∏
i(x−βi),T ′′
{0,0,...,0} (ks) .

The last set has 2s1 elements with trivial stabilizers, by the theory of generic pencils. Applying
Proposition 3.8 again, one concludes that every element in Lf,T{0,0,...,0}(k

s) has trivial stabilizer as

well. The above diagram shows
∣∣Lf,T{0,0,...,0}(ks)∣∣ = 2s1+s2 = 2r.

Proof of Theorems 3.1 and 3.6. Applying Proposition 3.7 repeatedly gives a bijection

Lf,T{d1,...,dr+1}(k
s)

∼−−→
δ

L
∏
i(x−αi)mi−2di ,T ′

{0,0,...,0} (ks)

such that for any X ∈ Lf,T{d1,...,dr+1}(k
s),

|StabJT (X)| = 2a|StabJT ′ (δ(X))| .

This proves Theorem 3.6. The polynomial g(x) =
∏
i(x− αi)mi−2di has r + 1− a distinct roots;

hence applying Corollary 3.10 to g completes the proof of Theorem 3.1.

3.2 Even dimension

Now, suppose that U has dimension N = 2n + 2 for n > 1. As above, suppose that Q = Q1

is non-degenerate, and denote by T the associated self-adjoint operator on U . Let ⊥ denote
the operation of taking perpendicular spaces with respect to Q. As in Section 2.2, let C be
the (possibly singular) hyperelliptic curve parameterizing the rulings in the pencil. Then C is
isomorphic over k, not canonically, to the hyperelliptic curve defined by

y2 = (−1)n+1 det(Q) det(xI − T ) .

The geometric genus pg of C is defined to be the genus of its normalization C̃. Let Csm denote
the smooth locus of C.

Lemma 3.11. Suppose n > 0. If W is an (n+ 1)-dimensional subspace of U ⊗ ks isotropic with
respect to Q1 and Q2, then W is T -stable.

Proof. Since Q is non-degenerate, we have W = W⊥Q . Then TW ⊂W⊥Q = W .

Proposition 3.12. The base locus B contains no Pn if and only if pg > 0. When C is reducible
or, equivalently, pg = −1, the base locus B contains a unique Pn.

Proof. Without loss of generality, assume that k is algebraically closed. Suppose that B con-
tains PW for some (n+ 1)-dimensional subspace W of U . Lemma 3.11 implies that W contains
an eigenvector v of T . Since W is isotropic, the eigenvalue of v has multiplicity at least 2. One
can now reduce the problem to U = v⊥/〈v〉 and the n-dimensional subspace W = W/〈v〉. Apply
Lemma 3.11 and reduce repeatedly until dimU = 2 and dimW = 1. Applying Lemma 3.11
again, we see that T has a repeated eigenvalue and hence that all the generalized eigenspaces
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of T have even dimension, which implies that C is reducible. When C is reducible, W is the
unique 1-dimensional eigenspace of T , thus proving uniqueness. Existence follows from running
the argument backward.

Let F0 denote the following variety over k:

F0 = {PX | dimPX = n− 1, PX ⊂ B} .

In view of the Section 3.1 and Example 2.30, we impose an open condition and look at the
following variety:

F = {PX ∈ F0 | Span{X,TX} has no non-zero T -stable subspace} . (3.1)

Lemma 3.13. Suppose pg > 0. Then

F = {PX ∈ F0 | X * v⊥ for all singular points [v] ∈ B}
= {PX ∈ F0 | [v] /∈ PX for all singular points [v] ∈ B} .

Proof. Suppose PX ∈ F . Let [v] be any singular point of B. Since v is an eigenvector, v /∈ X.
Suppose, for a contradiction, X ⊂ v⊥. Then P(Span{X, v}) is a Pn contained in B, contradicting
Proposition 3.12. Hence X * v⊥.

Conversely, suppose PX ∈ F0\F . Then v ∈ Span{X,TX} for some eigenvector v of T . SinceX
is isotropic with respect to every quadric in the pencil, we have v ∈ Span{X,TX} ⊂ X⊥. Hence
X ⊂ v⊥.

For the second equality, first suppose X ⊂ v⊥ for some singular [v] ∈ B. Suppose, for
a contradiction, v /∈ X. Then after reducing to v⊥/〈v〉, the quotient (X ∩ v⊥)/〈v〉 has dimension
n, which contradicts Proposition 3.12. Hence v ∈ X. Conversely, if v ∈ X, then X ⊂ v⊥ since X
is isotropic.

Remark 3.14. The main reason why F was defined as in (3.1) instead of the more conceptual
definitions in Lemma 3.13 is that there is still some interesting geometry when pg = −1, as we
will see toward the end of the paper, in which case (3.1) is the more appropriate definition.

As in the generic case, we work toward putting a group law on the disconnected variety

G = Pic0(C) ∪̇F ∪̇ Pic1(C) ∪̇F ′ ,

where F ′ is a copy of F . In what follows, we assume pg > 0. Since the base locus contains no Pn,
one can define τ : C × F0 → F0 as in the generic case.

Lemma 3.15. The map τ restricts to a morphism Csm × F → F .

Proof. Recall that given a pair (c,PX) ∈ Csm×F , there is a unique PY ' Pn in the quadric and
the ruling defined by c such that PX ⊂ PY ; then τ(c,PX) is the residual intersection of PY with
the base locus. The claim here is τ(c,PX) ∈ F . Suppose, for a contradiction, PX ′ := τ(c,PX) ∈
F0\F . Then by Lemma 3.13, there exists a singular point [v] ∈ B such that v ∈ X ′. Since X and
X ′ intersect at codimension 1 and v /∈ X, we see that

PY = Span{PX, τ(c,PX)} = Span{PX, [v]} .

Let α denote the eigenvalue of v. Then since PX is isotropic with respect to every quadric in the
pencil and v is in the kernel of the quadric Qα, we see that PY lies in Qα. Hence c = (α, 0) /∈ Csm.
We therefore have a contradiction.
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As in the generic case, one obtains an action of Csm on F ∪̇F ′:

PX + (c) = −τ(c)PX , −PX + (c) = τ(c)PX . (3.2)

This action extends to an action of Div(Csm) on F ∪̇F ′. To show that this descends to a simply
transitive action of Pic0(C), we assume k = ka and work over the algebraic closure. Let v be
an eigenvector with eigenvalue α of multiplicity m > 2. As usual, let (U,Q) denote the 2n-
dimensional quadratic space v⊥/〈v〉, and let T denote the descent of T to U . Let C denote the
(possibly singular) hyperelliptic curve

y2 = disc(Q) det(xI − T ) = disc(Q) det(xI − T )/(x− α)2 .

Note that C → C is a partial normalization of C. There is a natural inclusion ι : Csm ↪→ C
sm

.
Define B, F , and F 0 analogously to B, F , and F0. Let PX be any element of F . Write, as before,
X = (X ∩ v⊥)/〈v〉. Lemma 3.13 implies that X has the correct dimension. It is clear then that
X ∈ F 0.

Lemma 3.16. The subspace Span{X,TX} has no non-zero T -stable subspace.

Proof. Note that this is immediate when C has only nodal singularities, for this reduction step
kills the α-generalized eigenspace and leaves the rest unchanged. In general, by Lemma 3.13, it
suffices to show that X does not contain any singular point of B. Let v′ ∈ U be such that (T −
α)v′ = v. Suppose, for a contradiction, that X contains v′+〈v〉. Then v′+cv ∈ X for some c ∈ ks.
(Note that this can only happen if m > 4.) Hence v = (T − α)(v′ + cv) ∈ X⊥, contradicting
PX ∈ F by Lemma 3.13. Since the reduction step does not touch all the other generalized
eigenspaces, we see that X does not contain any singular point of B.

Denote this reduction step by δv : F → F . We now have the following commutative diagram:

Csm × F

ι×δv
��

// F

δv
��

C
sm × F // F .

The natural map C → C induces a map J(C)→ J(C) on the Jacobians with kernel either Gm if
m = 2, or Ga if m > 3. We now show that δv is surjective and that the pre-image of every point
is isomorphic to ker(J(C) → J(C)). Let bα denote the bilinear form bα(u, u′) = b(u, (T − α)u′)
on U , and let ⊥α denote the operation of taking the perpendicular space with respect to bα. Fix
any X ∈ F . The bilinear form bα descends to a non-degenerate form on the (2n+ 1)-dimensional
space U/〈v〉. Inside this space, we have

dimX
⊥α
/X = 3 ,

dim(X
⊥α ∩ v⊥)/X = 2 .

In other words, bα defines a smooth conic C0 in P2 = P(X
⊥α
/X) and l = P((X

⊥α ∩ v⊥)/X) is
a line intersecting the conic at either one point or two points. The same argument as in Lem-
ma 3.9 shows that every element in C0\l admits a unique lift to an element of F . Our next result
gives the characterization for the intersection behavior between C0 and l.

Lemma 3.17. The line l intersects C0 tangentially if and only if m > 3, in which case the point
of intersection is [v′ + 〈v〉+X], where v′ ∈ U is such that (T − α)v′ = v.
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Proof. Suppose that l intersects C0 at a point w+〈v〉+X. To say that l intersects C0 tangentially
at w + 〈v〉+X is equivalent to saying

w + 〈v〉 ∈ X⊥α , bα(w,w) = 0 , w⊥α ∩X⊥α = v⊥ ∩X⊥α . (3.3)

Since ((v⊥ ∩X⊥α)⊥α ∩X⊥α)/X is the line spanned by v′ + 〈v〉 + X, we see that the first and
third conditions in (3.3) combined are equivalent to w + 〈v〉 + X = v′ + 〈v〉 + X up to scaling.
Finally, bα(v′, v′) = b(v′, v) = 0 if and only if m > 3.

Therefore, we have proved the following proposition.

Proposition 3.18. The map δv : F → F is surjective. The fibers are isomorphic to either (a conic
minus a point ') Ga when m > 3, or (a conic minus two points ') Gm when m = 2. The kernel
of the map J(C)→ J(C) has the same property.

One can now apply this reduction with any singular point of B and so on. For each i such
that mi > 2, let vi,1 denote an eigenvector of T with eigenvalue αi of multiplicity mi, and let
vi,j be such that (T − αi)vi,j = vi,j−1 for j = 2, . . . , b(mi − 1)/2c. Let V denote the linear span
of all such vi,j . The above reduction will terminate at the (2pg + 2)-dimensional vector space

Ũ = V ⊥/V . The data (Q,T ) descends to (Q̃, T̃ ) on the (2pg + 2)-dimensional vector space

Ũ = V ⊥/V , with T̃ regular semi-simple. Let F̃ denote the variety of (linear) pg-dimensional

common isotropic subspaces X̃ contained in Ũ . Let δ : F → F̃ denote the composite of all the
reductions. The associated smooth hyperelliptic curve C̃ is the normalization of C. Note that if k
is arbitrary, then V is defined over k and so is the composite map δ. We summarize the above
discussion into the following.

Theorem 3.19. Suppose pg > 0 and that k is algebraically closed. Then:

1. The map δ : F � F̃ is surjective. The pre-image of every point has a filtration with Ga-
and Gm-factors. The kernel of the natural map J(C)→ J(C̃) has a filtration with the same
factors.

2. There is an action of Div0(Csm) on F that descends to the simply transitive action of J(C̃)
on F̃ .

For the purpose of putting a natural group law on G = Pic0(C) ∪̇F ∪̇ Pic1(C) ∪̇F ′, it re-
mains to show that the action of Div(Csm) on F ∪̇F ′ descends to a simply transitive action of
Pic(C)/ZD0 on F ∪̇F ′. Once again, we pass to the algebraic closure and use the same formal
argument as in the generic case. We list the “non-formal” steps one needs to carry out in the
regular case:

1. Prove Lemma 2.18, which allows one to define the ∞-minimal form of a divisor class [D] ∈
J(C) and hence a morphism ϕ : J → Aut(F ). Here we need to assume that C has a smooth
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Weierstrass point. This is equivalent to requiring that f(x) has a simple root, or equivalently,
pg > 0.

2. Show that ϕ is a group homomorphism, to conclude that principal divisors supported on
Csm act trivially on F ∪̇F ′.

3. Prove the existence part of Lemma 2.17, to conclude that the action of J on F is transitive.

4. Prove the uniqueness part of Lemma 2.17, to conclude that the action is simply transitive.

Lemma 2.18 still holds in the singular case because the Riemann–Roch theorem holds in
the singular case [Har77, IV.1, Exercise 1.9]. Suppose that C has a smooth Weierstrass point
∞. Note that if C only has nodal singularity and pg > 0, then C has a smooth Weierstrass
point. Every class [D] ∈ J(C) has a ∞-minimal form [D′− r(∞)], where D′ is effective of degree
r 6 n, supported on Csm, and h0(D′) = 1. This allows us to define a morphism of varieties
ϕ : J → Aut(F ). The image of ϕ lies in a commutative subvariety of Aut(F ).

We now specialize to the case when C only has nodal singularities, so J is an extension of an
abelian variety J̃ of dimension pg by a torus S of dimension n− pg.

Lemma 3.20. The map ϕ is a morphism of algebraic groups.

Proof. The proof is very similar to the proof that a morphism between semi-abelian varieties
mapping the identity to the identity is a group homomorphism. Without loss of generality, we may
work over the algebraic closure. For any s ∈ S, its image in J̃ is 0 and so by part 2 of Theorem 3.19,
it acts on the fibers of the map δ : F → F̃ . For any a ∈ J , we define ϕa : S → Aut(F ) by

ϕa(s) = ϕ(a)ϕ(s)ϕ(as)−1 .

Fix any x ∈ F . Let S′x denote the fiber of δ over δ(x). Then S′x is a torus by setting x as the
origin. For any a ∈ J and any s ∈ S, we have δ(x) = δ(ϕa(s)(x)) by part 2 of Theorem 3.19. We
have then defined a map ϕa,x : S → S′ between tori sending s to ϕa(s)(x). Since ϕa,x sends the
origin of S to the origin x of S′x, we see that ϕa,x is a group homomorphism. Letting a vary, one
obtains a map Φx : J → Hom(S, S′x) sending a to ϕa,x. Since J is connected and Hom(S, S′x) is
discrete, Φx is constant. Hence for any a ∈ J , the map Φx(a) = Φx(0) is the trivial map S → S′x.
Letting x vary, we have proved that

ϕ(a)ϕ(s) = ϕ(as) ∀ a ∈ J , s ∈ S . (3.4)

Now, fix a ∈ J and view ϕa as a morphism J → Aut(F ). Since ϕa vanishes on S by (3.4),
we descend ϕa to a morphism J̃ → Aut(F ). Once again by part 2 of Theorem 3.19, fixing any
x ∈ F , ϕa(a

′) acts on the fiber over δ(x) for any a′ ∈ J̃ . Hence we have a morphism ϕa,x : J̃ → S′x,

sending a′ to ϕa(a
′)(x), which is trivial since J̃ is an abelian variety and S′x is a torus. Letting x

vary, one sees that ϕa is trivial. Letting a vary gives the desired result.

As in the proof of Proposition 2.15, we have shown that principal divisors supported on Csm

act trivially on F ∪̇F ′. Next, we show the transitivity of this action. Since Div(Csm) also acts
on F0 ∪̇F ′0 and F ∪̇F ′ is open in F0 ∪̇F ′0, by taking the Zariski closure, one sees that principal
divisors supported on Csm act trivially on F0 ∪̇F ′0. Since being supported on Csm is also an open
condition, one also has that principal divisors on C act trivially on F0. The existence part of
Lemma 2.17 can be applied to F0 since the defining map C → P1 admits no section. As a result,
given x, x′ ∈ F , view them as in F0, where there exists an effective divisor D ∈ Div(C) such that
x + D = ±x′. Let D′ be a divisor supported on Csm linearly equivalent to D. Since principal
divisors on C act trivially, x + D′ = x + D = ±x′. Transitivity then follows from the formal
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argument in the proof of Proposition 2.14. Note that here, the existence of a smooth Weierstrass
point is needed because we need to know that there exists PX0 ∈ F such that TPX0B ' Pn.

The uniqueness part of Lemma 2.17 also holds for F0. The argument in [Don80] works since
there is no injective map from P1 to C when the arithmetic genus n of C is at least 1. The same
formal argument in the generic case then implies that only principal divisors act trivially. Once
again, the existence of a smooth Weierstrass point ∞ is also needed, for we need the analog of
Example 3.24 to know that there are finitely many elements of F fixed by τ(∞). By combining
this with all the formal arguments in Section 2.2, we have now finished putting a natural group
law on G = Pic0(C) ∪̇F ∪̇ Pic1(C) ∪̇F ′.

Theorem 3.21. Suppose pg > 0 and that C only has nodal singularities. Let G be the discon-
nected variety

G = Pic0(C) ∪̇F ∪̇ Pic1(C) ∪̇F ′ ,
where F ′ is a copy of F . There is a commutative algebraic group structure +G on G over k such
that

1. G0 = Pic0(C) with component group G/G0 ' Z/4;

2. F ′ is isomorphic to F as varieties via the inversion map −1G;

3. the group law extends that on H = Pic(C)/ZD0 ' Pic0(C) ∪̇ Pic1(C), where D0 is the
hyperelliptic class;

4. the group law defines a simply transitive action of H on F ∪̇F ′ extending the following
action of Csm:

PX + (c) = −τ(c)PX , −PX + (c) = τ(c)PX ,

with respect to which x +G x
′, for x, x′ ∈ F ∪̇F ′, is the unique divisor class sending −x

to x′.

The following result is immediate from Theorem 3.21 and Theorem 3.19.

Corollary 3.22. Suppose pg > 0 and that C only has nodal singularities. Then the short exact
sequence

1→ S → J(C)→ J(C̃)→ 1

extends to a short exact sequence

1→ S → G→ G̃→ 1 ,

where G = Pic0(C) ∪̇F ∪̇ Pic1(C) ∪̇F ′ and G̃ = Pic0(C̃) ∪̇ F̃ ∪̇ Pic1(C̃) ∪̇ F̃ ′ are the correspond-
ing disconnected groups of four components.

Now, over the algebraic closure, after identifying F with J(C), one can obtain a compacti-
fication of J(C) by taking F0. Recall that for any singular [v] ∈ B, we have the reduction map
δv : F0 → F 0. Note that this map might not be a morphism of varieties. The composition of all
the reduction maps gives δ : F0 → F̃ ' J(C̃). Every fiber of δv intersects F0\F at one point,
obtained by taking the pre-image of PX ∈ F 0 under the map v⊥ → v⊥/〈v〉.

Corollary 3.23. Suppose pg > 0 and that C has only nodal singularities. Then F0 is a com-

pactification of J(C) by adding one point to each Gm-factor of the fiber over J(C̃).

We expect that the condition of C having only nodal singularities is unnecessary. If Theo-
rem 3.21 is proved without this condition, then Corollary 3.23 also holds without this condition.
The compactification F0 is not smooth.
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Since multiplication by 2 and 4 are still surjective on J , we can lift F to a torsor of J [4] by
taking

F [4] = {PX ∈ F | PX +G PX +G PX +G PX = 0} .
When Pic1(C)(k) 6= ∅, the class [F ] is 2-torsion. For each [D1] ∈ Pic1(C)(k), we obtain a lift of
F to a torsor of J [2] by taking

F [2][D1] = {PX ∈ F | PX +G PX = [D1]} .

For the remainder of this section, we study the special case when [D1] = (c) comes from a
point on the curve. The situation when c is a Weierstrass point is very similar to the generic
case. The situation when c is not a Weierstrass point has much interesting geometry which we
devote most of what follows to study.

3.2.1 Example: Smooth rational Weierstrass point

Example 3.24. Suppose that C has a smooth rational Weierstrass point. By moving this point

to∞, we assume that Q1 is singular with cone point [v∞]. Let H = v
⊥Q2∞ be the hyperplane in U

orthogonal to v∞ with respect to Q2. Then τ(∞) is induced by the linear map on U that fixes H
and sends v∞ to −v∞. Hence

F [2]∞ = {PX ∈ F | PX ⊂ B ∩ PH} . (3.5)

Just as in the generic case, when restricted to the (2n+ 1)-dimensional vector space H, the
quadrics Q1 and Q2 span a regular pencil LH . Moreover, Q1|H is non-degenerate and T|H restricts
to the self-adjoint operator on H associated to the pencil LH , as defined in (2.1). The right-hand

side of (3.5) is precisely L
f,T|H
{0,0,...,0} as defined in the odd-dimension case. Now, J [2] acts on F [2]∞

via the action of J and on L
f,T|H
{0,0,...,0} via the identification J [2] ' StabPO(H,Q1|H)(T ). As in the

generic case, these two actions coincide.

3.2.2 Example: Rational non-Weierstrass point

Example 3.25. Suppose that C has a rational non-Weierstrass point or, equivalently, that L has
a rational quadric with discriminant 1. By moving this point to infinity, we assume that Q1 has
discriminant 1. The two rulings of Q1 are then defined over k. Let Y0 denote one of the rulings,
and let ∞ ∈ C(k) denote the point corresponding to the quadric Q1 and the ruling Y0. Denote
by ∞′ the conjugate of ∞ under the hyperelliptic involution. As in the generic case, we have

F [2]∞ = {PX ∈ F | PX = τ(∞)PX} = {PX ∈ F | Span{PX,P(TX)} ∼ Y0} .

The latter condition means that Span{PX,P(TX)} ' Pn is contained in Q1 in the ruling Y0.

Fix the monic polynomial f(x) of degree 2n+2 splitting completely over ks and the quadratic
form Q = Q1 of discriminant 1. For every field k′ containing k, define

Vf (k′) = {T : U ⊗ k′ → U ⊗ k′ | T is self-adjoint and regular with minimal polynomial f(x)} .

For every field k′ containing k and every T ∈ Vf (k′), let WT (k′) denote the set of (linear) n-
dimensional k′-subspaces X of U ⊗ k′ such that Span{X,TX} ∼ Y0. That is, the linear space
Span{X,TX} is an (n+ 1)-dimensional isotropic subspace with respect to Q that lies inside the
ruling Y0. As before, we define

Wf (k′) = {(T,X) | T ∈ Vf (k′), X ∈WT (k′)} .
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There is a Galois-equivariant action of PSO(U,Q) = SO(U,Q)/(±1) on Wf :

g.(T,X) =
(
gTg−1, gX

)
.

Recall that U ⊗ ks breaks up as the orthogonal direct sum of generalized eigenspaces Ui,T
of T of dimension mi. For any linear space X, we defined dimi,T (X) to be the dimension of the
maximal T -stable subspace in (X ⊗ ks) ∩ Ui,T . For any sequence of integers d1, . . . , dr+1 such
that 0 6 di 6 mi/2, we defined for any field k′ containing k,

Lf,T{d1,...,dr+1}(k
′) = {X ∈WT (k′) | dimi,T (X) = di} .

In view of the definition of F , we also define,

L′f,T{d1,...,dr+1}(k
′) = {X ∈WT (k′) | dimi,T (Span{X,TX}) = di} ,

W ′f{d1,...,dr+1}(k
′) = {(T,X) | T ∈ Vf (k′), X ∈ L′f,T{d1,...,dr+1}(k

′)} .

Note that when all the di are 0, we have L′f,T{0,...,0}(k
′) = F [2]∞(k′).

We make no assumption on the reducibility of the associated hyperelliptic curve C but assume
instead a weaker condition,

d1 + · · ·+ dr+1 < n+ 1 = dim Span{X,TX} . (3.6)

Then condition (3.6) holds if and only if Span{X,TX} is not T -stable. Let s1 denote the number
of roots of f with odd multiplicity. Then the maximum d1+ · · ·+dr+1 could reach is n+1−s1/2.
If (3.6) fails, then we must have s1 = 0 and hence C is reducible. If one uses Lf,T instead of L′f,T

or if one does not assume (3.6), then there will be infinitely many choices for X when C is
reducible. See Examples 3.37 and 3.38.

As one would expect from the odd case, the main theorems we are heading toward are the
following.

Theorem 3.26. Suppose d1 + · · ·+ dr+1 < n+ 1. Let a denote the number of di equal to mi/2.
Then ∣∣L′f,T{d1,...,dr+1}(k

s)
∣∣ = 2r/2a .

Theorem 3.27. Suppose d1 + · · ·+ dr+1 < n+ 1. Then PSO(U,Q)(ks) acts on W ′f{d1,...,dr+1}(k
s)

simply transitively if a = 0 and transitively if a > 0.

We begin by studying the conjugation action of PSO(U,Q) on Vf . The proof of the following
result is identical to that of Proposition 3.4.

Proposition 3.28. The action of PSO(U,Q) on Vf has a unique geometric orbit. For any
T ∈ Vf (k′) defined over some field k′ over k, its stabilizer scheme Stab(T ) is isomorphic to
(ResL′/k′ µ2)N=1/µ2 ' J [2] as group schemes over k′, where L′ = k′[x]/f(x). In particular,
StabPSO(U,Q)(T )(ks) is an elementary abelian 2-group of order 2r.

Remark 3.29. A more explicit description for the stabilizer in terms of polynomials in T is
almost identical to the odd case as given in Remark 3.5. For each i = 1, . . . , r + 1, define
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hTi (x) = f(x)/(x− αi)mi . Then

µ2(k
s[T ]×) =

{∏
i∈I

(
1− 2

hTi (T )

hTi (αi)

)}
I⊂{1,...,r+1},2| |I|

=

{
1− 2

∑
i∈I

hTi (T )

hTi (αi)

}
I⊂{1,...,r+1},2| |I|

.

For any T ∈ Vf (ks), its stabilizer JT in PSO(U,Q)(ks) acts on L′f,T{d1,...,dr+1}(k
s). Then just

as Theorem 3.2 follows from Theorems 3.1 and 3.6, Theorem 3.27 follows from Theorems 3.26
and 3.30.

Theorem 3.30. Suppose d1 + · · ·+ dr+1 < n+ 1. Let a denote the number of di equal to mi/2.

Then for any X ∈ L′f,T{d1,...,dr+1}(k
s),

|StabJT (X)| = 2a .

We will prove Theorems 3.26 and 3.30 via the same series of reductions as in the odd-
dimension case.

In what follows, it turns out that one should forget about the rulings in the following reduc-
tions. Namely, consider instead

W ∗T (ks) = {X ∈ Gr(n,U ⊗ ks) | Span{X,TX} is (n+ 1)-dimensional and isotropic} .

Observe that W ∗T (ks) can be divided into two components, one of which is WT (ks), corresponding
to which ruling Span{X,TX} lies in. The two components are in bijection with each other
via an element g0 in StabPO(T )(ks) that does not lie in StabPSO(T )(ks). One similarly defines

Lf,T,∗{d1,...,dr+1}(k
s) and L′f,T,∗{d1,...,dr+1}(k

s).

Once again, most of the following results are proved by hardcore linear algebra. We recom-
mend the interested readers to work out the proofs themselves.

Reduction on d1, . . . , dr+1. Suppose X ∈ L′f,T,∗{d1,...,dr+1}(k
s) with di > 1. Let vi denote an

eigenvector of T corresponding to αi. Since T is regular, vi is unique up to scaling. The assumption
di > 1 implies vi ∈ Span{X,TX}. Hence

X ⊂ Span{X,TX}⊥ ⊂ v⊥i .

Let b denote the bilinear form associated to Q. As before, the data (Q,T ) descends to (Qi, T i)
on U i := v⊥i /〈vi〉 and T i is regular with characteristic polynomial f(x)/(x−αi)2. Let Xi denote
the image of X in U i. Then Span{Xi, T iXi} is an isotropic n-plane with respect to Qi, and
the dimensions of the maximal T i-stable subspaces in the intersection of Span{Xi, T iXi} with
the generalized eigenspaces are d1, . . . , di − 1, . . . , dr+1. Suppose, for a contradiction, vi /∈ X.
Then Span{X, vi} is an isotropic (n + 1)-plane. Hence Span{X,TX} is either Span{X, vi}
or g0 Span{X, vi}, both of which are T -stable, violating condition (3.6). Hence vi ∈ X and
so Xi is (n− 1)-dimensional. We denote this reduction step by

L′f,T,∗{d1,...,dr+1}(k
s)

∼−−→
δi

L
′f/(x−αi)2,T i,∗
{d1,...,di−1,...,dr+1}(k

s) .

The map δi is bijective, its inverse is given by taking the pre-image of the projection map
Hi → U i.
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The stabilizers are affected in the same manner as in the odd case. We summarize this
reduction step in the following proposition.

Proposition 3.31. Suppose di > 1; then there is a bijection

δi : L
′f,T,∗
{d1,...,dr+1}(k

s)
∼−−→ L

′f/(x−αi)2,T i,∗
{d1,...,di−1,...,dr+1}(k

s) .

When mi > 3, the map δi does not change the sizes of the stabilizers. When mi = 2, the map δi
lowers the sizes of the stabilizers by a factor of 2.

The map δi can be described projectively as intersecting the quadric defined by Q with the
tangent plane to vi, then projecting away from vi. Such an operation does not preserve the
rulings. Two (projective) n-planes in Q lying in the same ruling could be sent to different rulings
via this procedure. For example, take a smooth quadric in P7 and two 3-planes Y1 and Y2 on the
quadric intersecting at a line. Then these two 3-planes lie on the same ruling. If the tangent plane
to v contains this line, then the images of Y1 and Y2 lie in different rulings since their intersection
codimension is 1. If the tangent plane to vi meets this line at a point, then the images of Y1 and
Y2 lie in the same ruling as their intersection codimension is 2. Similar examples can be written
down when Y1 and Y2 lie on different rulings. This is the main reason why forgetting the rulings
is more convenient.

Reduction on f . By the above reduction step, it remains to study L′f,T,∗{0,0,...,0}(k
s). Let X ∈

W ∗T (ks) be arbitrary. By Lemma 3.13, the following conditions are equivalent:

1. The linear space Span{X,TX} contains no T -stable subspace.

2. We have v /∈ X for any eigenvector v whose eigenvalue has multiplicity at least 2.

3. We have X * v⊥ for any eigenvector v whose eigenvalue has multiplicity at least 2.

The arguments in the odd-dimension case rely much on the second and the third conditions.
Since they are equivalent to the first condition, we see that these arguments carry through
immediately and will not repeat them. The main difference to the odd-dimension case is due
to dimension reasons which one handles by replacing certain X (and X) by Span{X,TX} (and
Span{X,TX}).

Suppose that α is a root of f of multiplicity m > 2. Let X ∈ L′f,T,∗{0,0,...,0}(k
s) be arbitrary. Let v

denote an eigenvector of T with eigenvalue α. Then, as before, the non-degenerate quadratic
form Q descends to a non-degenerate quadratic form Q on U = v⊥/〈v〉 and T descends to
a regular self-adjoint operator T on U with characteristic polynomial f(x)/(x − α)2. Let X
denote the image of X ∩ v⊥ under the quotient map U → U/〈v〉.

Proposition 3.32. The above map sending X to X defines a surjection

L′f,T,∗{0,0,...,0}(k
s) −−→ L

′f/(x−α)2,T ,∗
{0,0,...,0} (ks) .

This map is bijective if m > 2 and is two-to-one if m = 2. In both cases,

|StabJT (X)| =
∣∣StabJT (X)

∣∣ for any X ∈ L′f,T,∗{0,...,0}(k
s) .

Proof. Take any X ∈ L′f/(x−α)
2,T ,∗

{0,0,...,0} (ks). As in the odd-dimension case, let bα denote the bilinear
form

bα(u, u′) = b(u, (T − α)u′) ,
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where b denotes the bilinear form associated to Q. Then bα descends to a non-degenerate bilinear
form on the (2n+1)-dimensional vector space U/〈v〉. Denote by ⊥α the perpendicular space with
respect to bα. We claim that bα descends to a non-degenerate bilinear form on the 2-dimensional
vector space Y = Span{X,TX}⊥α/X. Indeed, we know a priori that bα descends to a non-

degenerate form on the 3-dimensional space X
⊥α
/X. We claim

X
⊥α

= Span
{

Span
{
X,TX

}⊥α , TX} .
Indeed, since Span{X,TX} is isotropic with respect to b, we have TX ⊂ X⊥α . It remains to show
TX * Span{X,TX}⊥α . In other words, we need to show that Span{X,TX} is not isotropic
with respect to bα. Suppose, for a contradiction, that Span{X,TX} is isotropic with respect to
bα. Then inside U ,

T
2
X ⊂ Span

{
X,TX

}⊥
= Span

{
X,TX

}
.

Hence the entire Span{X,TX} is T -stable. This gives a contradiction.

Now, take any w ∈ Span{X,TX}⊥α . One can first find some w′ ∈ X⊥α such that bα(w,w′) is
non-zero. Let u′ be an element of TX such that w′−u′ ∈ Span{X,TX}⊥α . Then bα(w,w′−u′) =
bα(w,w′) 6= 0. Hence we have shown that bα is non-degenerate on the 2-dimensional space Y .
There are then two 1-dimensional isotropic lines. Denote by X1 and X2 their pre-images in
Span{X,TX}⊥α .

The case m > 3 is identical to the odd-dimension case: one of X1 and X2 does not lift while
the other one lifts uniquely to some Xw. The condition thatX1 andX2 lie inside Span{X,TX}⊥α
ensures that Span{Xw, TXw} is isotropic with respect to Q.

Now, suppose m = 2. Write X1 = Span{w1 + 〈v〉, X} and X2 = Span{w2 + 〈v〉, X}. The only
difference to the odd-dimension case is the proof of w1 /∈ v⊥. Suppose, for a contradiction, w1 ∈
v⊥. Since Span{X,TX} is not isotropic with respect to bα, we see that we have Span{X,TX} 6=
Span{X,w1 + 〈v〉} and so Span{X,TX,w + 〈v〉} is an (n+ 1)-dimensional subspace of v⊥/〈v〉.
As in the odd case, bα is non-degenerate on v⊥/〈v〉 because T − α acts invertibly on v⊥/〈v〉.
However, taking ⊥α inside v⊥/〈v〉, we see that we have

Span
{
X,TX,w1 + 〈v〉

}⊥α ⊃ Span{w1 + 〈v〉, X} .

The left-hand side has dimension n − 1 while the right-hand side has dimension n, giving a
contradiction. The rest of the argument is identical to the odd-dimension case: X1 and X2 each
has a unique lift.

Stabilizers behave in the same way as in the odd-dimension case.

Proposition 3.33. We have |L′f,T,∗{0,0,...,0}(k
s)| = 2r+1, and every element has trivial stabilizer

in JT .

Proof. Apply the reduction steps like in the odd-dimension case. There are now five base cases,
which we illustrate below as examples.

Example 3.34 (Generic case). Suppose that reduction terminates with f(x) =
∏r+1
i=1 (x−αi) with

r > 3. In this case, one can apply the theory for the non-singular case discussed in Example 2.30
and obtain |L′f,T,∗{0,0,...,0}(k

s)| = 2r+1.

Example 3.35. Suppose that reduction terminates with f(x) = (x−α)(x−β)(x−γ)2. If one tries
to apply reduction again on γ, then X becomes 0-dimensional. Let u, v, w1 denote eigenvectors
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of T with eigenvalues α, β, γ, respectively, and let w2 be such that (T − γ)w2 = w1. We seek

coefficients c1, . . . , c4 such that X = 〈c1u+ c2v + c3w1 + c4w2〉 lies in L′f,T,∗0,0,0 (ks). Set

Ω1 = b(u, u) 6= 0 , Ω2 = b(v, v) 6= 0 , Γ3 = b(w1, w2) 6= 0 , Γ4 = b(w2, w2) .

Then the condition that Span{X,TX} is an isotropic 2-plane becomes Ω1 Ω2 Γ3 Γ4

(γ − α)Ω1 (γ − β)Ω2 0 Γ3

(γ − α)2Ω1 (γ − β)2Ω2 0 0




c21
c22

2c3c4
c24

 =


0
0
0
0

 .

Since Γ3, Ω1, Ω2 are non-zero, the above matrix has a 1-dimensional kernel. Moreover, if any
one of c1, c2, c4 is zero, then they are all zero and X is of the form 〈c3w1〉, which does not

lie in L′f,T,∗0,0,0 (ks). Now, given non-zero c1, c2, c4 obtained by taking a non-zero vector in the
1-dimensional kernel and taking square roots of the corresponding entries, there is a unique
solution for c3. Therefore, there are 8 = 23 choices for X depending on which square roots one
chooses for c1, c2, c4.

Example 3.36. Suppose that reduction terminates with f(x) = (x − α)3(x − β). Let u1 and v
denote eigenvectors of T with eigenvalues α and β, respectively, and let u2 and u3 be such that
(T−α)2u3 = (T−α)u2 = u1. We seek coefficients c1, . . . , c4 such thatX = 〈c1u1+c2u2+c3u3+c4v〉
lies in L′f,T,∗0,0 (ks). Set

Ω = b(v, v) 6= 0 , Γ4 = b(u1, u3) = b(u2, u2) 6= 0 , Γ5 = b(u2, u3) , Γ6 = b(u3, u3) .

Then the condition that Span{X,TX} is an isotropic 2-plane becomesΓ4 Γ5 Γ6 Ω
0 Γ4 Γ5 (β − α)Ω
0 0 Γ4 (β − α)2Ω



c22 + 2c1c3

2c2c3
c23
c24

 =


0
0
0
0

 .

Since Γ4 and Ω are non-zero, the above matrix has a 1-dimensional kernel, and if any one of c2, c3,
c4 is zero, then all of them are zero and X is of the form 〈c1u1〉, which does not lie in L′f,T,∗0,0 (ks).
Now, given non-zero c3 and c4 obtained by taking a non-zero vector in the 1-dimensional kernel
and taking square roots of the corresponding entries, there is a unique solution for c1 and c2.
Therefore, there are 4 = 22 choices for X depending on which square roots one chooses for c3
and c4.

Example 3.37. Suppose that reduction terminates with f(x) = (x−α)2(x− β)2. Let u1 and v1
denote eigenvectors of T with eigenvalues α and β, respectively, and let u2 and v2 be such that
(T −α)u2 = u1 and (T − β)v2 = v1. We seek coefficients c1, . . . , c4 such that X = 〈c1u1 + c2u2 +

c3v1 + c4v2〉 lies in L′f,T,∗0,0 (ks). Set

Γ3 = b(u1, u2) 6= 0 , Γ4 = b(u2, u2) , Ω3 = b(v1, v2) 6= 0 , Ω4 = b(v2, v2) .

Then the condition that Span{X,TX} is an isotropic 2-plane becomesΓ3 Γ4 Ω3 Ω4

0 Γ3 (β − α)Ω3 Ω3 + (β − α)Ω4

0 0 (β − α)2Ω3 2(β − α)Ω3 + (β − α)2Ω4




2c1c2
c22

2c3c4
c24

 =


0
0
0
0

 .
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Since Γ3 and Ω3 are non-zero, the above matrix has a 1-dimensional kernel. If any one of c2 and c4
is zero, then both of them are zero and X is of the form 〈c1u1 +c3v1〉. In this case, Span{X,TX}
contains either 〈u1〉 or 〈v1〉, both of which are T -stable, thereby forcing X /∈ L′f,T,∗0,0 (ks). Note
that if c1 and c3 are both non-zero, then X satisfies the weaker condition that X contains no
non-zero T -stable subspace while X ∈ L′f,T,∗1,1 (ks) violates condition (3.6). It is clear that there
are infinitely many such X.

Now, given non-zero c2 and c4 obtained by taking a non-zero vector in the 1-dimensional
kernel and taking square roots of the corresponding entries, there is a unique solution for c1 and
c3. Therefore, there are 4 = 22 choices for X depending on which square roots one chooses for
c2 and c4.

Example 3.38. Suppose that reduction terminates with f(x) = (x − α)4. Let u1 denote an
eigenvector of T with eigenvalue α, and let u2, u3, u4 be such that

(T − α)3u4 = (T − α)2u3 = (T − α)u2 = u1 .

We seek coefficients c1, . . . , c4 such that X = 〈c1u1 + c2u2 + c3u3 + c4u4〉 lies in Lf,T,∗0 (ks). Set

Γ5 = b(u1, u4) 6= 0 , Γ6 = b(u2, u4) = b(u3, u3) , Γ7 = b(u3, u4), Γ8 = b(u4, u4) .

Then the condition that Span{X,TX} is an isotropic 2-plane becomesΓ5 Γ6 Γ7 Γ8

0 Γ5 Γ6 Γ7

0 0 Γ5 Γ6




2c1c4 + 2c2c3
2c2c4 + c23

2c3c4
c24

 =


0
0
0
0

 .

Since Γ5 is non-zero, the above matrix has a 1-dimensional kernel. If c4 is zero, then c3 is also
zero. In this case, any X of the form 〈c1u1+c2u2〉 solves the above equation. However, for all such

lines, Span{X,TX} contains the T -stable subspace 〈u1〉, thereby forcing X /∈ L′f,T,∗0 (ks). Note

that if c1 6= 0, then Span{X,TX} = 〈u1, u2〉 and X ∈ L′f,T,∗2 (ks), violating condition (3.6), while
every such X still satisfies the weaker condition that it contains no non-zero T -stable subspace.

Now, given a non-zero c4 obtained by taking a non-zero vector in the 1-dimensional kernel
and taking a square root of the corresponding entry, there is a unique solution for c1, c2 and c3.
Therefore, there are 2 = 21 choices for X depending on which square root one chooses for c4.

We have now completed the proof of Proposition 3.33.

Proof of Theorems 3.26 and 3.30. Applying Proposition 3.31 repeatedly gives a bijection

L′f,T,∗{d1,...,dr+1}(k
s)

∼−−→
δ

L
′
∏
i(x−αi)mi−2di ,T ′,∗

{0,0,...,0} (ks) ,

and for any X ∈ L′f,T,∗{d1,...,dr+1}(k
s),

|StabJT (X)| = 2a|StabJT ′ (δ(X))| .

This proves Theorem 3.30. The polynomial g(x) =
∏
i(x − αi)

mi−2di has r + 1 − a distinct
roots, hence applying Proposition 3.33 to g and then dividing by 2 to go from |L′f,T,∗| to |L′f,T |
completes the proof of Theorem 3.26.
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