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1. Gauss’s law of composition

In his seminal work Disquisitiones Arithmeticae of 1801, Karl Friedrich Gass

studied the action of SL2(Z), the group of integral 2×2 matrices with determinant

1, on the space of integral binary quadratic forms f(x, y) = ax2 + bxy + cy2

(a, b, c ∈ Z).1 The group SL2(Z) acts on integral binary quadratic forms by linear

substitution of variable as follows:

γ · f(x, y) = f((x, y) · γ)

, where γ ∈ SL2(Z) and f is an integral binary quadratic form. This action

preserves the discriminant ∆ = b2 − 4ac of binary quadratic forms, i.e., ∆(f) =

∆(γ · f). Gauss defined a composition law on the orbits for this action: given

two integral binary quadratic forms f and g with the same discriminants, Gauss

described a method to construct a third integral binary quadratic form h = f ◦ g,

also with the same discriminant. Furthermore, if f ′ and g′ are two integral binary

quadratic forms equivalent to f and g respectively under the action of SL2(Z),

then f ′ ◦ g′ is also equivalent to f ◦ g under the action of SL2(Z). In fact, Gauss

proved that the set of SL2(Z)-orbits on integral binary quadratic forms having

a fixed discriminant D form a finite abelian group under composition. We will

denote this group by Cl(D) and the size of Cl(D) by h(D).

Gauss formulated several conjectures regarding h(D) which have played an enor-

mous part in shaping number theory. The most famous of them is the celebrated

class number one conjecture.

Conjecture 1.1 (Gauss). The list of positive D such that h(−D) = 1 is: 3, 4, 7,

8, 11, 19, 43, 67, and 163.

Conjecture 1.1 has a long and illustrious history which is beautifully detailed

by Goldfeld in [23]. It is now a theorem due independently to Baker [1] and Stark

[40], [41]. It is worth noting that Heegner [26] had previously published an almost

complete proof of Conjecture 1.1, but his paper contained errors and was not

1Gauss considered only forms where b is even; however we will follow the modern point of

view and allow all three coefficients a, b, and c to be arbitrary integers.
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complete. Shortly after the work of Baker and Stark, Deuring [21] filled in the

gaps in Heegner’s work. Another conjecture regarding h(D) for negative D is the

Gauss class number conjecture.

Conjecture 1.2 (Gauss). The number of positive integers D such that h(−D) is

equal to any fixed integer is finite.

Conjecture 1.2 is a result of the combined work of Hecke [29] (Landau published

the theorem, which he attributed to a lecture by Hecke) and Heilbronn [27]. Hecke

proves that h(−D) → ∞ as D → ∞ if the generalized Riemann hypothesis is

true; Heilbronn proves that h(−D) → ∞ as D → ∞ if the generalized Riemann

hypothesis is false! The celebrated result of Siegel [33] provides a rate of growth

for h(−D):

Theorem 1.3 (Siegel). For every ε > 0, there exists a constant c > 0 such that

h(−D) > cD1/2−ε (1)

for every positive integer D.

Siegel proof is ineffective, which is to say that it does not provide a method of

computing c given ε—only a proof that such a c exists!

Very little is known about the sizes h(D) for positive D. They are expected

to behave very differently from the sizes when D is negative. For example, the

following is widely believed (though completely unknown).

Conjecture 1.4 (Gauss). There exist infinitely many positive integers D such

that h(D) = 1.

Gauss also made conjectures on the behaviour of h(D) on average.

Conjecture 1.5 (Gauss). For large enough real number X:

(a)
∑

−X<D<0

h(D) ∼ π

18
·X3/2;

(b)
∑

0<D<X

h(D) log εD ∼
π2

18
·X3/2;

here εD = (t + u
√
D)/2, where t, u are the smallest positive integral solutions of

t2 −Du2 = 4.

It is worth noting that such t, u do not exist if D is negative. Part (a) of

Conjecture 1.5 is a result of Mertens [31] and part (b) is a result of Siegel [34]. It

is the analogues of these conjectures that we will focus on in this article.
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2. Bhargava’s laws of composition

In this section, for the sake of convenience, we will restrict ourselves to con-

sidering integers D that are fundamental discriminants, i.e., integers D such that

either D ≡ 1 (mod 4) and is squarefree or D = 4m where m ≡ 2 or 3 (mod 4) and

m is squarefree. For such D, the group Cl(D) is isomorphic to the narrow class

group of the quadratic number field Q(
√
D) and h(D) is the narrow class number

of Q(
√
D). This narrow class group is the same as the class group for imaginary

quadratic fields (the D < 0 case) but can be twice as big for real quadratic fields

(the D > 0 case). The precise definition of class groups and narrow class groups

will not be necessary for us. All number fields have class groups, and these class

groups measure the failure of the rings of integers of these number fields to be

principle ideal domains.

Narrow class groups of number fields have a naturally occuring abelian group

structure and Gauss’s law of composition on integral binary quadratic forms having

discriminant D corresponds to addition in the narrow class group. Thus, the law

of composition can be stated as the following theorem.

Theorem 2.1 (Gauss). Let D 6= 0 be a fundamental discriminant. Then there ex-

ists a natural bijection between the set of SL2(Z)-orbits on integral binary quadratic

forms with discriminant D and the narrow class group of Q(
√
D).

Two centuries after Gauss described his law of composition, Bhargava discov-

ered several new laws of compositions. In what follows, we describe some of them.

In our exposition, we closely follow Bhargava’s paper [2]. Let V (Z) denote the

space Z2⊗Z2⊗Z2 of cubes whose vertices are integers. We represent elements of

V (Z) as 8-tuples (a, b, c, d, e, f, g, h) viewed as vertices of a cube as follows:

a b

c d

e f

g h
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We may slice this cube in three different ways obtaining these three pairs of

integral matrices:

M1 =

[
a b

c d

]
, N1 =

[
e f

g h

]
,

M2 =

[
a c

e g

]
, N2 =

[
b d

f h

]
,

M3 =

[
a e

b f

]
, N3 =

[
c g

d h

]
.

(2)

An element A ∈ V (Z) thus yields three pairs of integral 2 × 2-matrices (Mi, Ni),

1 ≤ i ≤ 3. By considering the discriminant quadratic form

QAi := −det(Mix−Niy) (3)

for 1 ≤ i ≤ 3, we also obtain three integral binary quadratic forms. Bhargava

proves that these three integral binary quadratic forms have the same discriminant!

We define the discriminant of A, denoted ∆(A), to be to this common discriminant

of these three binary quadratic forms.

The group Γ = SL2(Z) × SL2(Z) × SL2(Z) acts on V (Z): for 1 ≤ i ≤ 3, the

i’th component
( p q

r s

)
of an element in Γ sends (Mi, Ni) to (pMi + qNi, rMi +

sNi). Furthermore, Γ preserves the discriminant of elements in V (Z). That is,

we have ∆(A) = ∆(γ · A) for A ∈ V (Z) and γ ∈ Γ. With Theorem 2.1 as our

template to describing laws of composition, we may state Bhargava’s first new law

of composition.

Theorem 2.2 (Bhargava). Let D 6= 0 be a fundamental discriminant. Then there

exists a natural bijection between the set of Γ-orbits on elements in V (Z) with

discriminant D and Cl+(Q(
√
D))2, where Cl+(Q(

√
D)) is the narrow class group

of the quadratic field Q(
√
D).

The incredible richness of this new composition law is perhaps best described

by demonstrating how it gives rise to even more composition laws. First, Bhargava

shows that for A ∈ V (Z) giving rise to the three quadratic forms (3), the sum of

QA1 , QA2 , and QA3 , with respect to Gauss composition, is 0. In particular, this law

(termed the cube law by Bhargava) is enough to recover all of Gauss composition!

Second, Bhargava shows that the law of composition on integer cubes in V (Z)

restricts to triply symmetric integer cubes, i.e., those of the form
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a b

b c

b c

c d

with a, b, c, d ∈ Z. These triply symmetric cubes are preserved by the action

of SL2(Z) embedded diagonally in Γ, and the orbits having fixed fundamental

discriminant D form an abelian group under composition. Amazingly, SL2(Z)-

orbits on triply symmetric cubes are in natural bijection with SL2(Z)-orbits on

integral binary cubic forms, whose middle coefficients are multiples of 3: the binary

cubic form corresponding to the above triply symmetric integer cube is ax2 +

3bx2y + 3cxy2 + dy3. This leads to another composition law:

Theorem 2.3 (Bhargava). Let D 6= 0 be a fundamental discriminant. Then there

exists a natural bijection between the set of SL2(Z)-orbits on triplicate integral

binary cubic forms with discriminant D and Cl(Q(
√
D))[3], where Cl(Q(

√
D))[3]

is the 3-torsion subgroup of the class group of the quadratic field Q(
√
D).

Details of these and many other composition laws are in the beautiful series of

papers [2], [3], [4], [5] by Bhargava.

3. Statistics of number fields

Arithmetic statistics concerns the study of the statistics of arithmetic objects.

Two of the foundational questions in the subject are the following.

(1) How are the discriminants of degree-n number fields distributed?

(2) How are the class groups of degree-n number fields distributed?

When n = 2, the first question is easy to answer, since an integer D occurs as

the discriminant of a quadratic field if and only if D is a fundamental discrim-

inant. Furthermore, each such integer D occurs as the discriminant of exactly

one quadratic field. Theorem 2.1 in conjunction with the work of Mertens and

Siegel resolving Conjecture 1.5 provides a partial answer to the second question.

Siegel in [34] provides a much fuller answer to the second question by computing

all moments of the sizes of the class groups of number fields. However, even that

landmark work does not provide a complete answer. This is because the sizes of

class groups do not take into account their group structure. In this regard, the

highly influential work of Cohen and Lenstra [17] formulates a detailed series of

conjectures that predict the behaviour of class groups of quadratic number fields

on average. The most well known of their conjectures is the following:
5



Conjecture 3.1 (Cohen–Lenstra). Let p be an odd prime. Then

(a) The average size of the p-torsion subgroup in the class group of real qua-

dratic fields is 1 + 1/p.

(a) The average size of the p-torsion subgroup in the class group of imaginary

quadratic fields is 2.

Their conjecture goes much further and in fact predicts the distribution of class

groups of quadratic number fields. Very little is proved of their conjecture. The

only known case is that of p = 3, which is due to Davenport and Heilbronn in

work that predates the conjecture of Cohen and Lenstra.

Theorem 3.2 (Davenport–Heilbronn). We have

(a) The average size of the 3-torsion subgroup in the class group of real qua-

dratic fields is 4/3.

(a) The average size of the 3-torsion subgroup in the class group of imaginary

quadratic fields is 2.

When n ≥ 3, very little is known of either of the two questions posed in the

beginning of this section. Before the work of Bhargava, the only complete result

in this regard was the following theorem of Davenport and Heilbronn [20].

Theorem 3.3 (Davenport–Heilbronn). Let N3(ξ, η) denote the number of cubic

fields K, up to isomorphism, that satisfy ξ < Disc(K) < η. Then

N3(0, X) =
1

12ζ(3)
X + o(X);

N3(−X, 0) =
1

4ζ(3)
X + o(X),

(4)

where ζ denotes the Riemann-Zeta function.

As far as the second question is concerned, the Cohen–Lenstra heuristics have

been modified by Cohen and Martinet [18] to obtain conjectures for higher degree

number fields. Before the work of Bhargava (described in the next section), no

case of this conjecture had been proven.

4. Bhargava’s advances in Arithmetic Statistics

Davenport, using geometry-of-numbers techniques, proved the following theo-

rem [19] which was a key input in Theorems 3.2 and 3.3.

Theorem 4.1 (Davenport). Let N(ξ, η) denote the number of GL2(Z)-equivalence

classes of irreducible integer-coefficient binary cubic forms f satisfying ξ < Disc(f) <

η. Then

N(0, X) =
π2

72
·X +O(X15/16) ; N(−X, 0) =

π2

24
·X +O(X15/16) .
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This furthers the works of Siegel and Mertens resolving Conjecture 1.5 by count-

ing SL2(Z)-orbits on integral binary quadratic forms. It had previously been un-

derstood through works of [42] that the statistics of quartic fields can be studied

via the representation of G4 = GL2 × SL3 on the space W4 = (Sym2Z3 ⊗ Z2)∗ of

pairs of ternary quadratic forms. However, two major obstacles remained: first,

though the rational orbits for the action of G4(Q) on W4(Q) were understood to

correspond to quartic extensions of Q, there was no corresponding interpretation

of the integral orbits of G4(Z) acting on W4(Z). Second, the combinatorial diffi-

culties in counting SL2(Z)-orbits on the space of integral binary quadratic forms (a

2-dimensional space) and in counting GL2(Z)-orbits on the space of integral binary

cubic forms (a 3-dimensional space) grow infinitely when dealing with G4(Z)-orbits

on W4(Z) which is 12-dimensional!

The first difficulty was resolved by Bhargava in [4], where he proves the following

remarkable theorem.

Theorem 4.2 (Bhargava). There is a canonical bijection between the set of GL2(Z)×
SL3(Z)-orbits on the space (Sym2Z3 ⊗ Z2)∗ of pairs of integral ternary quadratic

forms and the set of ismorphism classes of pairs (Q,R), where Q is a quartic ring

and R is a cubic resolvent ring of Q.

It is important to note that a very slightly modified representation is shown by

Bhargava to yield another important law of composition.

Theorem 4.3 (Bhargava). There is a bijection between the set of GL2(Z) ×
SL3(Z)-orbits on the space Sym2Z3 ⊗ Z2 and the set of equivalence classes of

triples (R, I, δ), where R is a nondegenerate cubic ring over Z, I is an ideal of R

having rank 3 as a Z-module, and δ is an invertible element of R ⊗ Q such that

I2 ⊂ (δ) and N(I)2 = N(δ).

Introducing fundamental new tools, Bhargava transformed the reach of the

geometry-of-numbers methods used by Mertens, Siegel, and Davenport. These new

tools made it possible to resolve enormous combinatorial difficulties and determine

asymptotics for the number of absolutely irreducible G4(Z)-orbtis on W4(Z), where

an orbit is said to be absolutely irreducible if it corresponds to a quartic integral

domain R such that the Galois closure of the fraction field of R over Q is S4. This

led to the following results proved in [6].

Theorem 4.4 (Bhargava). Let N
(i)
4 (ξ, η) (resp. M

(i)
4 (X)) denote the number of

S4-quartic fields K (resp. quartic orders O contained in S4-quartic fields) having

4− 2i real embeddings such that |Disc(O)| < X. Then

(a) lim
X→∞

N4(X)

X
=

1

ni

ζ(2)2ζ(3)

ζ(5)
,
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(a) lim
X→∞

M4(X)

X
=

1

ni

∏
p

(1 + p−2 − p−3 − p−4),

where n0 = 48, n1 = 8, and n2 = 16.

These methods in conjunction with Theorem 4.3 also lead to the following

theorem, which is the first, and thus far only, result proving an instance of the

Cohen-Lenstra-Martinet heuristics involving fields having degree greater than 2.

Theorem 4.5 (Bhargava). We have

(a) The average size of the 3-torsion subgroup in the class group of cubic fields

having positive discriminants is 5/4.

(a) The average size of the 3-torsion subgroup in the class group of cubic fields

having negative discriminants is 3/2.

Quintic fields had been known to correspond to G5(Q)-orbits on W5(Q), where

G5 = GL4 × SL5 and W5 is the space of 4-tuples of 5 × 5-altering forms. The

space W5 is 50-dimensional, which is a large increase over the 12-dimensional

space W4. The combinatorial difficulties, both in understanding what the integral

orbits parameterize and in counting the integral orbits, are correspondingly larger.

However, Bhargava resolves them both in [5] and [7], respectively, yielding the

following theorems.

Theorem 4.6 (Bhargava). There is a canonical bijection between the GL4(Z) ×
SL5(Z)-orbits on the space Z4 ⊗∧2Z5 of quadruples of 5× 5 skew-symmetric ma-

trices and the set of isomorphism classes of pairs (R,S), where R si a quintic ring

and S is a sextic resolvent of R.

Theorem 4.7 (Bhargava). Let N
(i)
5 (ξ, η) (resp. M

(i)
5 (X)) denote the number of

quintic fields K (resp. quintic orders O contained in quintic fields) having 4 − 2i

real embeddings such that |Disc(O)| < X. Then

(a) lim
X→∞

N5(X)

X
=

1

ni

∏
p

(1 + p−2 − p−4 − p−5,

(a) lim
X→∞

M4(X)

X
=

α

ni
,

where

α =
∏
p

(p− 1

p

∑
[Rp:Zp]=5

1

|AutZp(Rp)|
· 1

Discp(Rp)

)
,

n0 = 240, n1 = 24, and n2 = 16.

5. Elliptic curves

An elliptic curve E over Q is given by the equation

E : y2 = x3 +Ax+B, (5)
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where the discriminant −(4A3 + 27B2) is nonzero. The rational points E(Q) of

an elliptic curve, along with the point at infinity, form an abelian group. The

following famous result is due to Mordell:

Theorem 5.1 (Mordell). The group E(Q) is finitely generated as an abelian group.

This implies that we have the isomorphism

E(Q) ∼= T ⊕ Zr,

where T is a finite abelian group and r is denoted the rank of E. The following

remarkable result of Mazur [30] gives all the possibilities for the group T .

Theorem 5.2 (Mazur). Let E be an elliptic curve over Q. Then the torsion

subgroup T of E(Q) can only be Z/nZ for 1 ≤ n ≤ 12 or Z/2Z × Z/mZ for

m = 2, 4, 6 or 8.

The rank r, on the other hand, is much less understood. Given an elliptic curve

E over Q, it is possible to associate an L-function to it. These L-functions have

many of the same features as the Riemann zeta function. They have Euler prod-

ucts, functional equations, and a meromorphic continuation to the entire complex

plane. We will normalize these L-functions so that the line of symmetry of their

functional equation is Re(s) = 1. The form of these functional equations is the

following.

Λ(E, s) = ω(E)N1−sΛ(E, 2− s), (6)

where Λ is the completed L-function of E, N is the conductor of E, and ω(E)

is the root number of E. The precise definitions of Λ, N , and ω(E) will not be

important to us. However, it is important to note that ω(E) is ±1. The order of

the zero of L (equivalently the zero of Λ) at s = 0 is called the analytic rank of E.

Then the Birch–Swinnerton-Dyer conjecture is the following:

Conjecture 5.3 (Birch–Swinnerton-Dyer). The rank of an elliptic curve E is

equal to the analytic rank of E.

The parity of the analytic rank of E is determined by the root number; the

analytic rank is even or odd depending on whether ω(E) is 1 or −1, respectively.

Thus, the Birch–Swinnerton-Dyer conjecture implies that the parity of the rank

of E is determined by r(E).

It is widely believed (though yet unproven) that r(E) is 1 half the time and −1

half the time. Together with the Birch–Swinnerton-Dyer conjecture, this would

imply that the rank is even half the time and odd half the time. In conjunction

with a general belief that elliptic curves should have as few rational points as

they can get away with, with have the following “minimalist” conjecture due to

Goldfeld and Katz–Sarnak.
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Conjecture 5.4 (Goldfeld, Katz–Sarnak). The average rank of elliptic curves is

1/2. The proportion of elliptic curves having rank 0 is 50%; the proportion having

rank 1 is 50%.

There are two important points to make regarding the above conjecture. The

first is that the believed 0% of elliptic curves having rank greater than or equal

to 2 still constitutes infinitely many curves! The second is that statements about

the average rank of elliptic curves, or statements concerning proportions of elliptic

curves cannot be made precisely without first ordering elliptic curves in some

way. This can be done in several natural ways: we may order elliptic curves by

conductor or discriminant or some sort of height. Note the elliptic curve EA,B :

y2 = x3+Ax+B is isomorphic to the elliptic curve Eu4A,u6B : y2 = x3+u4Ax+u6B

under the map (x, y) 7→ (u2x, u3y) for any rational number u and we certainly do

not want to count both. Hence we may scale A,B so that they are both integers

and that there is no prime p such that p4 | A and p6 | B. Because of this apparent

“weight” of A and B (which will appear again in the definition of the height for

hyperelliptic curves in the next section), we define the “naive” height of an elliptic

curve EA,B to be

H(EA,B) = max{4A3, 27B2}. (7)

The extra factors of 4 and 27 are there to balance their contribution to the dis-

criminant and have no effect on the average behavior.

Conditional on the generalized Riemann hypothesis, Brumer [16] showed that

the average analytic rank of elliptic curves, when ordered by height, is finite and

bounded by 2.3. Still assuming the generalized Riemann hypothesis, this constant

was improved by 2 and 1.79 by Heath-Brown [25] and Young [43], respectively.

However, no unconditional results were proven about the finiteness of the average

analytic rank (or the average rank) of elliptic curves.

The geometry-of-numbers methods developed by Bhargava may be applied to

the following representations that are intimately connected to ranks of elliptic

curves:

GL2(Z) → End(Sym4(Z2))

GL3(Z) → End(Sym3(Z3))

GL2(Z)×GL4(Z) → End(Z2 ⊗ Sym2(Z4))

GL5(Z)×GL5(Z) → End(Z5 ⊗ ∧2(Z5)).

In joint work with the first named author, this yielded the following theorem,

which was a result of a series of papers [11], [12], [13], [14].

Theorem 5.5. When elliptic curves over Q are ordered by height, their average

rank is < .885; a density of at least 83.75% have rank 0 or 1; a density of at least

20.62% have rank 0.
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Extending these methods still further, and using the famous Gross–Zagier for-

mula [24], Kolyvagin’s theory of Euler systems [28], and recent works of Dokchitser–

Dockchitser [22] and recent Skinner, Urban, and Zhang [35], [36], [37], [38], [39],

Bhargava, Skinner, and Zhang obtain the following stunning result [15].

Theorem 5.6. When elliptic curves over Q are ordered by height, at least 66.48%

of them satisfy the Birch–Swinnerton-Dyer conjecture; at least 16.50% of elliptic

curves over Q have algebraic and analytic rank zero; at least 20.68% have algebraic

and analytic rank one.

6. Hyperelliptic curves

Finally, we consider hyperelliptic curves, i.e., (projective) curves defined by an

equation of the form

y2 = a0x
n + a1x

n−1 + · · ·+ an−1x+ an, (8)

where the polynomial on the right hand side is assumed to have no repeated factors.

The genus of the above curve where n = 2g+1 or 2g+2 is g and so when n ≥ 2 these

curves have genus at least 2. Curves having genus 0 have either no rational points

or infinitely many rational points all of which can be parameterized algebraically

using one parameter just like the parametrization of Pythagorean triples. Curves

of genus 1 can have no rational points. When they do have rational points, they

are elliptic curves and as we have seen in the previous section, they can have

finitely many rational points (when r = 0), or infinitely many rational points

(when r ≥ 1). Curves with genus 2 or higher are addressed by a tremendously

powerful theorem of Faltings (originally a conjecture of Mordell):

Theorem 6.1 (Faltings). When n ≥ 5, equation (8) has finitely many rational

solutions.

However, the above theorem does not address the question of how many points

C(Q) has. In fact, Theorem 6.1 is ineffective, and does not provide any bound

on the size of C(Q). Effectivising Theorem 6.1 is open and would be a major

breakthrough, but we can apply the philosophy of Arithmetic Statistics and ask

instead: what is the average number of rational points in families of curves having

genus g ≥ 2. In this regard, there have been a slew of recent results, many of

which crucially use Bhargava’s methods. We describe three of these results below.

First, we consider the family of monic odd hyperelliptic curves, i.e., curves cut

out by the equation (8) with a0 = 1 and n odd. Each such curve has at least one

rational point (the point at infinity). We order these curves C by height which is

defined as follows:

H(C) = max{|a1|, |a2|1/2, . . . , |an|1/n}. (9)
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In [9], Bhargava and Gross study the Selmer groups of Jacobians of these curves,

and using their results Poonen and Stoll prove the following result in [32].

Theorem 6.2 (Poonen–Stoll). For each odd n ≥ 7, a positive proportion of curves

in the family of monic degree-n hyperelliptic curves, when ordered by height, have

exactly one rational point. Furthermore, this proportion tends to 1 as n tends to

infinity.

Next we consider the family of even hyperelliptic curves, i.e., curves C cut out

by (8) with even n ≥ 6. We order curves in this family by the following height:

H(C) = max{|ai|}.

Bhargava proves the following result in [8]:

Theorem 6.3. For each even n ≥ 8, a positive proportion of curves in the family

of degree-n hyperelliptic curves, when ordered by height, have no rational points.

Furthermore, this proportion tends to 1 as n tends to infinity.

Finally, in [10], Bhargava, Gross, and Wang prove the following stunning results.

Theorem 6.4. For any even n ≥ 2, a positive proportion of curves in the family

of degree-n hyperelliptic curves, when ordered by height, have no points over any

odd degree extension of Q.

Theorem 6.5. Fix any m > 0. Then as n → ∞, a proportion approaching 1 of

degree-n hyperelliptic curves have no points defined over any extension of Q having

odd degree ≤ m.
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