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Pencils of Quadrics and Jacobians of Hyperelliptic Curves

Abstract

Using pencils of quadrics, we study a construction of torsors of Jacobians of hyperelliptic

curves twice of which is Pic1. We then use this construction to study the arithmetic invariant

theory of the actions of SO2n+1 and PSO2n+2 on self-adjoint operators and show how they facil-

itate in computing the average order of the 2-Selmer groups of Jacobians of hyperelliptic curves

with a rational Weierstrass point, and the average order of the 2-Selmer groups of Jacobians of

hyperelliptic curves with a rational non-Weierstrass point, over arbitrary number fields.
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0 Introduction

One major area of research in number theory is the study of rational points on a curve C and

its Jacobian J . In 1928, Weil proved what is now known as the Mordell-Weil theorem: J(Q)

is finitely generated as an abelian group. One important step in the proof is the finiteness of

J(Q)/nJ(Q) for positive integers n. This finiteness is established by embedding J(Q)/nJ(Q)

inside another finite but easier to understand group called the n-Selmer group Seln(J,Q). The

program of n-descent is precisely the study of J(Q) via a study of the n-Selmer group. In 1922,

Mordell conjectured that the set C(Q) is finite when the genus of C is at least 2. Chabauty

proved in 1941 that when the genus of C exceeds the rank of J(Q), the set C(Q) is finite. Finally

in 1983, Faltings settled the full Mordell conjecture using many deep tools in number theory.

The general philosophy in the field is that studying Seln(J,Q) facilitates the study of J(Q) which

in turns assists in understanding C(Q).

In 2010, Manjul Bhargava and his student Arul Shankar ([5]) proved that the average rank

of elliptic curves over Q is bounded above by 3/2, by showing that the average order of the 2-

Selmer groups of elliptic curves over Q is 3. This was the first time an upper bound was obtained

unconditionally. Since then, they have obtained the average orders of the 3, 4, and 5-Selmer

groups of elliptic curves over Q thereby improving the upper bound. This thesis is concerned

with generalizing the result on 2-Selmer groups to families of hyperelliptic curves over arbitrary

number fields.

In Chapter 1, we develop the theory of maximal linear spaces contained in the base loci of

pencils of quadrics. More precisely, let the base field k be a field of characteristic not 2. Let

L = {xQ1 − x′Q2|[x, x′] ∈ P1} be a generic pencil of quadrics in PN and let B denote the

base locus. The geometry differs significantly on the parity of N . When N = 2n is even, the

dimension of maximal linear spaces contained in B is n − 1. Geometrically over ks, there are

22n such (n − 1)-planes. The arithmetic theory over k was studied in [1]. The theory when

N = 2n + 1 is odd is much richer. The dimension of maximal linear spaces contained in B is

still n− 1. Let F denote the Fano variety of (n− 1)-planes contained in B and let C denote the
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hyperelliptic curve of genus n defined by the following affine equation,

y2 = (−1)n+1 det(xQ1 −Q2).

It was proved by Reid [16], Desale and Ramanan [6], and Donagi [7] that geometrically over ks,

F is isomorphic to the Jacobian J of C. As Weil pointed out in [20], Gauthier had first studied

this in [8]. The main result of Chapter 1 is that over k, F is a torsor of J and moreover,

Theorem 1.27. There exists a commutative algebraic group structure +G over k on

G = J ∪̇F ∪̇Pic1(C) ∪̇F ′,

with F ′ ' F as algebraic varieties. In particular, [F ] as a class in H1(k, J) is 4-torsion and

2[F ] = [Pic1(C)].

In the second half of Chapter 1, we study a slight generalization of the problem where L is

no longer assumed to be generic, but only “regular”. The base locus will have singularities, but

we still have similar results regarding the Fano variety of maximal linear spaces that miss the

singularities in certain senses.

In Chapter 2, we study the conjugation actions of PO2n+1 and PSO2n+2 on self-adjoint op-

erators on the split (2n+ 1)-dimensional quadric space of discriminant 1 and the split (2n+ 2)-

dimensional quadric space, respectively. From Chapter 1 (Proposition 1.1, Proposition 1.29),

we know that there is only one geometric orbit and that the stabilizer scheme of a self-adjoint

operator with characteristic polynomial f(x) is canonically isomorphic to J [2], where J is the

Jacobian of the hyperelliptic curve C defined by affine equation y2 = f(x). Hence, the rational

orbits are in bijection with

ker(H1(k, J [2])→ H1(k, (P)SO)).

Therefore a 2-descent analysis on J will be helpful to study these rational orbits. Depending
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on the degree of f(x), C either has a rational Weierstrass point or a rational non-Weierstrass

point. Therefore if L is any pencil of quadrics whose associated hyperelliptic curve is C, the

corresponding Fano variety F is a torsor of J of order 2 since Pic1(C) is the trivial torsor. One

can then obtain a torsor of J [2] by “lifting” F to

F [2] = {x ∈ F |x+G x = (O)},

where O is a point at infinity. When studying orbits of PO2n+1, the hyperelliptic curve C has

a rational Weierstrass point, Proposition 2.11 says that this geometric construction of torsors of

J [2] exhausts all of H1(k, J [2]). When studying orbits of PSO2n+2, the hyperelliptic curve C has

a rational non-Weierstrass point. In this case, we do not always exhaust H1(k, J [2]) with the

pencil of quadrics construction, but we do exhaust the subset of H1(k, J [2]) that corresponds to

PSO2n+2(k)-orbits (Proposition 2.28).

Theorem 2.12, 2.31. Every element in the subgroup of H1(k, J [2]) corresponding to the image

of J(k)/2J(k) under the Kummer embedding gives rise to orbits. These are called “soluble”

orbits.

If one specializes to k being a number field, one can then use the Hasse principle for PO and

PSO to show that

Corollary. There is a bijection between elements of Sel2(k, J) and locally soluble orbits, given

by the natural inclusion Sel2(k, J) ↪→ H1(k, J [2]).

We have now completed the first step in computing the average order of 2-Selmer groups,

namely the identification of 2-Selmer classes with certain orbits of coregular representations of

reductive groups. The second step is to count these orbits. Bhargava and Shankar’s original

approach for elliptic curves over Q began by showing that every rational orbit contains an inter-

gral representative and that almost all rational orbits contain only one integral representative.

Now that the problem has been reduced to counting integral orbits, they constructed a real

fundamental domain and proceeded by counting the number of integral points. Due to the
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non-compactness of the fundamental domain, a separate analysis of the cusps was performed.

Bhargava and Gross [2] carried out this approach for hyperelliptic curves over Q with a marked

rational Weierstrass point, which corresponds to the action of PO2n+1 on self-adjoint operators.

An adelic point of view was introduced by Bjorn Poonen [13]: instead of counting integral

points in a real fundamental domain, one counts rational points in an adelic fundamental domain.

In Chapter 3, we generalize this viewpoint to computing the average order of the n-Selmer group

of families of abelian varieties satisfying four axioms. We expect that the average order has

the form τG + γ where τG is the Tamagawa number of the reductive group that is acting and

γ is, loosely speaking, the number of natural orbits. The family of Jacobians of hyperelliptic

curves with a rational Weierstrass point and the family of Jacobians of hyperelliptic curves with

a rational non-Weierstrass point both satisfy the four axioms. We expect that:

Conjecture 5. The average order of the 2-Selmer group of the Jacobians of hyperelliptic curves

of genus n over a number field k with a rational Weierstrass point is 3. In particular, the average

rank of the Jacobians of such hyperelliptic curves is bounded by 3/2.

Conjecture 6. The average order of the 2-Selmer group of the Jacobians of hyperelliptic curves

of genus n over a number field k with a rational non-Weierstrass point is 6. In particular, the

average rank of such hyperelliptic curves is bounded by 5/2.

Notations and conventions

We list some of the notations and conventions we follow. Most of them will be stated again in

the passing.

Linear structure

Throughout, k will be a perfect field of characteristic not 2. Let ks = ka be an algebraic closure

of k.

Let U denote some ambient vector space over k. Denote its projective variety of lines by PU
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viewed as an algebraic variety over k. For any field k′ containing k, we write X ⊂k′ U if X is a

linear k′-subspace of U⊗k′ and write X ⊂ U when k′ = ks. The projectivization of X is denoted

by PX ⊂ PU, and we write

dim(X) = n, dim(PX) = n− 1.

If v ∈ U ⊗ ks, denote by [v] the point in PU corresponding to the line spanned by v.

For any n, one has the following two algebraic varieties over k,

Gr(n, U) = {X ⊂ U |dim(X) = n},

Gr(n,PU) = {PX ⊂ PU |dim(PX) = n}.

If B ⊂ PU is an algebraic variety and p ∈ B, denote by TpB ⊂ PU the projective tangent

space. If X is a subset of B(ks), we define TXB as

TXB =
⋂
p∈X

TpB.

Quadratic structure

We will use Q to denote a quadratic form on U , a quadratic form on U ⊗ ks via extension of

scalars, and a quadric in PU. Its associated bilinear form, denoted b, is defined by

b(v, w) =
1

2
(Q(v + w)−Q(v)−Q(w)),∀v, w ∈ U ⊗ ks.

The quadratic form Q can be recovered from b via Q(v) = b(v, v). Its discriminant differs from

its determinant by (−1)n if dim(U) = 2n+ 1 and by (−1)n+1 if dim(U) = 2n+ 2.

For any X ⊂k′ U, denote the following subspace by X⊥Q or by X⊥ if Q is clear from the

context,

X⊥Q = {v ∈ U ⊗ k′|b(x, v) = 0,∀x ∈ X}.
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A linear subspace X ⊂k′ U is isotropic with respect to Q if X ⊂ X⊥Q , or equivalently

PX ⊂ Q ⊂ PU. In this case,

TPXQ = P(X⊥Q).

If T is a linear operator on U ⊗ ks, we denote its adjoint operator by T ∗. That is,

b(Tv, w) = b(v, T ∗w).

Galois structure

A linear subspace X of U ⊗ ks is defined over k if it admits a ks-basis consisting of vectors in

U . A linear subspace PX ⊂ PU is defined over k if X is defined over k. A linear operator T on

U ⊗ ks is defined over k if it preserves U . A quadratic form Q on U ⊗ ks, is defined over k if

Q(U) ⊂ k .

As we will be mostly working with quadratic forms over fields of characteristic not 2, almost

every object will be defined over ks. For any algebraic group G over k, we write H i(k,G) for

H i(Gal(ks/k), G(ks)). Two 1-cocycles (bσ)σ, (cσ)σ are cohomologous if there exists some g ∈

G(ks) such that

bσ = g−1cσ
σg,∀σ ∈ Gal(ks/k).
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1 Common isotropic spaces of two quadrics

Let k be a perfect field of characteristic not 2 and letQ1, Q2 be two linearly independent quadratic

forms on a k-vector space U . In this chapter, we study the general geometry of the maximal

isotropic subspaces with respect to both quadrics.

There are three equivalent ways to formulate this problem. We call the above formulation

the (Q1, Q2)−setup. Suppose now Q1 is non-degenerate. Let b1, b2 denote the corresponding

bilinear form,

bi(v, w) =
1

2
(Qi(v + w)−Qi(v)−Qi(w)).

Let T : U → U be the unique operator such that for all v, w ∈ U,

b2(v, w) = b1(v, Tw). (1.1)

Note T is self-adjoint with respect to b1 since b1, b2 are symmetric.

To say a linear subspace X is isotropic with respect to both Q1, Q2 is the same as saying

X ⊂ X⊥Q1 , TX ⊂ X⊥Q1 . (1.2)

Therefore, instead of starting with a pair of quadratic forms, we could have started with a

non-degenerate quadratic form along with a self-adjoint operator. We call this formulation the

(Q1, T )−setup.

Lastly, we could view Q1, Q2 as quadrics in PU and take a pencil L = {xQ1−yQ2|[x, y] ∈ P1}

of quadrics in PU. Let B = Q1∩Q2 denote the base locus. The above problem regarding common

isotropic subspaces translates into studying the variety of maximal dimensional linear subspaces

contained in the base locus. We call this formulation the (PU,L)−setup.

The geometry depends very much on the parity of the dimension of U and we shall study

them separately in what follows. As we will discover, Jacobians of certain hyperelliptic curves

play important roles.
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When there is an algebraic group G acting on an algebraic variety Y over k, we say Y is a

torsor for G if for every field k′ containing k, the action of G(k′) on Y (k′) is simply-transitive. In

Section 1.3, we show that the torsors constructed in what follows are torsors in the conventional

sense. That is, the morphism G × X → X × X induced from the action of G on X is an

isomorphism.

1.1 Odd dimension, nonsingular case

Suppose U has dimension 2n+ 1. We first define what we mean by “nonsingular” in each of the

three formulations. With the (Q1, Q2)−setup, we require f0(x) = (−1)n det(xQ1 − Q2) to have

no repeated roots. With the (Q, T )−setup, we require the characteristic polynomial fT (x) =

det(xI−T ) of the self-adjoint operator T to have no repeated roots. With the (PU,L)−setup, we

require that the pencil L is generic in the sense of Donagi [7]. Namely, apart from 2n+ 1 simple

cones in L, a general member of L is a smooth quadric. This is also equivalent to requiring that

y2 = f0(x) = (−1)n det(xQ1 −Q2)

defines a hyperelliptic curve of genus n. We also assume that the polynomials f0, fT split com-

pletely over ks.

The classical geometry over ks is fairly well-known using intersection theory. We give a brief

sketch of the argument and refer to [7, §1.2] for the complete treatment.

For a smooth quadric Q in P2n, the maximal dimensional linear subspace contained in it has

dimension n− 1. The Lagrangian variety LQ of Q defined by

LQ = {PX|PX ⊂ Q, dim(PX) = n− 1} ⊂ Gr(n− 1, 2n)

has dimension n(n+ 1)/2, which is precisely half the dimension of Gr(n− 1, 2n). If Q1, Q2 span

a generic pencil, then LQ1 and LQ2 intersect transversely in Gr(n− 1, 2n). In the Chow ring of

Gr(n − 1, 2n), the class of LQi is 2nσn,n−1,...,1 in the notation of Schubert calculus. The class
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σn,n−1,...,1 has self intersection 1. Therefore LQ1 ∩ LQ2 is a discrete set of 22n points. In other

words, there are precisely 22n (n− 1)-planes defined over ks contained in the base locus Q1∩Q2.

The arithmetic aspect of the theory has been studied by Bhargava and Gross in [1], we

include much of the discussion here in this section for completeness and to set some notations

for later sections. We will adopt the (Q, T )-setup for this case. Just to recall notation, Q is a

non-degenerate quadratic form on U defined over k and T is a self-adjoint operator with respect

to Q. The characteristic polynomial fT (x) of T has no repeated factors. For every field k′

containing k, let WT (k′) denote the set of (linear) n-dimensional k′-subspaces X of U ⊗ k′ such

that X ⊂ X⊥, TX ⊂ X⊥.

As it turns out, it is more convenient to let T vary as well. Let f(x) be a separable monic

polynomial of degree 2n+ 1 over k. Consider the following two schemes over k.

Vf = {T : U → U |T ∗ = T with characteristic polynomial f} ⊂ A(2n+1)2 ,

Wf = {(T,X) ∈ Vf ×Gr(n, U)|X ⊂ X⊥, TX ⊂ X⊥}.

The group PO(U,Q) = O(U,Q)/(±1) acts on Vf ,Wf via

g.T = gTg−1, g.(T,X) = (gTg−1, gX).

Proposition 1.1. If f(x) splits completely over k and k = k2, for example k = ks, then

PO(U,Q)(k) acts transitively on Vf (k). For general k, suppose T ∈ Vf (k′) is defined over some

field k′ containing k. Then its stabilizer scheme Stab(T ) is isomorphic to ResL′/k′µ2/µ2 as group

schemes over k′ where L′ = k′[x]/f(x).

Proof: For any T in Vf (k
′), since T is regular semi-simple, its stabilizer scheme in GL(Uk′)

is a maximal torus. It contains and hence equals to the maximal torus ResL′/k′Gm. For any

9



k′-algebra K,

StabO(Uk′ ,Q)(T )(K) = {g ∈ (K[T ]/f(T ))×|g∗g = 1}

= {g ∈ (K[T ]/f(T ))×|g2 = 1}.

Hence StabO(Uk′ ,Q)(T ) ' ResL′/k′µ2 and StabPO(Uk′ ,Q)(T ) ' ResL′/k′µ2/µ2.

Suppose now f(x) splits completely in k and k = k2. Suppose T1, T ∈ Vf (k). We claim

they can be conjugated to each other by an element of PO(U,Q)(k). There exists g ∈ GL(U)(k)

such that T1 = gTg−1. Since T1 and T are both self-adjoint, g∗g centralizes T and hence lies in

(k[T ]/f(T ))×. Since f splits over k, (k[T ]/f(T ))× is a product of k×. Since k = k2, there exists

h ∈ (k[T ]/f(T ))× such that g∗g = h2. Now gh−1 is an element of O(U,Q)(k) conjugating T to

T1. Its image in PO(U,Q)(k) does the job.

For general Q, there might not be a self-adjoint operator defined over k with the prescribed

characteristic polynomial. For example over R, operators self-adjoint with respect to the positive

definite form have real eigenvalues.

Lemma 1.2. If Q is split, then Vf (k) and Wf (k) are nonempty. Furthermore, there exists

(T0, X0) ∈ Wf (k) with trivial stabilizer in PO(U,Q)(ks).

Proof: Consider the 2n + 1 dimensional étale k-algebra L = k[x]/f(x). When viewed as a

vector space over k, L has a power basis {1, β, . . . , β2n} where β ∈ L is the image of x. On L

there is the following bilinear form

< λ, µ >= coefficient of β2n in λµ/disc(Q) = Tr(λµ/(disc(Q).f ′(β))),

where the second equality is due to Euler ([?, §III.6 Lemma 2]). This form defines a split

quadratic form since X = Spank{1, β, . . . , βn−1} is a rational maximal isotropic subspace. When

expressed in the basis {1, β, . . . , β2n}, the Gram matrix of this form has non-zero entries only on

and to the right of the anti-diagonal and every element on the anti-diagonal is equal to 1/disc(Q).
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Therefore, its discriminant is also disc(Q) modulo squares. Hence there exists an isometry from

(L,<,>) to (U,Q) defined over k. Via this identification, the operator ·β on L transforms into a

self-adjoint operator T0 on U . Denote by X0 the image of X under this isometry. The stabilizer

of (·β,X) in GL(L)(ks) consists of polynomials in β that stabilizes X. Hence the corresponding

element (T0, X0) ∈ Wf (k) has trivial stabilizer in PO(U,Q)(ks).

Theorem 1.3. Suppose k is separably closed. Then PO(V,Q)(k) acts simply-transitively on

Wf (k).

Proof: Since Q is split over k, Proposition 1.1 implies that it suffices to prove that for

the T0 ∈ Vf (k) obtained in the above lemma, Stab(T0)(k) acts simply-transitively on WT0(k).

Since (T0, X0) has trivial stabilizer, it suffices to show that Stab(T0)(k) and WT0(k) have the

same size. As we saw above, WT (ks) has 22n elements for any T . Hence we are done because

22n = |ResL/kµ2/µ2(k)|.

Theorem 1.4. Suppose k is arbitrary and Wf (k) is non-empty. Then PO(V,Q)(k′) acts simply-

transitively on Wf (k
′) for any field k′ containing k.

Proof: It suffices to prove transitivity. Suppose (T1, X1), (T2, X2) ∈ Wf (k
′), let g ∈

PO(V,Q)(k′s) be the unique element sending (T1, X1) to (T2, X2). Then for any σ ∈ Gal(k′s/k′),

σg also sends (T1, X1) to (T2, X2). Hence g = σg ∈ PO(V,Q)(k′).

Corollary 1.5. Suppose k is arbitrary, and T ∈ Vf (k). Let J denote the Jacobian of the

hyperelliptic curve defined by y2 = f(x). Then there is an action of J [2] on WT such that for

any field k′ containing k, J [2](k′) acts simply-transitively on WT (k′).

Proof: It is immediate from Theorem 1.4 that Stab(T )(k′) acts simply-transitively on WT (k′)

for any field k′ containing k. Proposition 1.1 says, as group schemes over k,

Stab(T ) ' ResL/kµ2/µ2 ' (ResL/kµ2)N=1 ' J [2], (1.3)

where L = k[x]/f(x).
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Remark 1.6. One can write down an explicit formula for the above identification of J [2] with

Stab(T ). We will work over ks and it will be clear that the map is Galois equivariant. Denote the

roots of f(x) over ks by α1, . . . , α2n+1, and by Pi the Weierstrass point corresponding to the root

αi. Recall J [2] is an elementary 2-group generated by (Pi) − (∞) with the only relation being

that their sum is trivial, cf. (2.7). For each generator (Pi) − (∞), one looks for a polynomial

gi(x) such that gi(αi) = −1 and gi(αj) = 1 for all j 6= i. Then gi(T ) is the image of (Pi)− (∞) in

Stab(T ). The image does not depend on the choice of the polynomial gi because any two choices

defer by some multiples of f(x) and f(T ) = 0. Define hi(x) = f(x)/(x− αi), then

gi(x) = 1− 2
hi(x)

hi(αi)

does the job. In other words, on the level of ks-points, (1.3) is given by

∑
((αi)− (∞)) 7→

∏(
1− 2

hi(T )

hi(αi)

)
= 1− 2

∑ hi(T )

hi(αi)
.

The above summation and product are written without indices, meaning the above equality

holds for any (finite) collection of matching indices.

See Remark 2.8 for a different view point of (1.3).

1.2 Even dimension, nonsingular case

1.2.1 Torsor for J

Suppose U has dimension 2n+ 2. The projective formulation is easier to work with in this case.

Let L = {Qλ|λ ∈ P1} be a rational generic pencil of quadrics in P2n+1 = PU. Rationality

means it is generated by two quadrics Q1, Q2 defined over k. The following equivalent conditions

give the definition for genericness. See [7, §1.2] for the proof.

Lemma 1.7. The following conditions are equivalent.

1. The generic members of L are smooth quadrics. There are precisely 2n+2 singular quadrics
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in L(ks), they are all simple cones.

2. The following affine equation

C : y2 = (−1)n+1 det(xQ1 −Q2)

defines a hyperelliptic curve of genus n.

3. The base locus B = Q1 ∩Q2 is a smooth.

The cone points of the 2n+2 singular quadrics are best understood in terms of the self-adjoint

operator T defined in (1.1) assuming Q1 is non-degenerate. The quadric λQ1 − Q2 is singular

if and only if λ is an eigenvalue of T . If we denote a corresponding eigenvector by vλ, then the

cone point of λQ1 −Q2 is [vλ] ∈ PU. In particular, the 2n+ 2 cone points span the entire PU .

Since L is generic, the maximal (projective) dimension of any linear space contained in the

base locus B is n− 1 ([7, Corollary 1.5]). Consider the following variety over k,

F = {PX|dim(PX) = n− 1,PX ⊂ B}.

The hyperelliptic curve C

For any rational generic pencil L, there is an associated hyperelliptic curve defined as follows.

For any quadric Q in P2n+1, one defines its Lagrangian variety by

LQ = {PY |PY ⊂ Q, dim(PY ) = n} ⊂ Gr(n,PU).

When Q is smooth, LQ has two connected components, also called the rulings of n-planes in Q.

Two n-planes in Q lie in the same ruling if and only if their intersection codimension in either

one of them is even. If Q is defined over some field k′, its discriminant is defined by

disc(Q) = (−1)n+1 det(Q)k′×2 ∈ k′×/k′×2.
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The connected components of LQ are defined over k′(
√

disc(Q)). In other words, LQ(k′s) hits

both rulings and the Gal(k′s/k′(
√

disc(Q)))-action on LQ(k′s) preserves the rulings. When Q is

singular, LQ has only one connected component.

Consider the following variety

F̃ = {(Qλ,PY )|λ ∈ P1,PY ∈ LQλ} ⊂ L ×Gr(n,PU).

There is an obvious projection map p1 : F̃ → P1. The fiber over λ ∈ P1 is isomorphic to LQλ .

Let

ε : F̃ → C, π : C → P1

denote the Stein factorization. In other words, ε has connected fibers and the fibers of π corre-

spond bijectively to the connected components of the fibers of p1. Therefore, C is a double cover

of P1 branched over the 2n+ 2 points that correspond to the singular quadrics on the pencil. A

homogeneity analysis as in [7, Lemma 1.6] shows that C is smooth at the ramification points.

Hence C is a hyperelliptic curve of genus n, and to give a point on C is the same as giving a

quadric on the pencil plus a choice of ruling. We call C the hyperelliptic curve associated to the

pencil and it parameterizes the rulings in the pencil. The Weierstrass points of C correspond to

the 2n + 2 points on P1 cut out by det(xA1 − yA2). The curve C is isomorphic over k, but not

canonically, to the hyperelliptic curve defined by the affine equation

y2 = (−1)n+1 det(xA1 − A2).

It was known to algebraic geometers ([16], [6], [7]) that when k is algebraically closed, F is

isomorphic to J , the Jacobian of the curve C defined above. Therefore it is natural to expect

that over a general field, F is a torsor of J . In fact, we prove something stronger:

Theorem 1.8. Let G be the disconnected variety

G = Pic0(C) ∪̇F ∪̇Pic1(C) ∪̇F ′,
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where F ′ is a copy of F . There is a commutative algebraic group structure +G on G over k such

that,

1. G0 = Pic0(C) with component group G/G0 ' Z/4Z,

2. F ′ is isomorphic to F as varieties via the inversion map −1G,

3. the group law extends that on H = Pic(C)/ZD0 ' Pic0(C) ∪̇Pic1(C) where D0 is the

hyperelliptic class.

Moreover, we will show that this structure is unique once we impose one more condition. See

Theorem 1.27 for the complete statement.

The dimension of F

From the result over the algebraic closure, one can conclude that F has dimension n as an

algebraic variety. Even without passing to the algebraic closure, one can still show that F has

dimension at least n. For any quadric Q in P2n+1, let Fn−1,Q denote the variety of (n− 1)-planes

in Q. When Q is smooth, Fn−1,Q is smooth irreducible of dimension n(n+ 3)/2 ([9] p.293). Let

Q,Q′ be two smooth quadrics on the pencil, then F = Fn−1,Q ∩ Fn−1,Q′ has dimension at least

n(n+ 3)/2 + n(n+ 3)/3− dimGr(n− 1, 2n+ 1) = n.

The morphism τ : C × F → F.

Given any pair (c,PX) ∈ C × F , there is a unique n-plane PY containing PX in the ruling of

the quadric defined by c. Let Q be another quadric in the pencil. Since the base locus contains

no n-planes, PY ∩B = PY ∩Q is a quadric in PY containing PX. Hence, PY ∩B = PX ∪ PX ′

is the union of two possibly equal (n − 1)-planes. We define τ(c,PX) to be PX ′. (See Lemma

1.35 for the proof that τ is a morphism.)

For a fixed c ∈ C, define τ(c) : F → F by τ(c)PX = τ(c,PX). Note τ(c) is an involution in

the sense τ(c)2 = id.
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We can write down a more explicit formula for τ as follows. Given any (c,PX) ∈ C × F, let

PY denote the unique n-plane containing PX in the ruling of the quadric specified by c. Since

PY * Q, there exists p ∈ Y \X such that b(p, p) 6= 0 where b is the bilinear form associated to

Q. There is a linear map on U × ks given by reflection about p⊥Q , namely

reflp : v 7→ v − 2
b(v, p)

b(p, p)
p.

Then

τ(c,PX) = P(reflp(X)).

In order to put a group structure on G = Pic0(C) ∪̇F ∪̇Pic1(C) ∪̇F ′, it suffices to define a

simply-transitive action of H = Pic(C)/ZD0 on F ∪̇F ′ for then one can define +G as follows:

for any x, x′ ∈ F ∪̇F ′, [D], [D′] ∈ H :

1. [D] +G [D′] is the usual addition in H,

2. x+G [D] = x+ [D] is the image of x under the action of [D],

3. x+G x
′ is the unique element in H that sends −x′ to x.

An action of Div(C) on F ∪̇F ′

We start from the following action of C on F ∪̇F ′ :

PX + (c) = −τ(c)PX, −PX + (c) = τ(c)PX, (1.4)

where c 7→ c denotes the hyperelliptic involution. The second equality follows the idea that

τ : C ×F → F serves as a subtraction, and the first equality was rigged so that divisors linearly

equivalent to the hyperellipitic class D0 acts trivially. The following Lemma allows one to extend

this action to the semi-group of effective divisors on C. Negating (1.4) then gives the extension

to the entire group of divisors.
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Lemma 1.9. For any x ∈ F ∪̇F ′, c1, c2 ∈ C,

(x+ (c1)) + (c2) = (x+ (c2)) + (c1).

Proof: Unwinding the above definition, we need to prove for any PX ∈ F,

τ(c2)τ(c1)PX = τ(c1)τ(c2)PX.

As both sides are defined by polynomial equations, it suffices to prove this equality for generic

PX, c1, c2, over the algebraic closure, in particular we may assume there is no tangency involved.

This is proved in [7, p.232] by looking at the following intersection

Span{PX, τ(c1)PX, τ(c2)PX}
⋂

B.

Theorem 1.10. The above action of Div(C) descends to a simply-transitive action of H on

F ∪̇F ′.

Remark 1.11. 1. +G is defined over k, because τ is defined over k.

2. +G is commutative. If [D] sends −x′ to x, it also sends −x to x′. This follows from the

definition of the action of Div(C) on F ∪̇F ′.

3. The action τ and the group law +G are defined on the level of points. This is the main

reason why we are using a weaker version of the notion of “torsor”. We will show that +G

is a morphism G×G→ G. More work needs to be done to rule out inseparable isogeny in

characteristic p. We deal with these technical issues in Section 1.3.

Before proving this Theorem, we give some concrete examples of +G in certain simple cases.

Example 1.12. Suppose n = 1. Then F is the variety of points in the intersection of two generic

quadrics in P3 and C is a genus 1 curve. Given two points PX,PX ′ ∈ F, let PY denote the

line passing through them. There exists a unique quadric in the pencil and a unique ruling that
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contains PY, and this data is equivalent to giving a point on C. If one passes to the algebraic

closure and identify F ' J ' C, then +G : F × F → Pic1(C) is just the addition on J .

Example 1.13. Suppose now n is general and PX,PX ′ ∈ F intersect in codimension 1 in

either/both of them. Let PY = Span{PX,PX ′} denote their linear span, then PY ' Pn. Let p

be a point on PY \(PX ∪ PX ′). There is a quadric Q in L containing p. Its intersection with

PY contains two Pn−1 and a point not on them, hence it cannot be a quadric. Furthermore,

since the pencil is generic, the base locus contains no Pn. Therefore, PY is contained in a unique

quadric Q in L and a unique ruling on Q. Once again, such data determines a point on c ∈ C

and our group law says

PX +G PX ′ = (c) ∈ Pic1(C).

Example 1.14. For any PX ∈ F , since B is a complete intersection,

TPXB = TPXQ1 ∩ TPXQ2 = P(X⊥Q1 ∩X⊥Q2 ).

As the next Lemma shows, TPXB has dimension at most n. If PX ∈ F such that TPXB ' Pn,

then just as in the above example, there exist a unique quadric in L and a unique ruling that

contains TPXB. Such data determines a point on c ∈ C and our group law says

PX +G PX = (c) ∈ Pic1(C).

However, it is not a priori clear that there even exists PX for which TPXB is not just PX.

Luckily, each singular quadric gives rise to 22n of them (defined over ka). Indeed, let Pi be a

Weierstrass point on C corresponding to a singular quadric Qλi , let pi denote the vertex of this

simple quadric cone. Notice the hyperplane

H = P(p
⊥Qλ
i )

does not depend on the choice of the quadric Qλ as TpiQλi = P2n+1. Intersecting each of the
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quadrics Qλ with H, one obtains a new pencil L in H ' P2n. This pencil L is generic in the

sense it contains precisely 2n+ 1 singular quadrics all of which are simple quadric cones. As we

have seen in Section 1.1, classical intersection theory implies that the number of (n− 1)-planes

PX contained in the base locus of L is 22n. By definition, these also lie in the base locus of L.

Furthermore, TPXB = Span(PX, pi) is an n-plane contained in Qλi . For any such PX,

PX +G PX = (Pi).

Lemma 1.15. For a generic pencil L, dim(TPXB) ≤ n.

Proof: Suppose without loss of generality Q1, Q2 are non-degenerate. Since dim(X) = n, it

follows that dim(X⊥Qi ) = n+2 for i = 1, 2. Suppose for a contradiction that dim(TPXB) ≥ n+1.

Then

X⊥Q1 = X⊥Q2 =: H.

Since the cone points span the entire P(U), there exists a cone point [vλ] of a singular quadric

Qλ ∈ L such that vλ /∈ H. Since Qλ descends to a quadratic form on the 2-dimensional vector

space H/X, there exists a vector v ∈ H\X such that Qλ(v) = 0. Now,

Span{X, v, vλ} ⊂ U

is an (n + 2)-dimensional isotropic subspace with respect to Qλ. However, since Qλ is a simple

quadric cone, its maximal isotropic subspace has dimension n+ 1.

We will prove Theorem 1.10 by proving the following three Propositions.

Proposition 1.16. Div(C) acts transitively on F ∪̇F ′.

Proposition 1.17. The principal divisors act trivially on F ∪̇F ′. Since [D0] acts trivially, we

now have a transitive action of H on F ∪̇F ′.

Proposition 1.18. If [D] ∈ H acts trivially, then [D] = 0.
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Without loss of generality, we assume that k is algebraically closed. The following two lemmas

proved in [7] are crucial in proving these propositions.

Lemma 1.19. ([7, Lemma 2.6]) Suppose PX,PX ′ ∈ F intersect at codimension r. There exists

a unique effective divisor D of degree r such that

PX +D = PX ′ if r is even, PX +D = −PX ′ if r is odd.

Lemma 1.20. ([7, Lemma 3.2]) Suppose [D] ∈ Pic(C) is effective with dimH0(OC [D]) ≥ 2,

where

H0(OC [D]) = {f ∈ ks(C)|[D] + div(f) ≥ 0}.

Then [D]− [D0] is also effective.

Proof of Proposition 1.16: It suffices to show the existence of an element D ∈ Div(C)

sending −PX to PX ′ for both PX,PX ′ ∈ F. First suppose PX satisfies the condition of 4c),

namely TPXB is an n-plane and correspondingly PX +PX = (e). We claim via induction on the

codimension r of the intersection X ′ ∩X in X, that there is an element D ∈ Div(C) such that

[D] + (−PX) = PX ′. The base case r = 0 is when PX = PX ′, in which case [D] = (e) does

the job. The case r = 1 is covered by 4d(i). Suppose the claim is true for all PX ′′ intersecting

PX at codimension ≤ r − 1 and codim(PX ′ ∩ PX) = r. Choose any PX ′′ ∈ F intersecting PX ′

at codimension 1 and PX at r − 1. Denote by D′′ ∈ Div(C) the element sending −PX to PX ′′.

Consider

D′ = (PX ′ + PX ′′)−D′′ + (e).

From our definition of the action of H on F ∪̇F ′, we know that

−D′′ + PX = −(D′′ + (−PX)) = −PX ′′.

Now (e) sends −PX to PX, −D′′ sends PX to −PX ′′, and (PX ′ + PX ′′) sends −PX ′′ to PX ′.

Therefore the composition D′ sends −PX to PX ′ as desired.
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Next, let PX ′,PX ′′ ∈ F be arbitrary. Let D′, D′′ denote the elements in Div(C) sending

−PX to PX ′,PX ′′ respectively. Consider

D = D′ − (e) +D′′.

Now D′′ sends −PX ′′ to PX, −(e) sends PX to −PX, and D′ sends −PX to PX ′. Note this also

proves the existence part of Lemma 1.19.

Lemma 1.21. If D ∈ Div(C) fixes some x0 ∈ F ∪̇F ′, then D acts trivially.

Proof: This follows immediately from transitivity of the action.

Lemma 1.22. If D,E are effective divisors of degree at most n, and D − E = div(f) is a

principal divisor, then D − E acts trivially.

Proof: Applying Lemma 1.20 repeatedly to D, one obtains an unique effective divisor D1

with h0(D1) = 1 and such that D and E are in the linear system D1 + deg(D)−deg(D1)
2

D0. Since

deg(D) ≤ n, H0(OC(deg(D)−deg(D1)
2

D0) consists of functions pulled back from P1. Hence D − E

is a linear combination of divisors of the form (P ) + (P ) which acts trivially on F ∪̇F ′ by

construction.

Let ∞ denote a Weierstrass point of C defined over ks.

Lemma 1.23. Suppose D = (P1) + · · ·+ (Pr)− r(∞) ∈ Div(C) with Pi 6=∞ and r ≤ n. If D is

linearly equivalent to E = (Q1)+ · · ·+(Qr′)−r′(∞) with Qi 6=∞ and r′ ≤ r, then x+D = x+E

for all x ∈ F ∪̇F ′.

Proof: Apply Lemma 1.22 to the effective divisors (P1) + · · ·+ (Pr) and (Q1) + · · ·+ (Qr′) +

(r − r′)(∞).

Every divisor class [D] ∈ J = Pic0(C) can be represented by a divisor of the form (P1) +

· · ·+(Pr)−r(∞) with r ≤ n. Lemma 1.23 says that two different representations of [D] have the
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same action on F ∪̇F ′. Since deg(D) is even, it sends F to F . Therefore we have a morphism of

varieties

α : J → Aut(F ).

The image of α lies in a commutative subvariety of the identity component of Aut(F ). Since J

is complete and α([0]) = id, rigidity ([12, pp.40–41]) implies that α is a group homomorphism.

Proof of Proposition 1.17: Let β : Div0(C) → Aut(F ) denote the action map. To show

the principal divisors act trivially, it suffices to show β factors through α : J → Aut(F ). Both

are group homomorphisms, therefore it suffices to check

β((c)− (c′)) = α([(c)− (c′)])

for any c, c′ ∈ C. For any PX ∈ F,

α([(c)− (c′)])(PX) = PX + (c)− (∞) + (c′)− (∞)

= PX + (c)− (c′)

= β((c)− (c′))(PX).

Given two elements x = ±PX, x′ = ±PX ′ of F ∪̇F ′, we define their intersection codimen-

sion as the intersection codimension of PX,PX ′ and write

codim(x, x′) = codim(PX,PX ′).

In this notation, Lemma 1.19 can be stated as follows:

Lemma 1.24. Suppose x, x′ ∈ F or x, x′ ∈ F ′. Then there exists a unique effective divisor D of

degree r = codim(x, x′) such that

x+D = (−1)rx′.

Lemma 1.25. Suppose D is an effective divisor of degree r ≤ n, r ≥ 1, then there exists an
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x ∈ F such that

codim(x, x+D) ≡ r (mod 2).

There is also an x ∈ F ′ satisfying the same condition.

Proof: Suppose for a contradiction that for all x ∈ F,

codim(x, x+D) ≡ r − 1 (mod 2). (1.5)

Consider the following variety

Σ = {(x, c1, . . . , cr−1)|x ∈ F, ci ∈ C, x+D = −x+ (c1) + · · ·+ (cr−1)} ⊂ F × Symr−1(C).

When r = 1, Σ = {x ∈ F |x + D = −x}. It is clear from the definition that Σ is closed. Denote

the two projections to F and Symr−1(C) by π1, π2 respectively. For any x ∈ F,

codim(x, x+D) =: r′ ≤ r.

By Lemma 1.24, there exists an effective divisor D′ of degree r′ such that

x+D = (−1)r−r
′
(x+D′).

Assumption (1.5) says r − r′ is odd for all x. Therefore, replacing D′ by D′ + (r − 1 − r′)(∞),

we see that π1 is surjective. Since dim(F ) ≥ n and dim(Symr−1(C)) = r − 1 < n, there exists

a fiber of π2 of positive dimension. In other words, there exists a divisor D̃ of odd degree such

that for infinitely many x ∈ F ,

x+ D̃ = −x. (1.6)

Let D1 be a divisor such that 2D1 − (∞) is linearly equivalent to D̃. Since we have shown
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that the principal divisors act trivially, (1.6) implies that for infinitely many x ∈ F,

(x+D1) = −(x+D1) + (∞).

Hence for infinitely many PX ∈ F,

PX = τ(∞)PX.

However, we have seen in condition 4c) that there are only 22n such PX. Contradiction.

The statement for F ′ follows from the same argument, which is the main reason why we have

used x to denote an element of F instead of the usual PX.

Proof of Proposition 1.18: Suppose D = (P1) + · · ·+ (Pr)− r(∞) acts trivially on F with

r ≤ n minimal and Pi 6=∞.

Suppose first that r = 2r′ is even. Then for all PX ∈ F,

PX + (P1) + · · ·+ (Pr′) = PX + (P r′+1) + · · ·+ (P r). (1.7)

By lemma 1.25, there exists PX0 ∈ F such that

codim(PX0,PX0 + (P1) + · · ·+ (Pr′)) = r′′ ≡ r′ (mod 2).

Therefore, there exists points Q1, . . . , Qr′′ ∈ C such that

PX0 + (P1) + · · ·+ (Pr′) = PX0 + (Q1) + · · ·+ (Qr′′).

Lemma 1.21 says if a divisor fixes one PX0 ∈ F, then it acts trivially on F . Hence the divisor

(Q1) + · · ·+ (Qr′′) + (Pr′+1) + · · ·+ (Pr)− (r′′ + r′)(∞)
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acts trivially on F. Minimality of r forces r′′ = r′. That is,

codim(PX0,PX0 + (P1) + · · ·+ (Pr′)) = r′.

Lemma 1.19 then implies

(P1) + · · ·+ (Pr′) = (P r′+1) + · · ·+ (P r)

as effective divisors of degree r′. Therefore D = 0.

Suppose now r = 2r′ + 1 is odd. Then for all PX ∈ F,

PX + (P1) + · · ·+ (Pr′+1) = PX + (P r′+2) + · · ·+ (P r) + (∞) (1.8)

Argue just like the even case, we see that minimality of r implies that for some PX0 ∈ F,

codim(PX0,PX0 + (P1) + · · ·+ (Pr′+1)) = r′ + 1.

Then Lemma 1.19 implies

(P1) + · · ·+ (Pr′+1) = (P r′+2) + · · ·+ (P r) + (∞)

as effective divisors of degree r′ + 1. Therefore D = 0.

We have completed the proofs of Propositions 1.16, 1.17, and 1.18. Before moving on to state

the main theorem, we describe a stronger form of Lemma 1.25 for completeness.

Lemma 1.20 implies that if (P1) + · · · + (Pr) − r(∞) and (Q1) + · · · + (Qr) − r(∞), with

r ≤ n, are two distinct divisors representing the same divisor class [D] ∈ J, then [D] can also be

represented by a divisor of the form (R1) + · · ·+ (Rr−2)− (r− 2)(∞). Therefore if r is minimal
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among all such representations of [D], there is a unique effective divisor D′ of degree r such that

[D′ − r(∞)] = [D].

We call D′ the ∞−minimal form of [D].

Corollary 1.26. Let D′ be the ∞−minimal form of a nonzero divisor class [D]. Then there

exists an x ∈ F such that

codim(x, x+D′) = deg(D′).

There is also an x ∈ F ′ satisfying the same condition.

Proof: Let r denote the degree of D′. Lemma 1.25 allows us to pick an x ∈ F such that

codim(x, x+D′) =: r′ ≡ r (mod 2).

By Lemma 1.24, there exists an effective divisor D′′ of degree r′ such that x + D′ = x + D′′.

Hence D′ −D′′ fixes x and by Lemma 1.21, D′ −D′′ acts trivially on F . By Proposition 1.18,

D′ is linearly equivalent to D′′. Since D′ is the ∞−minimal form of [D], we see that r′ = r.

The statement for F ′ follows from the same argument.

We now state our theorem in its completion.

Theorem 1.27. Let G be the disconnected variety

G = Pic0(C) ∪̇F ∪̇Pic1(C) ∪̇F ′,

where F ′ is a copy of F . There is a commutative algebraic group structure +G on G over k such

that,

1. G0 = Pic0(C) with component group G/G0 ' Z/4Z,

2. F ′ is isomorphic to F as varieties via the inversion map −1G,
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3. the group law extends that on H = Pic(C)/ZD0 ' Pic0(C) ∪̇Pic1(C) where D0 is the

hyperelliptic class,

4. the group law defines a simply-transitive action of H on F ∪̇F ′ extending the following

action of C :

PX + (c) = −τ(c)PX, −PX + (c) = τ(c)PX,

with respect to which x+G x
′, for x, x′ ∈ F ∪̇F ′, is the unique divisor class sending −x to

x′.

Proof: The only thing left to check is the associativity, which amounts to the following four:

[D1] +G ([D2] +G [D3]) = ([D1] +G [D2]) +G [D3]

x+G ([D2] +G [D3]) = (x+G [D2]) +G [D3]

x+G (x′ +G [D3]) = (x+G x
′) +G [D3]

x+G (x′ +G x
′′) = (x+G x

′) +G x
′′,

for [D1], [D2], [D3] ∈ H and x, x′, x′′ ∈ F ∪̇F ′.

The first one is associativity of the group law on H. The second follows from the definition

of the action of H. The third follows as both sides send −x to x′ + [D3]. For the fourth one,

denote the two sides by xL and xR and add x′ to both sides. The third associativity tells us

x′+GxL = (x′+Gx)+G (x′+Gx
′′) and likewise, xR+Gx

′ = (x+Gx
′)+G (x′′+Gx

′). Commutativity

of +G implies these two elements of Pic0(C) are equal. Therefore xL = xR is the image of−x′.

Corollary 1.28. The class [F ] ∈ H1(k, J) is 4-torsion, twice of which is [Pic1(C)]. One can lift

[F ] to a torsor of J [4] by taking

F [4] := {PX ∈ F |PX +G PX +G PX +G PX = 0}.

Proof: With our convention of Galois cohomology, we need to show F (ks) is nonempty. Let

P be a Weierstrass point, it is defined over ks because f(x) splits over ks. We saw there are
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precisely 22n elements of F (ks) satisfying PX +G PX = (P ). They correspond to (n− 1)-planes

contained in the base locus of a generic pencil in P2n. Theorem 1.3 says they are in fact all

defined over ks.

When C admits a rational divisor class of odd degree, Pic1(C)(k) 6= ∅. In this case, [F ] is

2-torsion and it lifts to a torsor of J [2]. See Section 2.1 for more about lifting torsors of J of

finite order.

1.2.2 Torsor for J [2]

Fix a 2n + 2 dimensional quadratic space (U,Q) of discriminant 1. There are two rulings

of projective n-planes contained in the quadric defined by Q. The two rulings are defined

over k(
√

disc(Q)) and are acted on by the group PO(U,Q), each with stabilizer PSO(U,Q) =:

PSO2n+2. Fix one such ruling Y0 defined over k. If Q is split, we also abuse notation to use Y0

to denote an isotropic k-rational (linear) n + 1 plane. If Y is any subspace defined over ks, we

write Y ∼ Y0 if Y is isotropic of dimension n+ 1 and if their intersection codimension in either

one of them is even. This is equivalent to saying PY and PY0 lie in the same ruling, as projective

n-planes contained in the quadric defined by Q.

Let f(x) ∈ k[x] be any separable monic polynomial of degree 2n + 2, we want to study a

certain simply-transitive action of PSO2n+2. Consider the following three k-schemes,

Vf = {T : U → U |T ∗ = T, characteristic polynomial of T is f}

Wf = {(T,X) ∈ Vf ×Gr(n, U)|Span{X,TX} ∼ Y0}

WT = {X|(T,X) ∈ Wf} for T ∈ Vf (k)

Here Span{X,TX} ∼ Y0 means that Span{X,TX} is an (n+ 1)-plane isotropic with respect to

Q lying in the same ruling as Y0. We will show in Proposition 2.18 that WT this recovers the lift

of [F ] mentioned at the end of the previous section.

Since PSO2n+2 preserves the rulings, if Y ∼ Y0, then gY ∼ Y0 for any g ∈ PSO2n+2. Therefore,
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PSO2n+2 acts on Wf via

g.(T,X) = (gTg−1, gX).

Proposition 1.29. If f(x) splits completely over k and k = k2, for example k = ks, then

PSO2n+2(k) acts transitively on Vf (k). For general k, suppose T ∈ Vf (k′) is defined over some

field k′ containing k. Then its stabilizer scheme Stab(T ) is isomorphic to (ResL′/k′µ2)N=1/µ2 as

group schemes over k′ where L′ = k′[x]/f(x).

Proof: Just as in the proof of Proposition 1.1, for any T ∈ Vf (k′),

StabGL(Uk′ )(T ) ' ResL′/k′Gm,

StabO(Uk′ ,Q)(T ) ' ResL′/k′µ2,

StabSO(Uk′ ,Q)(T ) ' (ResL′/k′µ2)N=1,

StabPSO(Uk′ ,Q)(T ) ' (ResL′/k′µ2)N=1/µ2.

Suppose now f(x) splits completely in k and k = k2. Suppose T1, T ∈ Vf (k). There exists

g ∈ GL(U)(k) such that T1 = gTg−1. Since T1 and T are both self-adjoint, g∗g centralizes T and

hence lies in (k[T ]/f(T ))× which is a product of k× since f splits. Since k = k2, there exists

h ∈ (k[T ]/f(T ))× such that g∗g = h2. Then gh−1 is an element of O(U,Q)(k) conjugating T

to T1. Multiplying the h by (−1, 1, . . . , 1) ∈ (k[T ]/f(T ))× if necessary, we may assume gh−1 ∈

SO(U,Q)(k). Its image in PSO(U,Q)(k) does the job.

Lemma 1.30. If Q is split, then both Vf (k) and Wf (k) are nonempty. Furthermore, there exists

(T0, X0) ∈ Wf (k) with trivial stabilizer in PSO2n+2(k
s).

Proof: Consider the 2n + 2 dimensional étale k-algebra L = k[x]/f(x) = k[β]. On L there

is the following bilinear form

< λ, µ >= Tr(λµ/f ′(β)) = coefficient of β2n+1 in λµ.

This form defines a split quadratic form since Y = Spank{1, β, . . . , βn} is a rational maximal
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isotropic subspace. Hence there exists an isometry from (L,<,>) to (U,Q) defined over k. Via

this identification, the operator ·β on L transforms into a self-adjoint operator T0 on U . Denote

by X0 the image of X = Spank{1, β, . . . , βn−1} under this isometry. Since (·β,X) has trivial

stabilizer in PSO(L,<,>)(ks), the corresponding element (T0, X0) ∈ Wf (k) has trivial stabilizer

in PSO2n+2(k
s).

Theorem 1.31. Suppose k is separably closed. Then PSO(V,Q)(k) acts simply-transitively on

Wf (k).

Proof: Suppose k is separably closed. Proposition 1.29 shows it suffices to prove that for

the T0 ∈ Vf (k) obtained in the above lemma, Stab(T0)(k) acts simply-transitively on WT0(k).

Since (T0, X0) has trivial stabilizer, it suffices to show they have the same size. As a consequence

of Proposition 2.18, for any k, WT (ks) = FT [2]∞(ks) has 22n elements for any T . Hence we are

done because,

22n = |(ResL/kµ2/µ2)N=1(k)| = |Stab(T0)(k)| ≤ |WT0(k)| ≤ |WT0(k
s)| = 22n.

Theorem 1.32. Suppose Wf (k) is non-empty. Then PSO2n+2(k
′) acts simply-transitively on

Wf (k
′) for any field k′ containing k.

Proof: Same descent argument as in the proof of Theorem 1.4.

Corollary 1.33. For any T ∈ Vf (k), WT (k′) is a principal homogeneous space for J [2](k′) for

any field k′ containing k.

Proof: Same as the proof of Corollary 1.5, except now as group schemes over k,

Stab(T ) ' (ResL/kµ2)N=1/µ2 ' J [2]. (1.9)

Remark 1.34. One can write down an explicit formula for (1.9). The method is the same as

the odd case in Remark 1.6. Denote the roots of f(x) over ks by α1, . . . , α2n+2, and for each i,

30



define hi(x) = f(x)/(x− αi). Then on the level of ks-points, (1.9) is given by sending

∑
ni(αi)−

∑
ni

2
((∞) + (∞′)),

∑
ni even,

to the image in PSO2n+2(k
s) of

∏(
1− 2

hi(T )

hi(αi)

)ni
= 1− 2

∑
ni
hi(T )

hi(αi)
. (1.10)

Note as a polynomial of degree at most 2n + 1,
∑2n+2

i=1 hi(x)/hi(αi) takes the value 1 when

x = α1, . . . , α2n+2, hence it must be the constant polynomial 1. Thus,

2n+2∏
i=1

(
1− 2

hi(T )

hi(αi)

)
= −1 = 1 in PSO2n+2.

We will see in Proposition 2.7 and Proposition 2.21 that 1 − 2 hi(T )
hi(αi)

is a reflection, hence has

determinant −1. The assumption that
∑
ni is even ensures that the product in (1.10) lies in

SO.

1.3 A specialization argument

In this section, we deal with the more technical details that we pointed out in the previous

sections. Suppose L is a rational generic pencil of quadrics in P2n+1 and let C denote its

associated hyperelliptic curve parameterizing rulings in the pencil. Let B denote the base locus

of the pencil and let F denote the variety of (n− 1)-planes contained in B.

The crucial geometric input in Section 1.2 is the map τ : C × F → F . Recall that for any

(c,PX) ∈ C × F, there exists a unique n-plane PY containing PX in the ruling of the quadric

defined by c. The intersection of PY with B is a union of two (possibly equal) n− 1 planes one

of which is PX. We defined τ(c,X) to be the other n− 1 plane.

Lemma 1.35. The map τ : C × F → F is a morphism of varieties.
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Proof: Let F̃ denote the following closed subvariety of L ×Gr(n,PU),

F̃ = {(Q,PY )|PY ' Pn, Y ⊆ Q,Q ∈ L}.

The hyperelliptic curve C can be viewed as the Stein factorization of the projection map F̃ → L.

Denote by ε : F̃ → C the corresponding map. Consider the closed subvariety Σ of (C×F )×C F̃

consisting of quadruples (c,PX,Q,PY ) where PX ⊂ PY and ε(Q,PY ) = c. We claim that the

following composite map

γ : Σ ↪→ (C × F )×C F̃ → C × F

is an isomorphism of varieties. The uniqueness of the n-plane PY that lies in a fixed ruling

of a quadric and contains a given n − 1 plane implies that γ is bijective on points. It is also

separable because the corresponding field extension is at most degree 2 and the characteristic of

k is assumed to be not 2. Therefore by Zariski’s Main Theorem, γ is an isomorphism.

Let Σ′ ⊂ F × F̃ denote the image of Σ in (C × F )×C F̃ . By definition, Σ′ consists of triples

(PX,Q,PY ) such that PX ⊂ PY ⊂ Q. Let r denote the map Σ′ → F defined by

PY ∩B = PX ∪ r(PX,Q,PY ).

By writing down explicit equations, we see that r is a morphism. Finally, the map τ is the

following composition of morphisms:

C × F γ−1

−−→ Σ→ Σ′
r−→ F.

Therefore τ is a morphism.

Let G denote the disconnected subvariety

G = Pic0(C) ∪̇F ∪̇Pic1(C) ∪̇F ′,
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where F ′ is a copy of F . In Section 1.2.1, we defined a group structure on G(ks). We now prove

that +G : G×G→ G is a morphism of varieties. Indeed this follows formally from the fact that

+G is J(ks)-equivariant, separable descent, and the following result.

Theorem 1.36. Suppose k is separably closed. Then the following morphism is an isomorphism.

ι : J × F → F × F

([D],PX) 7→ ([D] + PX,PX).

In other words, F is a torsor of J in the conventional sense.1

Theorem 1.36 implies that J is isomorphic to every component of G over ks. In particular,

there exists an isomorphism G ' J ×Z/4Z over ks such that +G becomes the usual addition on

J × Z/4Z.

We assume for the rest of this section that k is separably closed and prove Theorem 1.36.

From Section 1.2.1 we know that ι is bijective on the level of points. Zariski’s Main Theorem then

implies it is a finite morphism. The only possible issue here is inseparability. Hence, Theorem

1.36 holds automatically when the characteristic of k is 0. Moreover, if one chases through the

proof of Lemma 1.19 ([7, Lemma 2.6]), one can show that ι is separable if the characteristic of k

is larger than n. We will prove ι is an isomorphism for all charactertistics using a specialization

argument from characteristic 0.

Let S be a reduced and normal scheme over Z[1/2] and letQ1,Q2 be a degenerate quadric and

a non-degenerate quadric in P2n+1
S over S repectively. The pencil L, its associated hyperelliptic

curve C and the corresponding Fano variety F of n−1 planes in the base locus can all be defined

over S. By removing a closed subscheme of S, we assume that L is a generic pencil fiberwise

over S and hence C is smooth over S. Since Q1 is degenerate, the map C → S has a section. Let

J denote the relative Jacobian scheme. Since C → S has a section, no sheafification is needed

in the definition of J .

1I would like to especially thank Bjorn Poonen for pointing out this problem and to thank him and Anand
Patel for suggesting the following solution.
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Using the section S → C and the morphism τ : C ×S F → F , we get a morphism

α : C ' Sym1(C)→ AutS(F)0.

Lemma 1.9 allows us to extend α to Symn(C). Since Symn(C) is birational to J using the section

S → C, we get a rational map α : J 99K AutS(F)0. Since J is smooth over S, the following

properness result about AutS(F)0 allows us to extend α to a morphism on J .

Lemma 1.37. The group scheme AutS(F)0 is proper over S.

Proof: Over any geometric point s ∈ S, the Fano variety Fs is an abelian variety. Indeed

it is shown to be isomorphic to Js in [6]. We only need to know it is an abelian variety here.

Therefore AutS(F)0 is faithfully flat over S with proper geometric fibers, and hence is proper

over S by EGA IV.15.7.10.

The upshot of extending α to J is that we now have the action morphism J ×S F → F

defined over S. Denote by ιS the morphism

ιS : J ×S F → F ×S F .

We know ιS is an isomorphism on the generic fiber of S because the residue field at the generic

fiber has characteristic 0. Moreover ιS is a bijection on the level of points, hence quasi-finite. The

source J ×S F is projective over S. The target F ×S F is smooth over S and hence is reduced

and normal. Therefore by Zariski’s Main Theorem ([10, Corollary 11.4]), ιS is an isomorphism.

The specialization of ιS to any geometric point of S is also an isomorphism.

To complete the proof of Theorem 1.36, it remains to show the existence of the above families

over some scheme S such that for some geometric point s of S, k(s) = k. For this we can take

Q1,Q2 to be the universal family and take S to be an open subscheme of SpecZ[1/2][x1, . . . , xN ]

where the indeterminates x1, . . . , xN correspond to the coordinates of the two quadrics.
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1.4 Odd dimension, regular case

We return to the case when U has dimension 2n + 1 and study a case more general than the

nonsingular case treated in Section 1.1. Let Q be a non-degenerate quadratic form on U and let

T be a self-adjoint operator on U with characteristic polynomial fT splitting completely over ks.

We impose the condition that T is regular meaning that its minimal polynomial coincide with its

characteristic polynomial. We want to study the set of n-planes X such that X ⊂ X⊥, TX ⊂ X⊥.

As in Section 1.1, it is more convenient to let T vary as well.

Let f be a monic polynomial of degree 2n + 1 splitting completely over ks. We define the

k-scheme,

Vf = {T : U → U |T is self-adjoint and regular with characteristic polynomial f(x)}.

Note here regularity means there is no linear relations between 1, T, . . . , T 2n. For every field

k′ containing k, and every T ∈ Vf (k
′), let WT (k′) denote the set of (linear) n-dimensional k′-

subspaces X of U ⊗ k′ such that X ⊂ X⊥, TX ⊂ X⊥. As before, we define

Wf (k
′) = {(T,X)|T ∈ Vf (k′), X ∈ WT (k′)}.

There is a Galois invariant action of PO(U,Q) = O(U,Q)/(±1) on Wf :

g.(T,X) = (gTg−1, gX).

Let K be either the separable closure or algebraic closure of k, and suppose f(x) factors as

f(x) =
∏r+1

i=1 (x − αi)mi for αi ∈ K. In fact, we only need K to be a field over which f splits

completely and that K = K2; but since we will not use the result in any case other than K =

ks, ks, we will assume for the convenience of the reader that K is ks or ks. For any T ∈ Vf (K),

one can decompose U ⊗K into generalized T -eigenspaces. Namely, U ⊗K =
⊕r+1

i=1 Ui,T where

each Ui,T ⊂K U is an mi-dimensional K-subspace of U⊗K. For any self-adjoint T , its generalized
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eigenspaces are pairwise orthogonal with respect to Q. Therefore Q restricts to non-degenerate

quadratic forms on each Ui,T . For any X ∈ WT (K), X ∩ Ui,T is isotropic and therefore has

dimension at most mi/2. For any sequence of integers d1, . . . , dr+1 such that 0 ≤ di ≤ mi/2, for

any intermediate field k′ between k and K, and for any T ∈ Vf (k′), we define

Lf,T{d1,...,dr+1}(k
′) = {X ∈ WT (k′)|dim(maximal T -stable subspace of (X ⊗K) ∩ Ui,T ) = di},

W f
{d1,...,dr+1}(k

′) = {(T,X)|T ∈ Vf (k′), X ∈ Lf,T{d1,...,dr+1}(k
′)}.

Note when f has no repeated roots, all mi equal to 1, all di are 0 and Lf,T{0,...,0}(k
′),W f

{0,...,0}(k
′)

recover WT (k′),Wf (k
′) respectively. Observe also that eigenvectors of T corresponding to eigen-

values of multiplicity 1 are never isotropic, since they are orthogonal to all the other generalized

eigenspaces. If X ∈ Lf,T{0,...,0}(k
′), then X contains no non-zero stable T -subspace. The main

theorem we are heading towards is the following:

Theorem 1.38. |Lf,T{d1,...,dr+1}(K)| = 2r/2a, where a is the number of di’s equal to mi/2.

The action of PO(U,Q) preserves the decomposition of U ⊗K into generalized eigenspaces,

in the sense that

Ui,gTg−1 = gUi,T , ∀T ∈ Vf (K), ∀g ∈ PO(U,Q)(K),∀i = 1, . . . , r + 1.

Therefore one obtains a Galois equivariant action of PO(U,Q) on W f
{d1,...,dr+1}.

Theorem 1.39. PO(U,Q)(K) acts on W f
{d1,...,dr+1}(K) simply-transitively if a = 0 and transi-

tively if a > 0.

Theorem 1.40. Suppose k is arbitrary. Then PO(V,Q)(k′) acts simply-transitively onW f
{0,...,0}(k

′)

for any field k′ containing k.

Proof: Same descent argument as the proof of Theorem 1.4.

We begin by studying the conjugation action of PO(U,Q) on Vf .
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Proposition 1.41. If f(x) splits completely over k and k = k2, then PO(U,Q)(k) acts transi-

tively on Vf (k). If k is arbitrary, T ∈ Vf (k) and k′ is any field containing k, then

StabPO(U,Q)(T )(k′) = µ2(k
′[T ]×)/(±1) ' µ2(k

′[x]/f(x))×/(±1).

In particular, StabPO(U,Q)(T )(K) is an elementary abelian 2-group of order 2r.

Proof: The first statement follows in the same way as the proof of Proposition 1.1 except

now k[x]/f(x) is a product of algebras of the form k[x]/xmi . Every unit in k[x]/xmi is a square

if k = k2 and char(k) 6= 2.

The second statement follows from the structure theory of finitely generated modules over

Principal Ideal Domains. One can view U ⊗ k′ as a module over k′[x] with x acting via the

operator T . The elements in GL(U)(k) commuting with T are precisely the automorphisms of U

as a k′[x]-module. Since T is regular, the structure theory of finitely generated modules over PID

says that U ⊗k′ is isomorphic to k′[x]/f(x) as a k′[x]-module. As a module of k′[x] generated by

the element 1, the automorphisms of U are precisely multiplication by elements in (k′[x]/f(x))×.

Then as in Proposition 1.1,

StabO(U,Q)(T )(k′) = {g(T )|g ∈ k′[x], g(T )∗g(T ) = 1}

= µ2(k
′[T ]×)

StabPO(U,Q)(T )(k′) = µ2(k
′[T ]×)/(±1).

For the last statement, from the factorization of f(x), we know

K[x]/f(x) '
r+1∏
i=1

K[x]/(x− αi)mi .

Therefore, StabO(U,Q)(T )(K) ' (Z/2Z)r+1 is an elementary abelian 2-group of order 2r+1. Mod-

ing out the diagonally embedded Z/2Z gives StabPO(U,Q)(T )(K).
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Remark 1.42. Just as in Remark 1.6, we can give a more explicit description for the stabilizer

as polynomials in T . For each i = 1, . . . , r + 1, define hTi (x) = f(x)/(x− αi)mi . Then

µ2(K[T ]×) =

{∏
i∈I

(
1− 2

hTi (T )

hTi (αi)

)}
I⊂{1,...,r+1}

=

{
1− 2

∑
i∈I

hTi (T )

hTi (αi)

}
I⊂{1,...,r+1}

.

For any I ⊂ {1, . . . , r+ 1} and any j /∈ I, since (x− αj)mj divides hi(x) in K[x] and (T − αj)mj

kills all the generalized eigenspaces Uj,T ,

1− 2
∑
i∈I

hTi (T )

hTi (αi)

acts trivially on Uj,T .

Corollary 1.43. For any T, T ′ ∈ Vf (K), there exists a bijection

Lf,T{d1,...,dr+1}(K)←→ Lf,T
′

{d1,...,dr+1}(K).

Proof: Suppose g ∈ PO(U,Q)(K) conjugates T to T ′, then the left action by g on Gr(n, U)

gives the desired bijection.

For any T ∈ Vf (K), its stabilizer JT in PO(U,Q)(K) acts on Lf,T{d1,...,dr+1}(K). We rephrase

the main theorems as follows.

Theorem 1.44. For any X ∈ Lf,T{d1,...,dr+1}(K), let a denote the number of di equal to mi/2.

1. |StabJT (X)| = 2a.

2. |Lf,T{d1,...,dr+1}(K)| = 2r/2a.

Theorem 1.38 is the second statement and Theorem 1.39 follows because the size of each

orbit is

|JT |/|StabJT (X)| = 2r/2a = |Lf,T{d1,...,dr+1}(K)|.
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We will prove Theorem 1.44 via a series of reductions.

Reduction on d1, . . . , dr+1

Suppose X ∈ Lf,T{d1,...,dr+1}(K) with di ≥ 1. Let vi denote an eigenvector of T corresponding to αi.

Since T is regular, vi is unique up to scaling. The assumption di ≥ 1 then implies vi ∈ X. Let

Hi denote the hyperplane v⊥i , and let b denote the bilinear form associated to Q. Note vi ∈ Hi

since there exists some v′i such that (T − αi)v′i = vi, and hence

b(vi, vi) = b(vi, (T − αi)v′i) = b((T − αi)vi, v′i) = 0.

For any w ∈ Hi,

b(vi, Tw) = b(Tvi, w) = b(αivi, w) = 0.

Therefore, T descends to a linear map

T i : Hi/vi → Hi/vi =: U i.

The quadratic form Q descends to a non-degenerate quadratic form Qi with respect to which T i

is self-adjoint. We claim that T i is regular with characteristic polynomial f(x)/(x− αi)2. Note

this reduction can be described projectively as intersecting the quadric defined by Q with the

tangent plane to vi, then projecting away from vi.

Indeed, since T has pairwise orthogonal generalized eigenspaces, the generalized eigenspaces

Uj,T corresponding to eigenvalues αj not equal to αi all lie inside Hi and map bijectively inside

U i as generalized eigenspaces for T i. If w + 〈vi〉 ∈ U i satisfies

(T i − αi)N(w + 〈vi〉) = 〈vi〉, for some fixed N
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then (T − αi)Nw ∈ 〈vi〉. Therefore,

U i,T i
= (Ui,T ∩Hi)/vi

is the generalized eigenspace of T i corresponding to αi. Hence its dimension is mi − 2 and the

αi-eigenspace of T i is 1-dimensional.

Since vi ∈ X and X is isotropic, we see X ⊂ Hi. Let X i denote the image of X in U i. It is

immediate from the definition that X i is (n− 1)-dimensional, satisfying

X i ⊂ X
⊥Qi
i , T iX i ⊂ X

⊥Qi
i ,

and the maximal dimensions of T i-stable subspaces in its intersection with the generalized

eigenspaces are d1, . . . , di − 1, . . . , dr+1. We denote this reduction step by

Lf,T{d1,...,dr+1}(K)
∼−−→
δ

L
f/(x−αi)2,T i
{d1,...,di−1,...,dr+1}(K).

δ is bijective, its inverse is given by taking the pre-image of the projection map Hi → U i.

How are the stabilizers affected by this reduction? If h(x) is any polynomial in K[x], then

δ(h(T )X) = h(T i)X i. Since δ is bijective, we conclude that h(T ) stabilizes X if and only if h(T i)

stabilizes X i. Note if mi ≥ 3, then

hTi (x) =
f(x)

(x− αi)mi
=
f(x)/(x− αi)2

(x− αi)mi−2
= hT ii (x).

Hence according to the explicit description given in Remark 1.42,

h(T ) ∈ JT ⇐⇒ h(T i) ∈ JT i , hence |StabJT (X)| = |StabJTi
(X i)|.
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When mi = 2, di = 1, αi is no longer an eigenvalue for T i. In this case,

JT = 〈h(T ), 1− 2hi(T )/hi(αi)|h(T i) ∈ JT i〉.

Let v′i denote an element in Ui,T such that (T − αi)v′i = vi. Then

Ui,T = Span{vi, v′i}, and b(vi, v
′
i) 6= 0.

Since vi ∈ X and X is isotropic, we see

X = Span{vi, X ∩ Span{Uj,T}j 6=i}.

Now 1 − 2hi(T )/hi(αi) sends vi to −vi and fixes every element in Span{Uj,T}j 6=i. Therefore it

stabilizes X and hence

|StabJT (X)| = 2|StabJTi
(X i)|.

Note this case is precisely when a decreases by 1 in this reduction step.

We summerize this reduction step in the following lemma.

Lemma 1.45. Suppose di ≥ 1, then there is a bijection

Lf,T{d1,...,dr+1}(K)
∼−−→
δ

L
f/(x−αi)2,T i
{d1,...,di−1,...,dr+1}(K).

The sizes of the stabilizers do not change, unless mi = 2, di = 1 in which case it decreases by a

factor of 2.

Reduction on f

By the above reduction step, it remains to study Lf,T{0,0,...,0}(K). We will describe the reduction

map, state the corresponding result, then give the proof. However, since the proof is just hardcore

linear algebra, we recommend the interested reader to prove it himself.
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Suppose α is a root of f of multiplicity m ≥ 2. Let X ∈ Lf,T{0,0,...,0}(K) be arbitrary. Let v

denote an eigenvector of T with eigenvalue α. Suppose v′ ∈ U such that (T − α)v′ = v. Since

b(v, v) = b(v, (T − α)v′) = b((T − α)v, v′) = 0,

we can consider the descent to U = v⊥/v. As in the above reduction step, Q descends to a

non-degenerate quadratic form Q on U and T descends to a regular self-adjoint operator T on

U with characteristic polynomial f(x)/(x− α)2.

Observe that v /∈ X since X contains no T -stable subspace. Therefore the map U → U/v is

bijective when restricted to X. Consequently, X * v⊥, for if otherwise the (2n− 1)-dimensional

vector space v⊥/v contains an n-dimensional isotropic subspace which is impossible. Now X∩v⊥

has dimension n− 1 and we denote its bijective image in v⊥/v by X.

Lemma 1.46. The above map sending X to X defines a surjection

Lf,T{0,0,...,0}(K) −→ L
f/(x−α)2,T
{0,0,...,0} (K).

This map is bijective if m > 2 and is two-to-one if m = 2. In both cases,

|StabJT (X)| = |StabJT (X)|, for any X ∈ Lf,T{0,...,0}(K).

Proof: It is clear that X satisfies X ⊂ X
⊥
, TX ⊂ X

⊥
. If X contains a T -stable subspace,

then it must contain v′+ < v > . Hence v′+cv ∈ X for some c ∈ ks. Then v = (T −α)(v′+cv) ∈

X⊥ contradicting X * v⊥. Therefore, X ∈ Lf/(x−α)
2,T

{0,0,...,0} (ks). We first prove surjectivity. Suppose

X ∈ Lf/(x−α)
2,T

{0,0,...,0} (K). Let bα denote the bilinear form

bα(u, u′) = b(u, (T − α)u′).

Since v lies in the kernel of bα, we see that bα descends to a non-degenerate bilinear form on

the 2n dimensional vector space U/v. Denote by ⊥α the perpendicular space with respect to
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bα. Since X is n − 1 dimensional, bα further descends to a non-degenerate bilinear form on the

2-dimensional vector space X
⊥α
/X. It has two 1-dimensional isotropic lines, denote by X1, X2

their pre-images in X
⊥α
.

Suppose m ≥ 3, let v′′ be an element of U such that (T − α)v′′ = v′. Then

bα(v′, v′) = b(v′, v) = b((T − α)v′′, v) = b(v′′, (T − α)v) = 0.

Hence we might assume without loss of generality that X1 = Span{v′+ < v >,X} ⊂ v⊥/v.

Since Span{X1, X2} has dimension n + 1, it is not isotropic with respect to bα. Therefore,

bα(w, v′) = b(w, v) 6= 0 for some w+ < v >∈ X2. Up to scaling, we may assume b(w, v) = 1 and

by replacing w by w − 1
2
b(w,w)v, we may also assume b(w,w) = 0. Consider

Xw = Span{w, u− b(w, u)v}u+<v>∈X ⊂ U,

(T − α)Xw = Span{(T − α)w, (T − α)v}.

It is clear that Xw ⊂ Xw⊥ and TXw ⊂ Xw⊥ with respect to b by the construction of w. Since

w /∈ v⊥, we see Xw = X. Since b(w, c2v) = c2, X
w contains no non-zero vector of the form c2v

and hence Xw contains no non-zero T -stable subspace. We have now proved surjectivity when

m ≥ 3.

Suppose now X ′ ∈ Lf,T{0,...,0}(K) maps to X. Then the image of X ′ in U/v, denoted suggestively

by X ′2 is an n-plane isotropic to bα, it contains X and is bα-orthogonal to X. Since it does not

contain v′+ < v >, we conclude that X ′2 = X2. Since the process from X2 to Xw is just

adjusting by adding the correct multiples of v, we see that X ′ = Xw.

Just as in the previous reduction step, when m ≥ 3, JT and JT are represented by the same

set of polynomials. It is clear that if g(T ) stabilizes X, then g(T ) stabilizes X. Conversely, if

g(T ) stabilizes X, then g(T ) sends X to another n-plane that also maps to X. Since there is
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only one such n-plane, we conclude that g(T ) also stabilizes X. Therefore

|StabJT (X)| = |StabJT (X)|.

We now deal with the case m = 2. Write X1 = Span{w1+ < v >,X} and X2 = Span{w2+ <

v >,X}. We claim w1 /∈ v⊥ and likewise same with w2. If for a contradiction that w1 ∈ v⊥,

then X1 ⊂ v⊥/v. When m = 2, v⊥/v is the orthogonal (with respect to b) direct sum of all

the generalized eigenspaces not containing v, v′. Since (T − α) acts invertibly on generalized

eigenspaces not containing v, v′, we see that bα descends to a non-degenerate bilinear form on

v⊥/v. However, X1 is isotropic of dimension n and v⊥/v has dimension 2n− 1. Contradiction.

Finally, we lift each X i to Xwi by adding an appropriate multiples of v. The resulting Xwi

both map to X under the reduction map. They are different from each other since their images

in U/v are different. Therefore we have proved surjectivity. The same argument as the above

shows that Xw1 and Xw2 are precisely the two pre-images of X.

Regarding stabilizers, we are in the situation where compared to JT , JT has an extra generator

h0(T ) = 1 − 2h(T )/h(α) where h(x) = f(x)/(x − α)2. This extra generator fixes v and acts as

−1 on all the other generalized eigenspaces. Therefore h0(T )X = X and a simple computation

shows that it switches X1 and X2. If g(T ) stabilizes X, then g(T ) either stabilizes Xw,1 or it

sends Xw1 to Xw2 , in which case g(T )h0(T ) stabilizes Xw1 . Therefore, the size of the stabilizers

remains unchanged.

Corollary 1.47. |Lf,T{0,0,...,0}(K)| = 2r and every element has trivial stabilizer in JT .

Proof: This follows from induction on the degree of f and the classical result on generic

intersection in odd dimension recalled in Section 1.1. We write out the proof slightly differently

from an induction argument so we can point out the differences between the contributions coming

from roots of f with odd multiplicity and the contributions from roots with even multiplicity.
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Rewrite the factorization of f(x) as

f(x) =

s1+1∏
i=1

(x− βi)2ni+1

s2∏
j=1

(x− β′j)2n
′
j ,

where each βi is a root of f(x) of odd multiplicity and each β′j is a root of even multiplicity.

Since f(x) has odd degree, we know s1 ≥ 0 and s1 + s2 = r. Applying Lemma 1.46 repeatedly,

one gets the following sequence of maps,

Lf,T{0,0,...,0}(K)
1 to 1−−−−→ L

∏
i(x−βi)·

∏
j(x−β′j)2,T ′

{0,0,...,0} (K)
2s2 to 1−−−−→ L

∏
i(x−βi),T ′′
{0,0,...,0} (K).

The last set has 2s1 elements all of whose stabilizers are trivial. Applying Lemma 1.46 again, one

concludes that every element in Lf,T{0,0,...,0}(K) has trivial stabilizer as well. The above diagram

shows that |Lf,T{0,0,...,0}(K)| = 2s1+s2 = 2r.

Proof of Theorem 1.44: Applying Lemma 1.45 repeatedly gives a bijection

Lf,T{d1,...,dr+1}(K)
∼−−→
δ

L
∏
i(x−αi)mi−2di ,T ′

{0,0,...,0} (K),

and for any X ∈ Lf,T{d1,...,dr+1}(K),

|StabJT (X)| = 2a|StabJT ′ (δ(X))|.

The polynomial g(x) =
∏

i(x−αi)mi−2di has r+1−a distinct roots, hence applying Corollary

1.47 to g completes the proof.

1.5 Even dimension, regular case

In this section, we generalize Section 1.2 to the case where the self-adjoint operator T is regular.

The idea is to reduce from the regular case to the generic case using a series of reductions similar

to the ones used in Section 1.4. We start with the study of a simply-transitive action of PSO as
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the reduction steps are simpler.

1.5.1 Torsor for J [2]

Suppose U is a k-vector space of dimension 2n + 2 and let Q be a quadratic form on U of

discriminant 1. Fix a ruling Y0 of (n+1)-dimensional isotropic subspace of Q. Note Y0 is defined

over k because the rulings are defined over k(
√

disc(Q)).

Let f be a monic polynomial of degree 2n+ 2 splitting completely over ks and let J denote

the Jacobian of the hyperelliptic curve C defined by y2 = f(x). We define the k-scheme,

Vf = {T : U → U |T is self-adjoint and regular with characteristic polynomial f(x)}.

Note here regularity means there is no linear relations between 1, T, . . . , T 2n+1. For every field

k′ containing k, and every T ∈ Vf (k
′), let WT (k′) denote the set of (linear) n-dimensional k′-

subspacesX of U⊗k′ such that Span{X,TX} ∼ Y0. That is to say the linear space Span{X,TX}

is an (n+ 1)-dimensional isotropic subspace with respect to Q that lies inside the ruling Y0 over

k′. As before, we define

Wf (k
′) = {(T,X)|T ∈ Vf (k′), X ∈ WT (k′)}.

There is a Galois invariant action of PSO(U,Q) = SO(U,Q)/(±1) on Wf :

g.(T,X) = (gTg−1, gX).

Let K be either the separable closure or algebraic closure of k, and suppose f(x) factors as

f(x) =
∏r+1

i=1 (x − αi)mi for αi ∈ K. In fact, we only need K to be a field over which f splits

completely and that K = K2; but since we will not use the result in any case other than K =

ks, ks, we will assume for the convenience of the reader that K is ks or ks. For any T ∈ Vf (K),

one can decompose U ⊗K into generalized T -eigenspaces. Namely, U ⊗K =
⊕r+1

i=1 Ui,T where
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each Ui,T ⊂K U is an mi-dimensional K-subspace of U⊗K. For any self-adjoint T , its generalized

eigenspaces are pairwise orthogonal with respect to Q. Therefore Q restricts to non-degenerate

quadratic forms on each Ui,T . For any X ∈ WT (K), Span{X,TX}∩Ui,T is isotropic and therefore

has dimension at most mi/2. For any sequence of integers d1, . . . , dr+1 such that 0 ≤ di ≤ mi/2,

for any intermediate field k′ between k and K, and for any T ∈ Vf (k′), we define

Lf,T{d1,...,dr+1}(k
′) = {X ∈ WT (k′)|dim(maximal T -stable subspace of (SpanK{X,TX})∩Ui,T ) = di},

W f
{d1,...,dr+1}(k

′) = {(T,X)|T ∈ Vf (k′), X ∈ Lf,T{d1,...,dr+1}(k
′)}.

Note when f has no repeated roots, all mi equal to 1, all di are 0 and Lf,T{0,...,0}(k
′),W f

{0,...,0}

recover WT (k′),Wf (k
′) respectively. Note it is important that the integers di are defined as the

dimension of T -stable subspaces inside Span{X,TX} ∩ Ui,T , not just X ∩ Ui,T as we did in the

odd case. If we used the latter definition, then Lf,T{d1,...,dr+1}(K) will be infinite whenever f(x) has

a root of multiplicity at least 4. See Example 1.62 and Example 1.63.

In what follows, we impose the following condition

d1 + · · ·+ dr+1 < n+ 1 = dim Span{X,TX}. (1.11)

This condition is equivalent to saying Span{X,TX} is not T -stable. Let s1 denote the number

of roots of f with odd multiplicity. Then the maximum d1+ · · ·+dr+1 could reach is n+1−s1/2.

If (1.11) fails, then we must have s1 = 0 and hence C is reducible. If one uses Lf,T instead of

L′f,T or if one does not assume (1.11), then there will be infinitely many choices for X when C

is reducible. See Example 1.62 and Example 1.63.

As one would expect from the odd case, the main theorem we are heading towards is the

following:

Theorem 1.48. Suppose d1 + · · ·+ dr+1 < n+ 1, then |Lf,T{d1,...,dr+1}(K)| = 2r/2a, where a is the

number of di’s equal to mi/2.
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The action of PSO(U,Q) preserves the decomposition of U ⊗K into generalized eigenspaces.

Therefore one obtains a Galois invariant action of PSO(U,Q) on W f
{d1,...,dr+1}.

Theorem 1.49. Suppose d1 + · · · + dr+1 < n + 1, then PSO(U,Q)(K) acts on W f
{d1,...,dr+1}(K)

simply-transitively if a = 0 and transitively if a > 0.

Theorem 1.50. Suppose k is arbitrary and d1 + · · · + dr+1 < n + 1. Then PSO(V,Q)(k′) acts

simply-transitively on W f
{0,...,0}(k

′) for any field k′ containing k.

Proof: Same descent argument as the proof of Theorem 1.4.

We begin by studying the conjugation action of PSO(U,Q) on Vf .

Proposition 1.51. If f(x) splits completely over k and k = k2, then PO(U,Q)(k) acts transi-

tively on Vf (k). If k is arbitrary, T ∈ Vf (k) and k′ is any field containing k, then

StabPSO(U,Q)(T )(k′) = (µ2(k
′[T ]×)/(±1))N=1 ' (µ2(k

′[x]/f(x))×/(±1))N=1 ' J [2](k′).

In particular, StabPSO(U,Q)(T )(K) is an elementary abelian 2-group of order 2r.

Proof: cf. Proposition 1.41.

Remark 1.52. A more explicit description for the stabilizer as polynomials in T is almost

identical to the odd case as given in Remark 1.42. For each i = 1, . . . , r + 1, define hTi (x) =

f(x)/(x− αi)mi . Then

µ2(K[T ]×) =

{∏
i∈I

(
1− 2

hTi (T )

hTi (αi)

)}
I⊂{1,...,r+1},2 | |I|

=

{
1− 2

∑
i∈I

hTi (T )

hTi (αi)

}
I⊂{1,...,r+1},2 | |I|

.

For any I ⊂ {1, . . . , r+ 1} and any j /∈ I, since (x− αj)mj divides hi(x) in K[x] and (T − αj)mj
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kills all the generalized eigenspaces Uj,T ,

1− 2
∑
i∈I

hTi (T )

hTi (αi)

acts trivially on Uj,T .

Corollary 1.53. For any T, T ′ ∈ Vf (K), there exists a bijection

Lf,T{d1,...,dr+1}(K)←→ Lf,T
′

{d1,...,dr+1}(K).

Proof: Suppose g ∈ PO(U,Q)(K) conjugates T to T ′, then the left action by g on Gr(n, U)

gives the desired bijection.

Also by Proposition 1.41, for any T ∈ Vf (K), its stabilizer JT in PSO(U,Q)(K) acts on

Lf,T{d1,...,dr+1}(K). We rephrase the main theorems as follows.

Theorem 1.54. Suppose d1 + · · ·+ dr+1 < n+ 1. For any X ∈ Lf,T{d1,...,dr+1}(K), let a denote the

number of di equal to mi/2.

1. |StabJT (X)| = 2a.

2. |Lf,T{d1,...,dr+1}(K)| = 2r/2a.

Theorem 1.48 is the second statement and Theorem 1.49 follows because the size of each

orbit is

|JT |/|StabJT (X)| = 2r/2a = |Lf,T{d1,...,dr+1}(K)|.

We will prove Theorem 1.44 via a series of reductions.

One major difference from the odd case is that one should forget about the rulings in the

following reductions. Namely, consider instead

W ∗
T (K) = {X ∈ Gr(n, U ⊗K)|Span{X,TX} is n+ 1 dimensional and isotropic}.

49



Observe that W ∗
T (K) has two components, one of which is WT (K), corresponding to which

ruling Span{X,TX} lies in. The two components are in bijection to each other via an element

in StabPO(T ) but not in StabPSO(T ). One defines similarly Lf,T,∗{d1,...,dr+1}(K).

Reduction on d1, . . . , dr+1

Suppose X ∈ Lf,T,∗{d1,...,dr+1}(K) with di ≥ 1. Let vi denote an eigenvector of T corresponding to αi.

Since T is regular, vi is unique up to scaling. The assumption di ≥ 1 implies vi ∈ Span{X,TX}.

Hence

X ⊂ Span{X,TX}⊥ ⊂ v⊥i =: Hi.

Let b denote the bilinear form associated to Q. For any w ∈ Hi,

b(vi, Tw) = b(Tvi, w) = b(αivi, w) = 0.

Therefore, T descends to a linear map

T i : Hi/vi → Hi/vi =: U i.

The quadratic form Q descends to a non-degenerate quadratic form Qi with respect to which T i

is self-adjoint. Just as in the odd case, T i is regular with characteristic polynomial f(x)/(x−αi)2.

Let X i denote the image of X in U i. Then Span{X i, T iX i} is an isotropic n-plane with respect

to Qi, and the maximal dimensions of T i-stable subspaces in the intersection of Span{X i, T iX i}

with the generalized eigenspaces are d1, . . . , di− 1, . . . , dr+1. Condition (1.11) then tells us X i is

not T i-stable. Therefore vi ∈ X and X i is n− 1 dimensional. We denote this reduction step by

Lf,T,∗{d1,...,dr+1}(K)
∼−−→
δ

L
f/(x−αi)2,T i,∗
{d1,...,di−1,...,dr+1}(K).

δ is bijective, its inverse is given by taking the pre-image of the projection map Hi → U i.

The stabilizers are affected in the same manner as in the odd case. We summerize this
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reduction step in the following lemma.

Lemma 1.55. Suppose di ≥ 1, then there is a bijection

Lf,T,∗{d1,...,dr+1}(K)
∼−−→
δ

L
f/(x−αi)2,T i,∗
{d1,...,di−1,...,dr+1}(K).

The sizes of the stabilizers do not change, unless mi = 2, di = 1 in which case it decreases by a

factor of 2.

This reduction can be described projectively as intersecting the quadric defined by Q with

the tangent plane to v, then projecting away from v. Such an operation does not preserve the

rulings. Two (projective) n-planes in Q lying in the same ruling could be sent to different rulings

via this procedure. For example take a smooth quadric in P7, and two 3-planes Y1, Y2 on the

quadric intersecting at a line. Then these two 3-planes lie on the same ruling. If the tangent plane

to v contains this line, then the images of Y1, Y2 lie in different rulings since their intersection

codimension is 1. If the tangent plane to v meets this line at a point, then the images Y1, Y2 lie

in the same ruling as their intersection codimension is 2. Similar examples can be written down

when Y1, Y2 lie on different rulings.

Reduction on f

By the above reduction step, it remains to study Lf,T,∗{0,0,...,0}(K). We will describe the reduction

map, state the corresponding result, then give the proof. There is a slight difference to the

odd case due to dimension reasons. Once again, the proof is just hardcore linear algebra, so we

recommend the interested reader to prove it himself.

Suppose α is a root of f of multiplicity m ≥ 2. Let X ∈ Lf,T,∗{0,0,...,0}(K) be arbitrary. Let v

denote an eigenvector of T with eigenvalue α. Suppose v′ ∈ U such that (T − α)v′ = v. Since

b(v, v) = 0, we can consider the descent to U = v⊥/v. As in the above reduction step, Q descends

to a non-degenerate quadratic form Q on U and T descends to a regular self-adjoint operator T

on U with characteristic polynomial f(x)/(x− α)2.
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Observe that v /∈ Span{X,TX} since Span{X,TX} contains no non-zero T -stable subspace.

Therefore the map U → U/v is bijective when restricted to Span{X,TX}. Denote the image of

X ∩ v⊥ in U = v⊥/v by X. As in the above reduction step, Span{X,TX} is an n-dimensional

isotropic subspace of U .

Lemma 1.56. Span{X,TX} has no non-zero T -stable subspace.

Proof: Its only possible non-zero T -stable subspace is the line spanned by v′+ < v >.

Suppose for a contradiction that v′ + cv ∈ Span{X,TX} for some c ∈ k. Since Span{X,TX}

has no non-zero T -stable subspace, we see that v′, v′ + cv /∈ X. Since Span{X,TX} is isotropic,

we see that v′ + cv is orthogonal to every element in (T − α)X, and hence v is orthogonal to

every element of X. Since v′ + cv also lies in X⊥, we see that v′ ∈ X⊥. Finally, b(v, v′) = 0

a priori due to the assumption that v′+ < v >∈ U. Combining these, one concludes that the

(n+ 2)-dimensional subspace Span{X, v′, v} is isotropic in U with respect to b, contradicting to

the fact that U only has dimension 2n+ 2.

Consequently, X * v⊥, for if otherwise X = Span{X,TX} for dimension reasons and hence

is T -stable, which contradicts both Lemma 1.70 and Condition 1.11. One now has the following

well-defined map.

Lemma 1.57. Suppose n ≥ 2. The map sending X to X defines a surjection

Lf,T,∗{0,0,...,0}(K) −→ L
f/(x−α)2,T ,∗
{0,0,...,0} (K).

This map is bijective if m > 2 and is two-to-one if m = 2. In both cases,

|StabJT (X)| = |StabJT (X)|, for any X ∈ Lf,T{0,...,0}(K).

Proof: We first prove surjectivity. Suppose X ∈ Lf/(x−α)
2,T ,∗

{0,0,...,0} (K). Let bα denote the bilinear

form

bα(u, u′) = b(u, (T − α)u′).
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Since v lies in the kernel of bα, we see that bα descends to a non-degenerate bilinear form on the

2n+ 1 dimensional vector space U/v. Denote by ⊥α the perpendicular space with respect to bα.

Suppose for a contradiction that Span{X,TX} is isotropic with respect to bα. Then inside U,

T
2
X ⊂ Span{X,TX}⊥ = Span{X,TX}.

Hence the entire Span{X,TX} is T -stable. Contradiction.

Observe that bα descends to a non-degenerate bilinear form on the 2-dimensional vector space

Y = Span{X,TX}⊥α/X. Indeed a priori, bα descends to a non-degenerate form on X
⊥α
/X,

and X
⊥α

is spanned by Span{X,TX}⊥α and a non-isotropic vector u in TX. Given any w ∈

Span{X,TX}⊥α , one can first find a w′ ∈ X
⊥α

such that bα(w,w′) 6= 0, then adjust w′ by a

multiple of u so it lands in Span{X,TX}.

As a 2-dimensional non-degenerate quadratic space, Y has two 1-dimensional isotropic lines,

denote by X1, X2 their pre-images in Span{X,TX}⊥α .

Suppose m ≥ 3, then as in the odd case, bα(v′, v′) = b(v′, v) = 0, so up to renaming,

X1 = Span{v′+ < v >,X} ⊂ v⊥/v. Since Span{X1, X2} has dimension n+ 1, it is not isotropic

with respect to bα. Therefore, bα(w, v′) = b(w, v) 6= 0 for some w+ < v >∈ X2. Up to scaling, we

may assume b(w, v) = 1 and by replacing w by w− 1
2
b(w,w)v, we may also assume b(w,w) = 0.

Consider

Xw = Span{w, u− b(w, u)v}u+<v>∈X ⊂ U,

(T − α)Xw = Span{(T − α)w, (T − α)v}.

It is clear that Span{Xw, TXw} is isotropic with respect to b by the construction of w. Since

w /∈ v⊥, we have Xw = X. Since b(w, c2v) = c2, we see that Span{Xw, TXw} contains no

elements of the form c2v since it is isotropic. Therefore Span{Xw, TXw} has no non-zero T -

stable subspace. We have now proved surjectivity when m ≥ 3.

Suppose now X ′ ∈ Lf,T,∗{0,...,0}(K) maps to X. Then the image of X ′ in U/v, denoted suggestively
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by X ′2 is an n-plane isotropic to bα, it contains X and is bα-orthogonal to Span{X,TX}. Since

it does not contain v′+ < v >, we conclude that X ′2 = X2. Since the process from X2 to Xw is

just adjusting with the correct multiples of v, we see that X ′ = Xw. The way how the stabilizer

changes is identical to the odd case.

We now deal with the case m = 2. Write X1 = Span{w1+ < v >,X} and X2 = Span{w2+ <

v >,X}. We claim w1 /∈ v⊥ and likewise same with w2. Suppose for a contradiction that w1 ∈ v⊥.

Since Span{X,TX} is not isotropic with respect to bα, we see that Span{X,TX,w1+ < v >} is

an n+1 dimensional subspace of v⊥/v. As in the odd case, bα is non-degenerate on v⊥/v because

T − α acts invertibly on v⊥/v. However, taking ⊥α inside v⊥/v, we see that

Span{X,TX,w1+ < v >}⊥α ⊃ X1.

The left hand side has dimension n−1 while the right hand side has dimension n. Contradiction.

Finally, we lift each X i to Xwi by adding an appropriate multiples of v. The resulting Xwi

both maps to X under the reduction map. They are different from each other since their images

in U/v are different. Therefore we have proved surjectivity. The same argument as the above

shows that Xw1 and Xw2 are precisely the two pre-images of X. Stabilizers behave in the same

way as the odd case.

Corollary 1.58. |Lf,T,∗{0,0,...,0}(K)| = 2r+1 and every element has trivial stabilizer in JT .

Proof: Apply the reduction steps like in the odd case. There are now five base cases which

we illustrate as examples.

Example 1.59. (Generic case) Suppose reduction terminates with f(x) =
∏r+1

i=1 (x − αi) with

r ≥ 3. In this case, one can apply the theory for the nonsingular case discussed in Section 1.2.2

and get |Lf,T,∗| = 2|Lf,T | = 2r+1.

Example 1.60. Suppose reduction terminates with f(x) = (x−α)(x−β)(x−γ)2. If one tries to

apply reduction again on γ, then X becomes 0-dimensional. Let u, v, w1 denote the eigenvectors
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of T with eigenvalue α, β, γ respectively and let w2 be such that (T − γ)w2 = w1. We seek

coefficients c1, . . . , c4 such that X =< c1u+ c2v + c3w1 + c4w2 > lies in Lf,T,∗0,0,0 (K). Set

Ω1 = b(u, u) 6= 0, Ω2 = b(v, v) 6= 0, Γ3 = b(w1, w2) 6= 0, Γ4 = b(w2, w2).

Then the condition that Span{X,TX} is an isotropic 2-plane becomes:


Ω1 Ω2 Γ3 Γ4

(γ − α)Ω1 (γ − β)Ω2 0 Γ3

(γ − α)2Ω1 (γ − β)2Ω2 0 0





c21

c22

2c3c4

c24


=



0

0

0

0


Since Γ3,Ω1,Ω2 are nonzero, the above matrix has a 1-dimensional kernel. Moreover, if any one

of c1, c2, c4 is zero, then they are all zero and X is of the form < c3w1 > which does not lie in

Lf,T,∗0,0,0 (K). Now, given non-zero c1, c2, c4, one gets a unique solution for c3. Therefore, there are

8 = 23 choices for X depending on which square roots one chooses for c1, c2, c4.

Example 1.61. Suppose reduction terminates with f(x) = (x − α)3(x − β). Let u1, v denote

the eigenvectors of T with eigenvalue α, β respectively and let u2, u3 be such that (T − α)2u3 =

(T − α)u2 = u1. We seek coefficients c1, . . . , c4 such that X =< c1u1 + c2u2 + c3u3 + c4v > lies

in Lf,T,∗0,0 (K). Set

Ω = b(v, v) 6= 0, Γ4 = b(u1, u3) = b(u2, u2) 6= 0, Γ5 = b(u2, u3), Γ6 = b(u3, u3).

Then the condition that Span{X,TX} is an isotropic 2-plane becomes:


Γ4 Γ5 Γ6 Ω

0 Γ4 Γ5 (β − α)Ω

0 0 Γ4 (β − α)2Ω





c22 + 2c1c3

2c2c3

c23

c24


=



0

0

0

0


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Since Γ4,Ω are nonzero, the above matrix has a 1-dimensional kernel and if any one of c2, c3, c4

is zero, then all of them are zero and X is of the form < c1u1 > which does not lie in Lf,T,∗0,0 (K).

Now, given non-zero c3, c4, one gets a unique solution for c1, c2. Therefore, there are 4 = 22

choices for X depending on which square roots one chooses for c3, c4.

Example 1.62. Suppose reduction terminates with f(x) = (x− α)2(x− β)2. Let u1, v1 denote

the eigenvectors of T with eigenvalue α, β respectively and let u2, v2 be such that (T − α)u2 =

u1, (T − β)v2 = v1. We seek coefficients c1, . . . , c4 such that X =< c1u1 + c2u2 + c3v1 + c4v2 >

lies in Lf,T,∗0,0 (K). Set

Γ3 = b(u1, u2) 6= 0, Γ4 = b(u2, u2), Ω3 = b(v1, v2) 6= 0, Ω4 = b(v2, v2).

Then the condition that Span{X,TX} is an isotropic 2-plane becomes:


Γ3 Γ4 Ω3 Ω4

0 Γ3 (β − α)Ω3 Ω3 + (β − α)Ω4

0 0 (β − α)2Ω3 2(β − α)Ω3 + (β − α)2Ω4





2c1c2

c22

2c3c4

c24


=



0

0

0

0


Since Γ3,Ω3 are nonzero, the above matrix has a 1-dimensional kernel. If any one of c2, c4 is zero,

then both of them are zero and X is of the form < c1u1 + c3v1 >. In this case, Span{X,TX}

either contains < u1 > or < v1 > both of which are T -stable thereby forcing X /∈ Lf,T,∗0,0 (K).

Note if c1 and c3 are both non-zero, then X satisfy the weaker condition that X contains no

non-zero T -stable subspace. Moreover, X ∈ Lf,T,∗1,1 (K) violates Condition (1.11). It is clear that

there are infinitely many such X.

Now, given non-zero c2, c4, one gets a unique solution for c1, c3. Therefore, there are 4 = 22

choices for X depending on which square roots one chooses for c2, c4.

Example 1.63. Suppose reduction terminates with f(x) = (x−α)4 Let u1 denote the eigenvector
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of T with eigenvalue α and let u2, u3, u4 be such that

(T − α)3u4 = (T − α)2u3 = (T − α)u2 = u1.

We seek coefficients c1, . . . , c4 such that X =< c1u1 + c2u2 + c3u3 + c4u4 > lies in Lf,T,∗0 (K). Set

Γ5 = b(u1, u4) 6= 0, Γ6 = b(u2, u4) = b(u3, u3), Γ7 = b(u3, u4), Γ8 = b(u4, u4).

Then the condition that Span{X,TX} is an isotropic 2-plane becomes:


Γ5 Γ6 Γ7 Γ8

0 Γ5 Γ6 Γ7

0 0 Γ5 Γ6





2c1c4 + 2c2c3

2c2c4 + c23

2c3c4

c24


=



0

0

0

0


Since Γ5 is nonzero, the above matrix has a 1-dimensional kernel and if c4 is zero, then c3 is also

zero. In this case, any X of the form < c1u1 + c2u2 > solves the above equation. However, for all

such lines, Span{X,TX} contains the T -stable subspace < u1 > thereby forcing X /∈ Lf,T,∗0 (K).

Note if c1 6= 0, then Span{X,TX} =< u1, u2 > and X ∈ Lf,T,∗2 (K) violating Condition 1.11

while all such X still satisfy the weaker condition that it contains no non-zero T -stable subspace.

Now, given a non-zero c4, one gets a unique solution for c1, c2, c3. Therefore, there are 2 = 21

choices for X depending on which square root one chooses for c4.

Proof of Theorem 1.54: Applying Lemma 1.55 repeatedly gives a bijection

Lf,T,∗{d1,...,dr+1}(K)
∼−−→
δ

L
∏
i(x−αi)mi−2di ,T ′,∗
{0,0,...,0} (K),

and for any X ∈ Lf,T,∗{d1,...,dr+1}(K),

|StabJT (X)| = 2a|StabJT ′ (δ(X))|.
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The polynomial g(x) =
∏

i(x−αi)mi−2di has r+1−a distinct roots, hence applying Corollary

1.58 to g then dividing by 2 to go from |Lf,T,∗| to |Lf,T | completes the proof.
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1.5.2 Torsor for J

Suppose now U has dimension N = 2n + 2 for n ≥ 1. As above, suppose Q = Q1 is non-

degenerate and denote by T the associated self-adjoint operator on U . As in Section 1.2.1, let

C be the (possibly singular) hyperelliptic curve parameterizing the rulings in the pencil. It is

isomorphic over k, not canonically, to the hyperelliptic curve defined by

y2 = (−1)n+1 det(Q) det(xI − T ) = disc(Q) det(xI − T ).

To give a point on C is the same as giving a quadric in the pencil along with a choice of ruling.

Let C̃ denote its normalization. The geometric genus pg of C is defined to be the genus of C̃.

Let Csm denote the smooth locus of C.

Lemma 1.64. If W is an n+ 1 dimensional subspace of U ⊗ks isotropic with respect to Q1, Q2,

then W is T -stable, where n ≥ 0.

Proof: Take any λ ∈ k that is not an eigenvalue of T . Then W = W⊥Q = W⊥Qλ . Hence,

for any w ∈ W, (T − λ)w ∈ W⊥Q = W. In other words, W is T -stable.

Proposition 1.65. The base locus B contains no Pn if and only if pg ≥ 0. When C is reducible,

or equivalently pg = −1, the base locus B contains a unique Pn.

Proof: Without loss of generality, assume k is separably closed. Suppose W is an n + 1

dimensional subspace of U such that PW ⊂ B. The above lemma says W contains an eigenvector

v of T . Since W is isotropic, the eigenvalue of v has multiplicity at least 2. One can now

reduce the problem to U = v⊥/v and W is n-dimensional. Applying the above lemma and

reduction repeatedly until dimU = 2 and dimW = 1. Apply the above lemma again, we see

that T has a repeated eigenvalue and hence all the generalized eigenspaces of T have even

dimension which implies that C is reducible. Conversely when C is reducible, W is the unique

1-dimensional eigenspace of T hence proving uniqueness. Existence follows from running the

argument backwards.
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Let F0 denote the following variety over k,

F0 = {PX|dimPX = n− 1,PX ⊂ B}.

In view of the above subsection, we impose an open condition and look at the following variety,

F = {PX ∈ F0|Span{X,TX} has no non-zero T -stable subspace}. (1.12)

Lemma 1.66. Suppose pg ≥ 0, then

F = {PX ∈ F0|X * v⊥, for all singular points [v] ∈ B}

= {PX ∈ F0|[v] /∈ PX, for all singular points [v] ∈ B}.

Proof: Suppose PX ∈ F . Let [v] be any singular point of B, since v is an eigenvector,

v /∈ X. If X ⊂ v⊥, then P(Span{X, v}) is a Pn contained in B, contradicting Proposition 1.65.

Conversely, suppose PX /∈ F, then v ∈ Span{X,TX} for some eigenvector v of T . Since X

is a isotropic with respect to every quadric in the pencil, we see that v ∈ Span{X,TX} ⊂ X⊥

and hence X ⊂ v⊥.

For the second equality, suppose first X ⊂ v⊥ for some singular [v] ∈ B. If v /∈ X, then

aftering reduction to v⊥/v, (X ∩ v⊥)/v has dimension n which contradicts Proposition 1.65.

Hence v ∈ X. Conversely, if v ∈ X, then X ⊂ v⊥ as above.

Remark 1.67. The main reason why F was defined as in (1.12) instead of the more conceptual

ones in Lemma 1.66 is that there is still some interesting geometry when pg = −1 as we saw in

the previous subsection, and in that case, (1.12) is the more appropriate definition.

Theorem 1.68. Suppose pg ≥ 0 and C only has nodal singularities. Then there is a commutative

algebraic group structure +G defined over k on the disconnected variety

G = Pic0(C) ∪̇F ∪̇Pic1(C) ∪̇F ′

60



such that,

1. G0 = Pic0(C) with component group G/G0 ' Z/4Z,

2. F ′ is isomorphic to F as varieties via the inversion map −1G,

3. the group law extends that on H = Pic(C)/ZD0 ' Pic0(C) ∪̇Pic1(C) where D0 is the

hyperelliptic class.

From now on, we assume that pg ≥ 0. Since the base locus contains no Pn, one can define

τ : C × F0 → F0 as in the generic case.

Lemma 1.69. τ restricts to a morphism Csm × F → F.

Proof: Recall that given a pair (c,PX) ∈ Csm×F, there is a unique PY ' Pn in the quadric

and the ruling defined by c, then τ(c,PX) is the residual intersection of PY with the base locus.

The claim here is that τ(c,PX) ∈ F. Suppose for a contradiction that PX ′ := τ(c,PX) ∈ F0−F.

Then by Lemma 1.66, there exists a singular point [v] ∈ B such that X ′ ⊂ v⊥. Hence the linear

space Span{X ′, v} is isotropic with respect to every quadric in the pencil. Proposition 1.65

implies that v ∈ X ′. Since X and X ′ intersect at codimension 1 and v /∈ X, we see that

PY = Span{PX, τ(c,PX)} = Span{PX, [v]}.

Since PY lies in the quadric Qα where α is the eigenvalue of v, we see that c = (α, 0) /∈ Csm.

Contradiction.

As in the generic case, one obtains an action of Csm on F ∪̇F ′,

PX + (c) = −τ(c)PX, −PX + (c) = τ(c)PX. (1.13)

This action extends to an action of Div(Csm) on F ∪̇F ′. To show that this descends to a simply-

transitive action of Pic0(C), we assume k = ks and work over the algebraic closure. Let v

be an eigenvector with eigenvalue α of multiplicity m ≥ 2. As usual, let (U,Q) denote the
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2n-dimensional quadratic space v⊥/v, let T denote the descent of T to U . Let C denote the

(possible singular) hyperelliptic curve

y2 = disc(Q) det(xI − T ) = disc(Q) det(xI − T )/(x− α)2.

Note C → C is a partial normalization of C. There is a natural inclusion ι : Csm ↪→ C
sm
. Define

F and F 0 in the analogous way as F and F0. Suppose PX ∈ F, write X = (X ∩ v⊥)/v. Lemma

1.66 implies that X has the correct dimension. It is clear therefore X ∈ F 0.

Lemma 1.70. Span{X,TX} has no non-zero T -stable subspace.

Proof: Note this is immediate when C has only nodal singularities for this reduction step

kills the α-generalized eigenspace and leaves the rest unchanged. In general, by Lemma 1.66,

it suffices to show X does not contain any singular point of B. Let v′ ∈ U be such that

(T −α)v′ = v. Then X could possibly contain a singular point of B if m ≥ 4 and v′+ cv ∈ X for

some c ∈ k. The latter condition implies v = (T − α)(v′ + cv) ∈ X⊥ contradicting X * v⊥.

Denote this reduction step by δv : F → F . We now have the following commutative diagram,

Csm × F
ι×δv
��

// F

δv
��

C
sm × F // F

The natural map C → C induces a map J(C) → J(C) on their Jacobians with kernel either

Gm if the multiplicity m of α is 2, or Ga if m ≥ 3. We now show that δv is surjective and the

preimage of every point is isomorphic to ker(J(C) → J(C)). Let bα denote the bilinear form

bα(u, u′) = b(u, (T − α)u′) and by ⊥α the operation of taking perpendicular space with respect

to bα. Fix any X ∈ F . The bilinear form bα descends to a non-degenerate form on the 2n + 1
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dimensional space U/v. Inside this space, we have

dimX
⊥α
/X = 3,

dim (X
⊥α ∩ v⊥)/X = 2.

Stated in a different way, bα defines a smooth conic C0 in P2 = P(X
⊥α
/X) and l = P((X

⊥α ∩

v⊥)/X) is a line intersecting the conic at either one point or two points.

Lemma 1.71. l intersects C0 tangentially if and only if m ≥ 3, in which case the point of

intersection is [v′+ < v > +X], where v′ ∈ U is such that (T − α)v′ = v.

Proof: Suppose l intersects C0 at a point w+ < v > +X. To say l intersects C0 tangentially

at w+ < v > +X is equivalent to saying

w+ < v >∈ X⊥α , bα(w,w) = 0, w⊥α ∩X⊥α = v⊥ ∩X⊥α . (1.14)

Since v′⊥α = v⊥, we have v′ ∈ (v⊥)⊥α . Thus (v⊥ ∩ X⊥α)⊥α ∩ X⊥α is the line spanned by

v′+ < v > . Since w ∈ (w⊥α)⊥α , we see that up to scaling w+ < v >= v′+ < v >. Finally,

bα(v′, v′) = b(v′, v) = 0 if and only if m ≥ 3.

Conversely, suppose m ≥ 3, then v′ ∈ v⊥ and it is easy to see w = v′ satisfies (1.14).

Now given any point [w+ < v > +X] ∈ C0− l, we can proceed to find a lift of X to Xw ∈ F
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as follows. Since b(w, v) 6= 0, we can choose a lift of w ∈ U unique up to scaling such that

b(w,w) = 0 by adding an appropriate multiple of v, then take

Xw = Span{w, u− b(w, u)

b(w, v)
v}u+<v>∈X ⊂ U.

To check Xw ∈ F, we only need to check Xw * v⊥, which is clear since b(w, v) 6= 0. For any

two points in C0 − l, the corresponding lifts to F are distinct as they have different images in

U/v. Lastly, if X ∈ F such that δv(X) = X, then the image of X in U/v must be of the form

Span{X,w+ < v >} for some w+ < v > +X ∈ C0 − l. Therefore, we have prove the following

proposition.

Proposition 1.72. δv : F → F is surjective. The fibers are isomorphic to either (a conic minus

a point)' Ga when m ≥ 3, or (a conic minus two points)' Gm when m = 2. The kernel of the

map J(C)→ J(C) has the same property.

One can now apply this reduction with any singular point of B and so on. For each i such

that mi ≥ 2, let vi,1 denote an eigenvector of T with eigenvalue mi, and let vi,j be such that

(T −αi)vi,j = vi,j−1 for j = 2, . . . , bmi−1
2
c. Let V denote the linear span of all such vi,j. The above

reduction will terminate at the 2pg + 2 dimensional vector space Ũ = V ⊥/V . The data (Q, T )

descends to (Q̃, T̃ ) on the 2pg + 2 dimensional vector space Ũ = V ⊥/V with T̃ regular semi-

simple. Let F̃ denote the variety of (linear) pg-dimensional common isotropic subspaces X̃ ⊂ Ũ .

Let δ : F → F̃ denote the composite of all the reductions. The associated smooth hyperellipitic

curve C̃ is the normalization of C. Note that if k is arbitrary, then V is defined over k and the

composite δ is defined over k. We summarize the above discussion into the following Theorem.

Theorem 1.73. Suppose pg ≥ 0 and k is algebraically closed. Then:

1. The map δ : F � F̃ is surjective. The pre-image of every point has a filtration with Ga

and Gm factors. The kernel of the natural map J(C) → J(C̃) has a filtration with the

same factors.
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2. There is an action of Div0(Csm) on F that descends to the simply-transitive action of J(C̃)

on F̃ .

Therefore to prove Theorem 1.68, it remains to show that the action of Div(Csm) on F ∪̇F ′

descends to a simply-transitive action of Pic(C) on F ∪̇F ′. Once again we pass to the algebraic

closure and use the same formal argument as in the generic case. We list the “non-formal”

results one needs to verify in the regular case.

1. Lemma 1.20, which allows one to define the ∞-minimal form of a divisor class [D] ∈ J(C)

and hence a morphism ϕ : J → Aut(F ). Here we need to assume that C has a smooth

Weierstrass point.

2. Show ϕ is a group homomorphism, to conclude that principal divisors supported on Csm

act trivially on F ∪̇F ′.

3. The existence part of Lemma 1.19, to conclude that the action of J on F is transitive.

4. The uniqueness part of Lemma 1.19, to conclude that the action is simply-transitive.

Lemma 1.20 still holds in the singular case because Riemann-Roch holds in the singular case

([10]). Suppose C has a smooth Weierstrass point ∞, which it always has if C only has nodal

singularity and pg ≥ 0. Every class [D] ∈ J(C) has a ∞-minimal form [D′ − r(∞)] where D′ is

effective of degree r ≥ n supported on Csm and h0(D) = 1. This allows us to define a morphism

of varieties ϕ : J → Aut(F ). The image of ϕ lies in a commutative subvariety of Aut(F ).

We now specialize to the case where C only has nodal singularities, so J is an extension of

an abelian variety J̃ of dimension pg by an n− pg dimensional torus S.

Lemma 1.74. ϕ is a morphism of algebraic groups.

Proof: The proof is very similar to the proof that a morphism between semi-abelian varieties

mapping the identity to the identity is a group homomorphism. For any s ∈ S, its image in J̃ is
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0, hence it acts on the fibers of the map δ : F → F̃ which are also tori. Therefore ϕ|S is a group

homomorphism. For any a ∈ J, we define ϕa : S → Aut(F ) by

ϕa(s) = ϕ(a)ϕ(s)ϕ(as)−1.

Fix any x ∈ F , we have δ(x) = δ(ϕa(s)(x)). Let S ′ denote the fiber of δ over δ(x), we have

thus defined a map ϕa,x : S → S ′ between tori, which is automatically a group homomorphism.

Letting a vary, one obtains a map ϕx : J → End(S, S ′). Since J is connected and End(S, S ′) is

discrete, ϕx is constant. Taking any s ∈ S, we see ϕx(a) = ϕx(s) is the trivial map S → S ′.

Letting x vary, we have proved that

ϕ(a)ϕ(s) = ϕ(as), ∀a ∈ J, s ∈ S. (1.15)

Now fix a ∈ J and view ϕa as a morphism J → Aut(F ). Since ϕa vanishes on S and (1.15)

allows us to descend ϕa to a morphism J̃ → Aut(F ). Once again, fixing any x ∈ F, ϕa(a′) acts

on the fiber over δ(x). Hence we have a morphism ϕa,x : J̃ → S ′ which is trivial since J̃ is an

abelian variety and S ′ is a torus. Letting x vary, one sees that ϕa is trivial. Letting a vary gives

the desired result.

As in the proof of Proposition 1.17, we have shown that principal divisors supported on

Csm act trivially on F ∪̇F ′. Next we show transitivity of this action. Since Div(Csm) also

acts on F0 ∪̇F ′0 and F ∪̇F ′ is open in F0 ∪̇F ′0, by taking Zariski closure one sees that principal

divisors supported on Csm act trivially on F0 ∪̇F ′0. Since being supported on Csm is also an open

condition, one also has that principal divisors on C act trivially on F0. The existence part of

Lemma 1.19 can be applied to F0 since the defining map C → P1 admits no section. In other

words, given x, x′ ∈ F, view them as in F0 where there exists an effective divisor D ∈ Div(C)

such that x + D = ±x′. Let D′ be a divisor supported on Csm linearly equivalent to D. Since

principal divisors on C act trivially, x + D′ = x + D = ±x′. Transitivity then follows from

the formal argument in the proof of Proposition 1.16. Note here the existence of a smooth
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Weierstrass point is needed because we need to know there exists PX ∈ F such that TPXB ' Pn.

The uniqueness part of Lemma 1.19 also holds for F0. The argument in [7] works since there

is no injective map from P1 to C when the arithmetic genus n of C is at least 1. The same

formal argument in the generic case then implies that only principal divisors act trivially. Note

that for the proof of Lemma 1.25, it is important there is a smooth Weierstrass point ∞ for we

need to know that there are finitely many element of F fixed by τ(∞). The following result is

immediate from Theorem 1.68 and Theorem 1.73.

Corollary 1.75. Suppose pg ≥ 0 and C only has nodal singularities. Then the short exact

sequence

1→ T → J(C)→ J(C̃)→ 1

extends to a short exact sequence

1→ T → G→ G̃→ 1,

where G = Pic0(C) ∪̇F ∪̇Pic1(C) ∪̇F ′ and G̃ = Pic0(C̃) ∪̇F̃ ∪̇Pic1(C̃) ∪̇F̃ ′ are the corresponding

disconnected groups of four components.

Now over the algebraic closure, after identifying F with J(C), one can obtain a compact-

ification of J(C) by taking F0. Recall for any singular [v] ∈ B, we have the reduction map

δv : F0 → F 0. Note this map might not be a morphism. The composition of all the reduction

map gives δ : F0 → F̃ ' J(C̃). Each fiber of δv intersects F0\F at one point, obtained by taking

the preimage of PX ∈ F 0 under the map v⊥ → v⊥/v.

Corollary 1.76. Suppose pg ≥ 0 and C has only nodal singularities, then F0 is a compactifica-

tion of J(C) by adding one point to each Gm factor of the fiber over J(C̃).

We expect that the condition on C having only nodal singularities is unnecessary. If Theorem

1.68 is proved without this condition, then Corollary 1.76 also holds without this condition. The

compactification F0 is not smooth.
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2 Principal homogeneous spaces of Jacobians

In this chapter, we will use the geometric theory obtained in the previous chapter to obtain a

correspondence between the problem of 2-descent on Jacobian of hyperelliptic curves over k and

the study of certain k-orbits of the natural PO or PSO action on self-adjoint operators. We

keep the assumption that the characteristic of k is not 2. All polynomials are assumed to split

completely over the separable closure.

2.1 Weil’s viewpoint

The idea of studying torsors F of abelian varieties J of order n by studying a disconnected

algebraic group

G = J ∪̇F ∪̇F 2 ∪̇ · · · ∪̇F n−1 (2.1)

was originally due to André Weil. Knowing the class [F ] ∈ H1(k, J)[n] gives rise to a J-

equivariant from n copies of F to J ,

f : F × · · · × F → J, (2.2)

unique up to post-composition by translation by some [D] ∈ J(k). Here J-equivariance means

that for X1, . . . , Xn ∈ F and [D1], . . . , [Dn] ∈ J,

f(X1 + [D1], . . . , Xn + [Dn]) = f(X1, . . . , Xn) + [D1] + · · ·+ [Dn].

Knowing the group G, on the other hand, pins down this choice.

Suppose (char(k), n) = 1, so that multiplication by n is surjective on J(ks). One has the

following descent exact sequence

0→ J(k)/nJ(k)
δ−→ H1(k, J [n])→ H1(k, J)[n]→ 0. (2.3)
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There is a very simple relationship between the choice of f in (2.2) and the choice of a lift of

[F ] to a torsor of J [n]. Namely, define

F [n]f = {x ∈ F |f(x, x, . . . , x) = 0}.

The assumption of the characteristic of k implies that F [n]f (k
s) is non-empty. Furthermore, it

is clear from the definition that F [n]f is a torsor of J [n] and it maps to [F ] in H1(k, J)[n].

If one post-composes f by translation by [D] ∈ J(k) and call the new map f + [D], then

again by definition,

[F [n]f+[D]] = [F [n]f ] + δ([D]) ∈ H1(k, J [n]).

Two maps f1, f2 are equivalent if they differ by some [D] ∈ nJ(k). This notion of equivalence

is the same as the usual equivalence among morphisms of torsors.

Proposition 2.1. There is a bijection between equivalence classes of J-equivariant morphisms

f : F × · · · × F → J and lifts of [F ] to torsors of J [n].

If moreover one has the datum of the disconnected group G as in (2.1), then one has a specific

f and a specific lift. Namely

F [n]0 := {x ∈ F |nx = 0 ∈ G}.

All the other lifts are given by

F [n][D] = {x ∈ F |nx = [D] ∈ G}

for [D] ∈ J(k). Two lifts F [n][D1], F [n][D2] are equivalent if and only if [D1] = [D2] (mod nJ(k)).
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2.2 Pencil of quadrics containing a rational singular quadric

Let U be a vector space over k of dimension 2n+ 2. Let L(Q1, Q2) be a rational generic pencil

in P2n+1 = PU with associated hyperelliptic curve

C : y2 = f(x) = (−1)n+1 det(xQ1 −Q2).

Note C has a rational Weierstrass point if and only if f(x) has a root over k if and only if one of

the rational quadrics in L is singular. In this section, we assume such is the case, and by moving

this point to ∞, we assume that Q1 is singular and that f(x) has odd degree. Denote the cone

point of Q1 by [v∞] for some v∞ ∈ U . Let J denote the Jacobian of C.

Let F denote the variety of (n−1)-planes contained in the base locus B = Q1∩Q2. Theorem

1.27 shows that F fits inside a disconnected algebraic group over k,

G = J ∪̇F ∪̇Pic1(C) ∪̇F ′.

Since Pic1(C) has a point, namely (∞), we can lift [F ] ∈ H1(k, J)[2] to a torsor of J [2] via

F [2]∞ = {PX ∈ F |PX +G PX = (∞)} = {PX ∈ F |PX = τ(∞)PX}.

Proposition 2.2. Let H = v
⊥Q2∞ be the hyperplane in U orthogonal to v∞ with respect to Q2.

Then

F [2]∞ = {PX|PX ⊂ B ∩ PH, dim(PX) = n− 1} ⊂ Gr(n− 1,PH).

Proof: Note H is independent of the choice of Q2 ∈ L(k), so we assume without loss

of generality that Q2 is nonsingular. Let [vP ] denote the cone point of the singular quadric

corresponding to the Weierstrass point P ∈ C(ks). Let b2 denote the associated bilinear form of

Q2. Genericness forces b2(vP , vP ) 6= 0.

To compute τ(P )PX for PX ∈ F (ka), one takes the n-plane spanned by PX and [vP ] and

takes its residue intersection with Q2. As we saw in the definition of τ in Section 1.2, the action
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of τ(P ) on F is induced by the following map on U ⊗ ka :

reflP : x 7→ x− 2
b2(x, vp)

b2(vp, vp)
vp, (2.4)

and hence

{PX ∈ F (ka)|PX = τ(P )PX} = {PX ' Pn−1ka |PX ⊂ B ∩ Pv⊥Q2
P }.

When vP is k-rational, reflP and v
⊥Q2
P are defined over k and we obtain the desired result.

Remark 2.3. Since f has no repeated factors, L ∩H is a rational generic pencil of quadrics in

P2n. We have seen in Section 1.1 that if Q1 restricted to H is split, then the variety of (n− 1)-

planes contained in the base locus of L ∩H forms a principal homogeneous space for J [2]. We

will see later that the two torsors of J [2] coincide.

2.3 Orbits of an action of PO2n+1

Suppose now (U0, Q0) is a 2n + 1 dimensional orthogonal space over k. We would like to study

the orbits of the conjugation action of PO(U0, Q0) on Vf , the space of self-adjoint operators T

on U0 with fixed characteristic polynomial f(x). We also assume f(x) has no repeated roots.

We have seen in Proposition 1.1 that there is only one geometric orbit, that is over the

separable closure, self-adjoint operators with the same characteristic polynomial are conjugate

to each other by an element of PO(U0, Q0)(k
s). The goal of this section and the next is to study

how this one geometric orbit decomposes over the base field k.

Since multiplying Q0 by a constant in k× does not change Vf or PO(U0, Q0), we assume

without loss of generality that Q0 has discriminant 1. As pointed out in Section 1.1, Vf (k) could

be empty in general. Hence in what follows, Q0 is assumed to be split, and we write PO2n+1 for

PO(U0, Q0).

Fix any (T0, X0) ∈ Wf (k), which is also nonempty by Lemma 1.2, the PO2n+1(k)-orbits of
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Vf (k) are in bijection with

ker
(
H1(k, Stab(T0))→ H1(k,PO2n+1)

)
. (2.5)

Let C be the hyperelliptic curve defined by y2 = f(x) and J its Jacobian. By Corollary 1.5,

for each T ∈ Vf (k), one can identify Stab(T ) with J [2] and obtain a class cT in H1(k, J [2]) by

taking

WT = {X|(T,X) ∈ Wf}.

Lemma 2.4. The map

PO2n+1(k)\Vf (k)→ ker
(
H1(k, J [2])→ H1(k,PO2n+1)

)
is given by T 7→ cT .

Proof: Fix any T ∈ Vf (k), suppose g ∈ PO2n+1(k
s) sends T0 to T . The class inH1(k, Stab(T0))

corresponding to the orbit of T is (g−1σg)σ. Set X = gX0. The class in H1(k, Stab(T )) corre-

sponding to WT is (σgg−1)σ for it is the element in Stab(T ) sending X to σX. These two classes

have the same image in H1(k, J [2]) because the composite map

Stab(T0) ' J [2] ' Stab(T )

is induced by the conjugation by g map on PO2n+1.

The distinguished orbit corresponds to the trivial class in H1(k, J [2]). It consists of self-

adjoint operators T such that WT (k) 6= ∅, namely there exists a linear n-dimensional subspace

X ⊂ U defined over k such that X ⊂ X⊥, TX ⊂ X⊥.

There is another special collection of orbits. Let b denote the bilinear form associated to Q0.

For any T ∈ Vf (k), consider the 2n+ 2 dimensional vector space U = U0 ⊕ k with the following
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two quadratic forms

Q(v, w) = b(v, v)

QT (v, w) = b(v, Tv) + w2.

Let FT denote the following variety:

FT = {PX|dim(PX) = n− 1, X ⊂ X⊥Q , X ⊂ X⊥QT } ⊂ Gr(n− 1,PU).

The soluble orbits are the PO2n+1(k)-orbits of self-adjoint operators T for which FT (k) 6= ∅.

Theorem 2.5. The soluble orbits correspond bijectively to the image of J(k)/2J(k) inH1(k, J [2]).

In particular, the composition

J(k)/2J(k)
δ−→ H1(k, J [2])→ H1(k,PO2n+1)

is trivial.

In this section we will only show that the soluble orbits lands inside δ(J(k)/2J(k)). Surjec-

tivity will be proved in the next section after a 2-descent analysis on J .

Lemma 2.6. The pencil of quadrics spanned by Q,QT in P(U) is rational generic.

Proof: Rationality is clear. Genericness follows from the following computation.

(−1)n+1 det(xQ−QT ) = (−1)n+1 det(b) det(xI − T ) · (−1)

= (−1)n det(b)f(x)

= f(x).

If we denote the roots of f over ks by α1, . . . , α2n+2, the 2n + 2 singular quadrics in the pencil

are Q,α1Q−QT , . . . , α2n+1Q−QT .
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The hyperelliptic curve associated to the pencil is defined by the affine equation

y2 = (−1)n+1 det(xQ−QT ) = f(x),

which is the same as the curve C defined above. The pencil contains a rational singular quadric

Q and the curve C has a rational Weierstrass point ∞. Therefore we are in the situation in

Section 2.2 and FT is a torsor for J of order dividing 2.

The cone point of Q is [v∞] = [0, . . . , 0, 1]. The hyperplane PH = P(v
⊥QT∞ ) is P(U0). Hence

by Proposition 2.2, FT [2]∞ = WT as Gal(ks/k)-sets, in the sense

FT [2]∞ = {PX|X ∈ WT}. (2.6)

Proposition 2.7. FT [2]∞ = WT as J [2]-torsors. Therefore

[FT [2]∞] = cT ∈ H1(k, J [2]).

Proof: It suffices to show for any (P ) − (∞) ∈ J [2](ks) with P a Weierstrass point, the

two actions are the same. Let α denote the root of f(x) corresponding to P , and set h(x) =

f(x)/(x − α). On WT (ks), by Remark 1.6, the action of (P ) − (∞) is induced by the following

map on U0 ⊗ ks :

x 7→ x− 2
h(T )

h(α)
x.

We now compute the action of (P )− (∞) on FT [2]∞(ks). The singular quadric corresponding

to P is αQ−QT . Let wP ∈ U0⊗ ks be an eigenvector of T with eigenvalue α. The cone point of

αQ−QT is [(wP , 0)]. Let bT denote bilinear form associated to QT . From the definition of τ in

Section 1.2, we see that the action of (P )− (∞) is induced by the following map on U ⊗ ks :

x 7→ x− 2
bT (x, (wP , 0))

bT ((wP , 0), (wP , 0))
(wP , 0).
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If we view each PX ∈ FT [2]∞(ks) as sitting inside P(U0), then the action of (P )− (∞) is induced

by the following map on U0 ⊗ ks :

x 7→ x− 2
b(x,wP )

b(wP , wP )
wP .

To prove the lemma, it remains to show for any x ∈ U0 ⊗ ks,

h(T )

h(α)
x =

b(x,wP )

b(wP , wP )
wP .

Since both sides are killed by T − α, and since T has 1-dimensional eigenspaces, they are both

scalar multiples of wP . Now

b(
h(T )

h(α)
x,wP ) = b(x,

h(T )

h(α)
wP ) = b(x,wP ) = b(

b(x,wP )

b(wP , wP )
wP , wP ).

Therefore they are the same scalar multiple of wP .

Remark 2.8. Equation (2.6) offers another view point for the canonical identification of J [2]

with the stabilizer of a self-adjoint operator, namely they share a common principal homogeneous

space. Fix any k-rational T , then J [2] acts on F [2]∞ simply-transitively and Stab(T ) acts on

WT simply-transitively. It is clear from the definitions that these two actions commute. Fix

some X0 ∈ F [2]∞, one can define the map

ι : J [2]→ Stab(T )

by taking ι([D]), for any [D] ∈ J [2], to be the unique element of Stab(T ) sending X0 to X0 +[D].

Commutativity of the two actions and commutativity of J [2] show that this map is independent

on the choice of X0. Proposition 2.7 then implies that ι is given by the map we defined in Remark

1.6.
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Corollary 2.9. The composite map

PO2n+1(k)\Vf (k)→ H1(k, J [2])→ H1(k, J)[2]

is given by T 7→ [FT ].

Corollary 2.10. The soluble orbits map into the image of J(k)/2J(k) in H1(k, J [2]). The

correspondence is given by T 7→ cT = δ(PX +G PX − (∞)) for any PX ∈ FT (k), where +G is

the addition law on G = J ∪̇FT ∪̇Pic1(C) ∪̇F ′T as in Theorem 1.27.

Proof: The first claim is immediate from the definition of soluble orbits. Suppose T ∈ Vf (k)

is soluble and suppose [FT [2]∞] = δ([D]) for [D] ∈ J(k). Let X0 ∈ FT [2](ks) and [E] ∈ J(ks)

such that [D] = 2[E] and

X0 +X0 = (∞), σX0 −X0 = δ([D]) = σ[E]− [E].

Then X0 − [E] ∈ FT (k) and

2(X0 − [E])− (∞) = −[D] = [D] (mod 2J(k)).

2.4 Hyperelliptic curves with a rational Weierstrass point

In this section we aim to complete the proof of Theorem 2.5.

Let C be a hyperelliptic curve of genus n with a rational Weierstrass point, let J denote

its Jacobian. By moving the point to ∞, we can assume C is given by affine equation y2 =

f(x) where f(x) is a monic degree 2n + 1 polynomial. Let P1, . . . , P2n+1,∞ denote the 2n + 2

Weierstrass points. Then

J [2](ks) =< (Pi)− (∞)|
2n+1∑
i=1

((Pi)− (∞)) = div(y) = 0 > (2.7)
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is an elementary 2-group of order 22n. As a group scheme over k,

J [2] = ResL/kµ2/µ2 ' (ResL/kµ2)N=1

where L = k[x]/f(x) = k[β] is an étale k-algebra of dimension 2n+ 1. From the exact sequence

1→ (ResL/kµ2)N=1 −→ ResL/kµ2
N−→ µ2 → 1,

one gets by taking cohomology,

H1(k, J [2]) = (L×/L×2)N=1. (2.8)

Take any α ∈ (L×/L×2)N=1, we will first construct a torsor for J using pencils of quadrics

such that its canonical lift to a torsor of J [2] recovers the class α. Then we will show when α

lies in the image of J(k)/2J(k), there is a soluble orbit corresponding to it.

Lift α to an element in L× whose norm to k is a square. Denote the lift by α also. Let
√
α

denote a square root of α in L⊗ ks. Then the identification in (2.8) is given by

α 7→
(
σ
√
α√
α

)
σ

∈ H1(Gal(ks/k), µ2(L⊗ ks)×N=1).

Consider the quadric Q0 on L defined by the bilinear form

< λ, µ >α= coefficient of β2n in αλµ.

Since NL/k(α) is a square in k, Q0 has discriminant 1. Choosing a different lift of α does not

change the k-isomorphism type of Q0. Let T denote the multiplication by β operator, note T is

self-adjoint with respect to Q0. Let X0 be the following n-dimensional ks-subspace of L⊗ ks :

X0 = Spanks{
1√
α
,
β√
α
, · · · , β

n−1
√
α
}.
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Since T is k-rational, we can still use much of the theory in Section 2.3 even though a priori

Q0 might not be split. On P(L ⊕ k), there is a rational generic pencil of quadrics spanned by

Q,QT given by the following formula in terms of quadratic forms:

Q(v, w) = < v, v >α

QT (v, w) = < v, βv >α +w2.

Since Q0 has discriminant 1 and T has characteristic polynomial f(x), the hyperelliptic curve

associated to this pencil is C. Taking the variety FT of (n − 1)-planes in the base locus of this

pencil in P(L⊕ k) gives a torsor of J of order dividing 2.

Proposition 2.11. Its canonical lift [FT [2]∞] ∈ H1(k, J [2]) recovers α. In particular, all torsors

of J [2] arise from pencils of quadrics.

Proof: Since X0 ∈ WT (ks) = FT [2]∞(ks) and

σX0 =
σ
√
α√
α
X0

for all σ ∈ Gal(ks/k). We see that σ
√
α/
√
α is the element of Stab(T ) sending X0 to σX0. By

Proposition 2.7, FT [2]∞ = WT as J [2]-torsors. Hence, σ
√
α/
√
α is also the element of J [2] sending

X0 to σX0 viewed as elements of FT [2]∞.

Suppose now α lies in the image of J(k)/2J(k), then FT is the trivial torsor. Take any

PX ∈ FT (k), just as in the proof of Corollary 2.10, PX +G PX − (∞) recovers this class in

J(k)/2J(k). See Section 2.10 for some a different proof of this by explicitly writing down a

rational PX and calculating PX +G PX.

Since X is an n-dimensional k-subspace of L ⊕ k isotropic with respect to QT , we see that

the projection of X to L is again n-dimensional. Therefore Q0 is split of discriminant 1. Fix

any isometry between L and the orthogonal space U0 defined in Section 2.3, and let T ′ ∈ Vf (k)

denote the image of T . Any two isometries differ by an element g of O2n+1(k), and it changes T ′
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by conjugation by g. As the center of O2n+1(k) acts trivially on Vf (k), we obtain a well-defined

O2n+1(k)/(±1) = PO2n+1(k)-orbit of k-rational self-adjoint operators. This orbit is soluble by

construction and its class in H1(k, J [2]) is,

cT ′ = cT = α.

Hence we have established the surjectivity in Theorem 2.5, which we will state again for com-

pleteness.

Theorem 2.12. There is a bijection between J(k)/2J(k) and soluble orbits of self-adjoint op-

erators with characteristic polynomial f(x).

In fact, we can also describe all the other PO2n+1(k)-orbits. The above identification of L

with U0 only required the splitness of <,>α . Once we know <,>α is split, the image of T under

the identification gives us a PO2n+1(k)-orbit whose class in H1(k, J [2]) is α.

Proposition 2.13. For α ∈ (L×/L×2)N=1, <,>α is split if and only if α lies in

ker(H1(k, J [2])→ H1(k,PO2n+1)).

Proof: The heuristic here is that the image of α in H1(k,PO2n+1) = H1(k, SO2n+1) is the

class corresponding to the form <,>α, hence is trivial if and only if <,>α is split. Rigorously,

choose (T0, X0) ∈ Wf (k) and identify Stab(T0) ' J [2] as in Section 2.3. To compute the image

of α in H1(k,PO2n+1), we choose for each σ ∈ Gal(ks/k), a polynomial hσ(x) ∈ µ2(k
s[x]/f(x))

such that σ
√
α/
√
α = hσ(β). Then (hσ(T0))σ is its image in H1(k,PO2n+1). Let ι denote the

isometry defined over k from (L,<,>1) to (U0, Q0) that sends ·β to T0. Consider the following

sequence of isometries

(L,<,>α)
√
α−−→ks (L,<,>)

ι−→k (U0, Q0)
g−→ks (U0, Q0), (2.9)

where the subscripts below the arrows indicate the fields of definition and the last map is the
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standard action of some g ∈ O2n+1(k
s).

Now <,>α is split if and only if the above composite map is defined over k for some g ∈

O2n+1(k
s) if and only if

σghσ(T0)g
−1 = 1 for some g ∈ O2n+1(k

s),

if and only if

hσ(T0) = σg−1g for some g ∈ O2n+1(k
s),

if and only if

hσ(T0) = g−1σg for some g ∈ PO2n+1(k
s) since hσ(T0)

2 = 1,

if and only if

α ∈ ker(H1(k, J [2])→ H1(k,PO2n+1)).

Summary 2.14. PO2n+1(k)-orbits of self-adjoint operators with characteristic polynomial f(x)

are in bijection with

ker(H1(k, J [2])→ H1(k,PO2n+1)).

For each α in the kernel, lift it to L×. The quadratic space (L,<,>α) is split. Choose any

isometry over k between it and the model space U0, then the images of the multiplication by β

operator form a complete set of representatives of the PO2n+1(k).

α = 1 ⇐⇒ distinguished orbit

α ∈ J(k)/2J(k) ⇐⇒ soluble orbits.
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2.5 Quadratic refinement of the Weil pairing

For any principally polarized abelian variety A and any positive integer n, there is a Weil pairing

A[n]× A[n]→ µn.

Specializing to the Jacobian J of a curve C over k, one obtains a bilinear form

ι : H1(k, J [2])×H1(k, J [2])→ H2(k, µ2).

The goal of this subsection is to show when C is a hyperelliptic curve with a rational Weierstrass

point, one can obtain a quadratic refinement of this bilinear form as follows.

Identifying PO2n+1 with SO2n+1, we have the following diagram,

J [2]

��
1 // µ2

// Spin2n+1
// SO2n+1

// 1

where the inclusion J [2] ↪→ SO2n+1 is the identification of J [2] with the stabilizer of a fixed

rational self-adjoint operator T . Taking Galois cohomology gives the following composite map

of pointed sets,

q : H1(k, J [2])→ H1(k, SO2n+1)→ H2(k, µ2).

Theorem 2.15. q is a quadratic refinement for ι. In other words,

q(v + w)− q(v)− q(w) = ι(v, w),

for all v, w ∈ H1(k, J [2]).

Recall that J [2](ks) is generated by divisors of the form (Pi)− (∞). Denote by e2 the Weil

pairing. The following formula for e2 can be checked directly from its definition.
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Lemma 2.16.

e2((Pi)− (∞), (Pj)− (∞)) =


1 if i = j

−1 if i 6= j

In particular if we let P0 denote ∞, then

e2(
2n+1∑
i=0

ni(Pi),
2n+1∑
i=0

n′i(Pi)) = (−1)a

where a is the number of i such that ni ≡ n′i ≡ 1 (mod 2).

On the other hand, the diagram (2.9) above gives another simplectic pairing on J [2](ks).

Namely, given any two [D1], [D2] ∈ J [2](ks), let g̃1, g̃2 ∈ Spin(ks) be any lift of ι([D1]), ι([D2]) ∈

SO2n+1(k
s), then the element

([D1], [D2]) := g̃1g̃2g̃
−1
1 g̃−12 (2.10)

lies in the central µ2 and is independent on the choices of the lifts. Notice this pairing does not

depend on the rational T . If a different rational T ′ was used to define the inclusion from J [2]

to SO2n+1, one can choose some g ∈ SO2n+1(k
s) sending one to the other. Lift it arbitrarily to

g̃ ∈ Spin2n+1(k
s), the new pairing ([D1], [D2]) would differ form the old one by conjugation by

g̃ which acts trivially on the central µ2. Denote the bilinear form from H1(k, C) ×H1(k, C) to

H2(k,A) induced by this pairing (2.10) by −γ1 ∪ γ2.

Proposition 2.17. q is a quadratic refinement of this bilinear form.

Proof: Apply [14] Proposition 2.9 with A = µ2 central in B = Spin2n+1 ×SO2n+1
J [2] with

abelian quotient C = J [2].

Therefore to prove Theorem 2.15, it suffices to show that the simplectic pairing defined in

(2.10) is the same as the Weil pairing. The heuristic here is that for generic C, they both define

a S2n+1-invariant non-degenerate symplectic pairing

(Z/2Z)2n+1/(Z/2Z)× (Z/2Z)2n+1/(Z/2Z)→ Z/2Z, (2.11)
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where S2n+1 is the symmetric group on 2n+1 letters. A direct combinatoric argument shows that

such a pairing is unique. A rigorous argument can be made by using a family C of hyperelliptic

curve over a base V which we will use extensively in the next chapter. The 2-torsion J [2] of its

relative Picard scheme is an étale group scheme over S, and so is the Hom scheme HomV (J [2]×

J [2], µ2). The two pairings give two sections of the latter scheme over V . They coincide on the

generic fiber of V , therefore they coincide throughout V .

In this section, we give a more computational proof for the equality of the two pairings as an

exercise in computation in Spin. It suffices to work over the separable closure. Recalling some

notations, let f(x) denote the monic polynomial of degree 2n + 1 that defines the hyperelliptic

curve C, let α1, . . . , α2n+1 denote its roots. For each i, put hi(x) = f(x)/(x− αi). Let L denote

the model space k[x]/f(x) of dimension 2n + 1 with power basis {1, β, . . . , β2n} equipped with

the usual split bilinear form <,> . Fixing an isometry over k between (L,<,>) and the original

split space (U,<,>), we transfer all problems over to L. Since the pairing (2.10) is independent

on the choice of T , we set T to be the multiplication by β operator. Then vi = hi(β) is an

eigenvector of T with eigenvalue αi, and they form an orthogonal basis for L. Namely,

< vi, vi > = hi(αi) =
∏
j 6=i

(αi − αj),

< vi, vj > = 0, for j 6= i

The inclusion J [2] ↪→ SO2n+1 is given by

ι((Pi)− (∞)) = 2
hi(β)

hi(αi)
− 1,

which as we saw in the proof of Proposition 2.7 is the negative of reflection about v⊥i , hence

has determinant 1. Note this is the negative of the formula given in Remark 1.6 due to the

identification of PO with SO.

Since the characteristic of k is not 2, the Clifford algebra associated to (L,<,>) is quotient
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algebra

Cliff(L,<,>) = T (L)/(v ⊗ w + w ⊗ v − 2 < v,w >)

where T (L) is the tensor algebra. The group Spin2n+1 is the subgroup of the even part of the

Clifford group Γ0 with Spinor norm 1. The underlying set of Spin2n+1 is the set of elements x

in Cliff0 such that xvx−1 lands in L for all v ∈ L, and that xtx = 1 where t denotes the order

reversing transpose on T (L). To lift the image of (Pi)− (∞), we need to find an xi ∈ Cliff0 such

that

xivix
−1
i = vi

xivjx
−1
i = −vj, for j 6= i.

A simple computation shows that xi = v1 · · · vi−1vi+1 · · · v2n+1 does the job. Moreover,

xixj = (−1)2n+(2n−1)(2n−1)+2nxjxi = −xjxi.

Dividing xi by a square root of its Spinor norm gives the desired lift x̃i and

x̃ix̃ix̃
−1
i x̃−1i = 1 = w((Pi)− (∞), (Pi)− (∞))

x̃ix̃ix̃
−1
j x̃−1j = −1 = w((Pi)− (∞), (Pj)− (∞)), for j 6= i.

Therefore, we have proved the equality of the two pairings, and thus Theorem 2.15.

2.6 Pencil of quadrics containing a quadric of discriminant 1

For the remainder of the chapter, we will be considering the even dimensional analogue. Let

U be a 2n + 2 dimensional vector space over k and let L(Q1, Q2) be a rational generic pencil

of quadrics in P2n+1 = P(U) containing a rational quadric of discriminant 1. The hyperelliptic

curve C associated to it will have a rational non-Weierstrass point P . Once again by moving P
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to ∞, we may assume Q1 has discriminant 1.

There are two rulings defined over k of n-planes contained in Q1. These two rulings are acted

on by PO(U,Q1), each with stabilizer PSO(U,Q1) =: PSO2n+2. Fix Y0 to be one such ruling and

let∞ be the point on the associated hyperelliptic curve corresponding to this ruling. If PY1,PY2

are two n-planes contained in Q1, we write PY1 ∼ PY2 if they lie in the same ruling, and we

write PY1 ∼ Y0 if PY1 lies in the ruling Y0.

Let b denote the associated bilinear form of Q1 and let T be the self-adjoint operator, with

respect to Q1, such that

Q2(v) = b(v, Tv)

as in (1.1). The variety F of (n− 1)-planes contained in the base locus fits into a disconnected

algebraic group over k,

G = J ∪̇F ∪̇Pic1(C) ∪̇F ′.

Since (∞) ∈ Pic1(C), we can lift F to a torsor of J [2] by taking

F [2]∞ = {PX ∈ F |PX +G PX = (∞)}.

Proposition 2.18.

F [2]∞ = {PX ∈ F |PX = τ(∞)PX} = {PX ' Pn−1|Span{PX,P(TX)} ∼ Y0}.

The latter condition means Span{PX,P(TX)} is an n-plane contained in Q1 in the ruling Y0.

cf. Section 1.2.2.

Proof: Suppose PX ' Pn−1 with Span{PX,P(TX)} ∼ Y0.

1). Since TX ⊂ X⊥Q1 , we see X ⊂ X⊥Q2 and hence PX ∈ F.

2). Since Span{PX,P(TX)} ⊃ PX is an n-plane contained in Q1 in the same ruling as PY0,

we see τ(∞)PX is the residual intersection of Span{PX,P(TX)} with Q2.
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3). Span{PX,P(TX)} intersects Q2 tangentially at PX because

TX ⊂ TX⊥Q1 ⇒ TX ⊂ X⊥Q2 ⇒ TPXQ2 ⊃ Span{PX,P(TX)}.

Therefore PX ∈ F [2]∞.

Conversely, suppose PX ∈ F [2]∞. Suppose Span{PX, [p]} ⊃ PX is the n-plane contained in

Q1 in the same ruling as PY0, for some p ∈ U ⊗ ka. Since τ(∞)PX = PX, we see

b(x, p) = b(x, Tp) = b(p, p) = 0,∀x ∈ X.

1). Since Span{PX, [p]} does not lie in the base locus, b(p, Tp) = Q2(p) 6= 0.

2). Since Span{X, p} ⊂ p⊥Q1 , we have Tp /∈ Span{X, p} but Tp ∈ X⊥Q1 . Hence

X⊥Q1 = Span{X, p, Tp}.

3). Since TX ⊂ p⊥Q1 ∩X⊥Q1 , we have TX ⊂ Span{X, p}.

4). If TX ⊂ X, then X⊥Q1 = X⊥Q2 which implies that TPX(Q1∩Q2) ' Pn+1. This contradicts

Lemma 1.15. Therefore

X ( TX ⊂ Span{X, p}, i.e. Span{PX,P(TX)} = Span{PX, [p]} ∼ Y0.

2.7 Orbits of an action of PSO2n+2

Recalling some notations: let f(x) ∈ k[x] be any monic polynomial of degree 2n+2 with distinct

roots splitting completely over the separable closure. We had the following k-schemes,

Vf = {T : U → U |T ∗ = T, characteristic polynomial of T is f},

Wf = {(T,X) ∈ Vf ×Gr(n, U)|Span{X,TX} ∼ Y0}.
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We want to study the PSO2n+2(k)-orbits of Vf (k). We see from Proposition 1.29 that there

is only one geometric orbit. Fix any (T0, X0) ∈ Wf (k), which is nonempty by Lemma 1.30, the

PSO2n+2(k)-orbits of Vf (k) are in bijection with

ker
(
H1(k, Stab(T0))→ H1(k,PSO2n+2)

)
. (2.12)

By Corollary 1.33, one can identify Stab(T ) with J [2] and obtain a class cT in H1(k, J [2]) by

taking

WT = {X|Span(X,TX) ∼ Y0}.

Lemma 2.19. The map

PSO2n+2(k)\Vf (k)→ ker
(
H1(k, J [2])→ H1(k,PSO2n+2)

)
is given by T 7→ cT .

Proof: Same Galois cohomology computation as in the proof of Lemma 2.4.

The distinguished orbit corresponds to the trivial class in H1(k, J [2]). It consists of self-

adjoint operators T such that WT (k) 6= ∅, namely there exists a linear n-dimensional k-subspace

X ⊂ U such that Span{X,TX} is an n+ 1 dimensional isotropic subspace of U that intersects

Y0 at even codimension.

The soluble orbits correspond to the self-adjoint operators T for which FT (k) 6= ∅, namely

it admits a linear n-dimensional k-subspace X ⊂ U such that Span{X,TX} ⊂ X⊥.

Theorem 2.20. The soluble orbits correspond bijectively to the image of J(k)/2J(k) inH1(k, J [2]).

In particular, the composition

J(k)/2J(k)
δ−→ H1(k, J [2])→ H1(k,PSO2n+1)

is trivial.
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Just as in Section 2.3, we show the soluble orbits maps into δ(J(k)/2J(k)) in this Section.

Surjectivity will be proved in the next Section after a 2-descent analysis on J .

By definition, FT [2]∞ = WT as Gal(ks/k)-sets.

Proposition 2.21. FT [2]∞ = WT as J [2]-torsors. Therefore

[FT [2]∞] = cT ∈ H1(k, J [2]).

Proof: It suffices to show for any (P1)− (P2) ∈ J [2] with P1, P2 any two Weierstrass points,

the two actions are the same. Let αi denote the root of f(x) corresponding to Pi, and set

hi(x) = f(x)/(x− αi). On WT (ka), by Remark 1.34, the action of (P1)− (P2) is induced by the

following map on U ⊗ ks :

x 7→ x− 2
h1(T )

h1(α1)
x− 2

h2(T )

h2(α2)
x

on

For i = 1, 2, let wi ∈ U ⊗ ks be an eigenvector of T with eigenvalue αi. The cone point of the

singular quadric corresponding to Pi is therefore [wi]. Let b denote the bilinear form associated

to Q. Then on FT (ks), similar to (2.4), the action of τ(Pi) is induced by the following map on

U ⊗ ka :

reflPi : x 7→ x− 2
b(x, vi)

b(vi, vi)
vi.

Composing two such reflections, we see that the action of τ(P1)τ(P2) is induced by the following

map on U ⊗ ka :

x 7→ x− 2
b(x,w1)

b(w1, w1)
w1 − 2

b(x,w2)

b(w2, w2)
w2 +

4b(x,w1)b(w1, w2)

b(w1, w1)b(w2, w2)
w2.

Since self-adjoint operators have pairwise orthogonal eigenspaces, the last term is 0. Also as in

the proof of Proposition 2.7,

hi(T )

hi(αi)
x =

b(x,wi)

b(wi, wi)
wi.

Therefore the two actions are equal.
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Remark 2.22. In parallel to the odd case, the equality FT [2]∞ = WT as Gal(ks/k)-sets provides

a different view point on the identification of J [2] with Stab(T ), as they share a common principal

homogeneous space. Proposition 2.21 implies that this new identification coincides with the

formula given by Remark 1.34.

Corollary 2.23. The composite map

PSO2n+1(k)\Vf (k)→ H1(k, J [2])→ H1(k, J)[2]

is given by T 7→ [FT ].

Corollary 2.24. The soluble orbits map into the image of J(k)/2J(k) in H1(k, J [2]). The

correspondence is given by T 7→ cT = δ(PX +G PX − (∞)) for any PX ∈ FT (k).

Proof: Same argument as the proof of Corollary 2.10.

2.8 Hyperelliptic curves with a rational non-Weierstrass point

In this section we work out some 2-descent on Jacobians of hyperelliptic curves with rational

non-Weierstrass points and complete the surjectivity of Theorem 2.20.

Let C be a hyperelliptic curve of genus n with a rational non-Weierstrass point, let J denote

its Jacobian. By moving the point to ∞, we can assume C is given by affine equation y2 = f(x)

where f(x) is a monic degree 2n+2 polynomial. Let∞′ denote its image under the hyperelliptic

involution and let P1, . . . , P2n+2 denote the 2n+ 2 Weierstrass points. Then

J [2](ks) =< (Pi) + (Pj)− (∞)− (∞′)|
2n+2∑
i=1

(Pi)− (n+ 1)((∞) + (∞′)) = div(y) = 0 >

is an elementary 2-group of order 22n. As a group scheme over k,

J [2] = (ResL/kµ2)N=1/µ2 ' (ResL/kµ2/µ2)N=1
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where L = k[x]/f(x) = k[β] is an étale k-algebra of dimension 2n + 2. The following diagram

keeps track of the µ2’s coming in and out of ResL/kµ2.

µ2� _

��

∼ // µ2� _

��
(ResL/kµ2)N=1

����

� � // ResL/kµ2
N // //

����

µ2

∼

��
J [2] �

� // ResL/kµ2/µ2
N // // µ2

Combining the descent sequence and the above, one obtains the following diagram.

〈(∞′)− (∞)〉 //

∼
��

J(k)/2J(k)� _

δ

��

δ′ // L×/L×2k×� _

��

N // k×/k×2

∼
��

µ2(k)
N(ResL/kµ2/µ2(k))

// H1(k, J [2]) //

����

η

))

H1(k,ResL/kµ2/µ2)

����

N // H1(k, µ2)

H1(k, J)[2] // ker(Br(k)[2]→ Br(L)[2])

(2.13)

The map δ′ is defined in [15] by evaluating (x − β) on a given divisor class. As shown in

[15], the first row is not exact: the image of δ lands inside, generally not onto, (L×/L×2k×)N=1

with kernel the class (∞′)− (∞). The following Lemma is immediate from the exactness of the

second row and the commutativity of the top left square.

Lemma 2.25. (∞′)− (∞) ∈ 2J(k) if and only if H1(k, J [2])→ H1(k,ResL/kµ2/µ2) is injective

if and only if every PO(U,Q)(k)-orbit of Vf (k) stays as one PSO(U,Q)(k)-orbit.

Take any α ∈ (L×/L×2k×)N=1 and lift it to an element of L× whose norm to k is a square.

Denote the lift by α also and let
√
α be a square root of α in L ⊗ ks. Then the third vertical

map

(L×/L×2k×)N=1 → H1(k,ResL/kµ2/µ2)
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is given by

α 7→
(
σ
√
α√
α

)
σ

∈ H1(Gal(ks/k), µ2(L⊗ ks)×/µ2(k
s×)).

Consider the quadric Q on L defined by the bilinear form

< λ, µ >α= coefficient of β2n+1 in αλµ.

Since NL/k(α) is a square in k, Q has discriminant 1. Choosing a different lift of α does not

change the k-isomorphism type of Q. Let T denote the multiplication by β operator. T is self-

adjoint with respect to Q. Let Yα be the following n + 1 dimensional isotropic ks-subspace of

L⊗ ks :

Yα = Spanks{
1√
α
,
β√
α
, · · · , β

n

√
α
}.

Define

Xα = Spanks{
1√
α
,
β√
α
, · · · , β

n−1
√
α
}.

Since Q has discriminant 1, the ruling containing Yα is defined over k and we define WT as

in the previous section. In fact, as the following proposition shows, Q is always split when we

need it to.

Proposition 2.26. For any α ∈ (L×/L×2k×)N=1, there exists an α̃ ∈ H1(k, J [2]) having the

same image in H1(k,ResL/kµ2/µ2) as α.

<,>α is split ⇐⇒ α̃ ∈ ker(H1(k, J [2])→ H1(k,PSO2n+2)).

Proof: The first claim follows because the image of α in H1(k,ResL/kµ2/µ2) has norm 1.

For the second statement, one can follow the proof of Proposition 2.13 to show that <,>α is

split if and only if

α̃ ∈ ker(H1(k, J [2])→ H1(k,PO2n+2)).
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On the other hand,

ker(H1(k,PSO2n+2)→ H1(k,PO2n+2)) ' coker(PO2n+2(k)→ µ2(k)) = 1,

since reflection x 7→ x−2<x,v>α
<v,v>α

v about v⊥Q for any k-rational vector v is an element of O2n+2(k)

of determinant -1.

On PL, there is a rational generic pencil of quadrics spanned by Q,QT given by the following

formula in terms of quadratic forms:

Q(v) = < v, v >α

QT (v) = < v, βv >α .

Since Q has discriminant 1 and T has characteristic polynomial f(x), the hyperelliptic curve

associated to this pencil is C. Suppose ∞ corresponds to the ruling on Q containing PY0.

Taking the variety FT of (n− 1)-planes in the base locus of the pencil in P(L) gives a torsor of

J of order dividing 2. As before, we define

FT [2]∞ = {PX ∈ F |PX +G PX = (∞)}.

Proposition 2.27. [FT [2]∞] ∈ H1(k, J [2]) maps to the same class in H1(k,ResL/kµ2/µ2) as α.

In particular, every class in ker(H1(k, J [2])→ H1(k,PSO2n+2)) arises from pencils of quadrics.

Proof: By Proposition 2.21, FT [2]∞ = WT as J [2]-torsors. The first statement follows as

Span{Xα, TXα} = Yα ∼ Y0 ⇒ Xα ∈ WT (ks),

and

Xσ
α =

√
α
σ

√
α
Xα

for all σ ∈ Gal(ks/k).
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For the second statement, suppose c ∈ ker(H1(k, J [2]) → H1(k,PSO2n+2)) is killed by

η. Then its image c′ in H1(k,ResL/kµ2/µ2) comes from some α ∈ L×/L×2k×. Furthermore,

NL/k(α) = N(c′) = 1. Hence α ∈ (L×/L×2k×)N=1 gives rise to a pencil of quadrics. Denote by

FT [2]∞′ the lift of F by (∞′). Then

[FT [2]∞′ ] = [FT [2]∞] + δ((∞′)− (∞)) 7→ c′.

One of [FT [2]∞], [FT [2]∞′ ] recovers c. The proof is complete after applying the following Propo-

sition.

Proposition 2.28.

η(ker
(
H1(k, J [2])→ H1(k,PSO2n+2)

)
) = 1.

Proof: From the two diagrams,

StabPSO(T ) //

��

StabPO(T )

��

1 // µ2
//

=

��

StabO(T ) //

��

StabPO(T ) //

��

1

PSO(U,Q) // PO(U,Q) 1 // µ2
// O(U,Q) // PO(U,Q) // 1,

one gets a commuting diagram, of non-exact rows,

H1(k, StabPSO(T )) //

��

η

,,

H1(k, StabPO(T )) //

��

H2(k, µ2)

=

��
H1(k,PSO(U,Q)) // H1(k,PO(U,Q)) // H2(k, µ2).

The result is now immediate.

The upshot of this Proposition is that even though we don’t understand all of H1(k, J [2]), we

know enough to study PSO2n+2(k)-orbits. Consider the soluble ones first. Suppose α = δ′([D])

for some [D] ∈ J(k)/2J(k). By Proposition 2.27, we see that FT (k) is non-empty and that for
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any PX ∈ FT (k),

PX +G PX − (∞D) = [D] (mod 2J(k)).

If PX ∈ FT [2]∞, then Span{X,TX} is a k-rational maximal isotropic subspace of (L,<,>α). If

PX /∈ FT [2]∞, then Span{X, τ(∞)X} is a k-rational maximal isotropic subspace of (L,<,>α).

In either cases, (L,<,>α) is split and Proposition 2.27 applies. Since both FT [2]∞ and FT [2]∞′

map to the image of α in H1(k,ResL/kµ2/µ2), one of them equals to δ([D]). Let (∞D) be either

∞ or ∞′ such that

FT [2]∞D
= δ([D]).

(∞D) is well defined up to 2J(k). Note [FT ] is the image of [FT [2]∞D
] in H1(k, J)[2], and is

therefore trivial.

Since (L,<,>α) is split, one can choose an isometry over k between (L,<,>α) and (U,Q)

sending the ruling corresponding to ∞D to the fixed ruling on U. Let T1 ∈ Vf (k) denote the

image of T . Any two such isometries differ by some SO(U,Q)(k). Hence we get a well-defined

SO(U,Q)(k)/(±1)-orbit. As the following lemma shows, different [D] gives rise to different

PSO2n+2(k)-orbit.

Lemma 2.29. δ([D]) = cT1 .

Proof: Let T0 denote the image of T under an isometry over k between (L,<,>α) and (U,Q)

that sends the ruling corresponding to ∞ to the fixed ruling on U. Then

δ([D] + (∞D)− (∞)) = [FT [2]∞] = cT0 .

If∞D =∞ mod 2J(k), then we are done. Otherwise, by Lemma 2.25, T0 and T1 lie in the same

PO(U,Q)(k)-orbit, but distinct PSO(U,Q)(k)-orbits. Hence cT1 − cT0 is the nontrivial element

in

ker(H1(k, J [2])→ H1(k,ResL/kµ2/µ2))

which is precisely δ((∞D)− (∞)).

94



Remark 2.30. The difference between SO(U,Q)(k)/(±1) and PSO2n+2(k) is in fact k×/k×2.

Consider the following diagram,

1 // µ2
//

��

Z //

��

µ2

��

// 1

1 // µ2
// Spin2n+2

// SO2n+2

��

// 1

PSO2n+2 ,

where Z = µ4 or µ2 × µ2 is the center of Spin2n+2. Taking cohomology, we get

coker(SO2n+2(k)→ PSO2n+2(k)) ' ker(H1(k, µ2)→ H1(k, SO2n+2))

' ker(H1(k, µ2)→ H2(k, µ2))

' coker(H1(k, µ2)→ H1(k, Z))

' k×/k×2.

We have now established the surjectivity in Theorem 2.20, restated below. It looks, as

expected, exactly the same as Theorem 2.12.

Theorem 2.31. There is a bijection between J(k)/2J(k) and soluble orbits of self-adjoint op-

erators with characteristic polynomial f(x).

Moving on to all the other PSO2n+2(k)-orbits. By Proposition 2.28, for every class in

α̃ ∈ ker(H1(k, J [2])→ H1(k,PSO2n+2)),

there exists an α ∈ (L×/L×2k×)N=1 such that either FT [2]∞ or FT [2]∞′ recovers α̃. By Propo-

sition 2.26, <,>α is split and hence one can identify L with U matching the rulings as above.

The image of T under the identification gives us a PSO2n+2(k)-orbit whose class in H1(k, J [2])

is α̃.
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Summary 2.32. PSO2n+2(k)-orbits of self-adjoint operators with characteristic polynomial f(x)

are in bijection with

ker(H1(k, J [2])→ H1(k,PSO2n+2)).

For each α̃ in the kernel, there exists α ∈ (L×/L×2k×)N=1 and a choice of a point ∞α̃ above

∞P1 such that α̃ = [FT [2]∞α̃
]. The quadratic space (L,<,>α) is split. Choose any isometry over

k between it and the model space U sending the ruling corresponding to ∞α̃ to the fixed ruling

on U containing Y0, then the images of the multiplication by β operator form a complete set of

representatives of the PSO2n+2(k).

α̃ = 1 ⇐⇒ distinguished orbit

α̃ ∈ J(k)/2J(k) ⇐⇒ soluble orbits.

The cohomological map η

Recall the short exact sequence

1→ µ2 → (ResL/kµ2)N=1 → J [2]→ 1,

which gives rise to a long exact sequence in cohomology,

H1(k, (ResL/kµ2)N=1)→ H1(k, J [2])
η−→ H2(k, µ2).

This map η coincides with the η defined in (2.13).

Let W [2] denote the class in H1(k, J [2]) corresponding to the torsor

W [2] = {D ∈ Pic1(C)|2D = D0}.

Then W [2] lifts the class [Pic1(C)] ∈ H1(k, J)[2], which in the current case is trivial since C has

a rational point.
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Theorem 2.33. η is given by cup product with W [2].

Proof: This is proved in [15] Proposition 10.3 in a more general setting. The proof given

here is a cleaner version of the same cocycle computation thanks to the explicit formula of

the Weil pairing. Let P denote a fixed Weierstrass point. Then as a class in H1(k, J [2]),

W [2]σ = σ(P ) − P, for any σ ∈ Gal(ks/k). Let c = (cσ)σ be any class in H1(k, J [2]), then by

definition of cup product,

(W [2] ∪ c)σ,τ = e2(σ(P )− P, σ(cτ )).

The identification J [2] ' (ResL/kµ2)N=1/µ2 allows us to view each cσ as a (2n + 2)-tuple of

±1 indexed by the Weierstrass points, modulo the diagonal µ2. Let c̃ = (c̃σ)σ be a lift of c to a

1-cochain with value in (ResL/kµ2)N=1. If P ′ is any Weierstrass point, write c̃σ(P ′) for the entry

corresponding to P ′. Then from the explicit formula for the Weil pairing in Lemma 2.39, we see

that,

(W [2] ∪ c)σ,τ = c̃τ (P ) · c̃τ (σ−1(P )).

Let (aσ)σ be the 1-cochain aσ = c̃σ(P ) with value in µ2. Then its coboundary is

(δa)σ,τ = c̃σ(P ) · c̃τ (P ) · c̃στ (P ).

Finally, η(c) as a 2-cochain lies in the diagonal µ2 in (ResL/kµ2)N=1, and hence,

(η(c))σ,τ = c̃σ(P ) · σ(c̃τ )(P ) · c̃στ (P )

= c̃σ(P ) · c̃τ (σ−1(P )) · c̃στ (P )

= (W [2] ∪ c)σ,τ · (δa)σ,τ

Therefore as elements of H2(k, µ2),

W [2] ∪ c = η(c).
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Corollary 2.34. The map η is trivial if and only if (∞′)− (∞) ∈ 2J(k).

Proof: This follows immediately from Theorem 2.33 after noticing that the class of W [2] in

H1(k, J [2] is the Kummer image of (∞′)− (∞) ∈ J(k).

The following result in [15] gives a criterion for when (∞′)− (∞) is divisible by 2.

Proposition 2.35. k is any field. Then (∞′)− (∞) ∈ 2J(k) if and only if

1. f(x) has a factor of odd degree in k[x] or

2. n is even and f(x) factors over some quadratic extension K of k as h(x)h(x) where h(x) ∈

K[x] and h(x) is the Gal(K/k)-conjugate of h(x).

Condition (2) is equivalent to saying n is even, and every ki/k contains the same quadratic

extension of k.

This line of thought gives an amusing proof for:

Corollary 2.36. Any field extension of even degree over a p-adic local field with p 6= 2 admits

a quadratic subextension.

Proof: Let L = k[x]/f(x) be this field extension with f monic and irreducible and take

the hyperelliptic curve C with affine equation y2 = f(x). If L doesn’t contain a quadratic

subextension of k, then (∞′)− (∞) is a nontrivial element of J(k)/2J(k), which when p 6= 2 is

isomorphic to J [2](k). Taking the cohomology of the short exact sequence

1→ J [2]→ ResL/kµ2/µ2
N−→ µ2 → 1

gives an injection J [2](k) ↪→ ResL/kµ2/µ2(k). Therefore ResL/kµ2/µ2(k) is nontrivial. One also

has the exact sequence

1→ µ2(k)→ ResL/kµ2(k)→ ResL/kµ2/µ2(k)→ k×/k×2
δ−→ L×/L×2.
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The fact that L doesn’t contain a quadratic extension of k implies that δ is injective. Since

ResL/kµ2(k) = µ2(L) is isomorphic to µ2(k), this sequence implies that ResL/kµ2/µ2(k) is trivial.

Contradiction.

Remark 2.37. There is, as one would expect, a direct proof of Corollary 2.36. Indeed, the

statement is immediate if the maximal unramified subextension k′/k is even. Otherwise, let

πL, πk denote the corresponding uniformizers and denote by e the ramification degree. One can

write πeL = πkuL for some unit uL in OL. Since L/k′ is totally ramified, OL/πL ' Ok′/πk

and since every element in 1 + πLOL is a square, we can write uL as the product of a unit uk′

in Ok′ with a square in L. We can also write uk′ as the product of a unit uk in Ok with a

square in k′. This follows from the fact that for an odd extension of finite fields k2/k1, the map

k×1 /k
×2
1 → k×2 /k

×2
2 is an isomorphism. Since e is assumed to be even, we have written πkuk as a

square in L and the result follows.

2.9 Quadratic refinement of the Weil pairing, even case

Similar to the case with a rational Weierstrass point, we also have a quadratic refinement for

the Weil pairing on the 2-torsion of the Jacobian J of a hyperelliptic curve C with a rational

non-Weierstrass point. Consider the following diagram.

1 // µ2
//

� _

��

Spin2n+2
//

id

��

SO2n+2
//

��

1

J [2]

zz

dd

1 // Z // Spin2n+2
// PSO2n+2

// 1

where the inclusion J [2] ↪→ PSO2n+2 is the identification of J [2] with the stabilizer of a fixed

rational self-adjoint operator T , the center Z is either µ4 when n is odd or µ2 × µ2 with n is

even. The dotted arrow from J [2] to SO2n+2 means that if [D1], [D2] are two distinct element

in J [2], their images in PSO2n+2 lifts to commuting elements in SO2n+2, as one can see from
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the explicit formulas described in Remark 1.34. Taking Galois cohomology gives the following

composite map of pointed sets,

q : H1(k, J [2])→ H1(k,PSO2n+2)→ H2(k, Z).

Let ι denote the composition of the Weil pairing with the inclusion of µ2 ↪→ Z in the first column

of the above diagram. Also denote by ι the induced map on cohomology,

ι : H1(k, J [2])×H1(k, J [2])→ H2(k, µ2)→ H2(k, Z).

Theorem 2.38. q is a quadratic refinement for ι. In other words,

q(v + w)− q(v)− q(w) = ι(v, w),

for all v, w ∈ H1(k, J [2]).

Recall that J [2](ks) is generated by divisors of the form (Pi) + (Pj) − (∞) − (∞′). As in

the odd case, one has the following formula for the Weil pairing e2 which one can check directly

from its definition.

Lemma 2.39.

e2

(∑
ni(Pi)−

(
∑
ni)

2
((∞) + (∞′)),

∑
n′i(Pi)−

(
∑
n′i)

2
((∞) + (∞′))

)
= (−1)a

where a is the number of i such that ni ≡ n′i ≡ 1 (mod 2).

We also have the commutator pairing (, ) obtained by lifting to Spin then taking the commu-

tator. Due to the dotted arrow from J [2] to SO2n+2, the commutator pairing in fact takes value

in µ2 ↪→ Z. For generic curve C, both the Weil pairing and the commutator pairing define a

S2n+2-invariant non-degenerate simplectic pairing on (Z/2Z)2n+2
N=1 /(Z/2Z). A direct combinatoric

argument shows the uniqueness of such a pairing, and the same spreading out argument as in
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Section 2.5 can be used to prove equality for all curves C.

The direct approach of expliciting writing down a lift in Spin also works in this case. For

completeness, we write down the lift of (Pi) + (Pj)− (∞)− (∞′). Pass to the separable closure,

let f(x) be the defining monic polynomial of degree 2n+2 of C. Let L = k[x]/f(x) be the model

space with power basis generated by β and split form <,> . Let αi denote the roots of f and set

hi(x) = f(x)/(x− αi). Let T denote the multiplication by β operator, then its eigenvectors are

vi = hi(β) with eigenvalues αi. The element xij = vivj lies in the even part of the Clifford group,

its image in PSO2n+2 is the image of (Pi) + (Pj)− (∞)− (∞′). Dividing it by a square root of its

Spinor norm gives the lift in Spin2n+2. Computing the commutator of any two elements of this

form verifies the equality of the Weil pairing and the commutator pairing.

2.10 Explicit computation

2.10.1 Case of a rational Weierstrass point

Recalling notations, let L = k(β) = k[x]/f(x) be spanned as a k-vector space by {1, β, . . . , β2n}

where f(x) = x2n+1 + c2nx
2n + · · ·+ c0 is the minimal polynomial of β. Suppose f(x) splits over

ks with no repeated factors. Take α ∈ (L×/L×2)N=1, let <,>α denote the pairing on L defined

in Section 2.4. We have the following two quadratic forms on L⊕ k,

Q1(v, w) = < v, v >α= Tr(αv2/f ′(β))

Q2(v, w) = < v, βv >α +w2 = Tr(αv2/f ′(β)) + w2.

Denote its associated hyperelliptic curve by C. We have seen the variety

F = {PX ' Pn−1|X ⊂ X⊥Q1 , X ⊂ X⊥Q1}

fits into a disconnected commutative algebrac group

G = J ∪̇F ∪̇Pic1(C) ∪̇F ′.
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When α is the image of the Kummer map of some [D] ∈ J(k)/2J(k), F has a k-rational element.

The goal of this subsection is to explicitly construct a PX in F (k) and show PX+GPX− (∞) =

[D] directly.

Let us start with the three simplest case before we show it in the general case. The dimensions

used in this subsection are linear, not projective.

Example 2.40. Suppose [D] = (P ) − (∞) where P ∈ C(k), denote by x0 the x-coordinate of

P. The two quadratic forms take the form,

QD(v, w) = Tr((x0 − β)v2/f ′(β))

Q′D(v, w) = Tr((x0 − β)βv2/f ′(β)) + w2.

The n-plane

X = Span{(1, 0), . . . , (βn−2, 0), (βn−1, 1)}

is k-rational and is isotropic with respect to both quadratic forms. Consider now the (n+1)-plane

Y = Span{X, (g(β), 0)} where g is given by

g(t) =
f(t)− f(x0)

t− x0
= t2n + (c2n + x0)t

2n−1 + · · · .

Note g was chosen such that

(x0 − β)g(β) = f(x0)− f(β) = f(x0).

It is now easy to see that PY intersect the base locus tangentially at PX as (x0 − β)βig(β) has

no β2n term for i = 0, . . . , n.

Remark 2.41. Here we only need (x0−β)g(β) to be a polynomial in β of degree at most n− 1,

however one observes that different choices of this polynomial only affects the terms in g(t) of
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degree n− 2 or less, and hence no change to Y .

Now to see which quadric PY lies on, one computes:

QD((g(β), 0)) = Tr((x0 − β)g(β)2/f ′(β))

= Tr(f(x0)g(β)/f ′(β))

= f(x0)

Q′D((g(β), 0)) = Tr((x0 − β)βg(β)2/f ′(β))

= Tr(f(x0)βg(β)/f ′(β))

= f(x0)Tr(β2n+1 + (c2n + x0)β
2n + · · · /f ′(β))

= x0f(x0),

from which one concludes that PY lies on the quadric x0QD −Q′D. Therefore PX +G PX = (P )

or (P ) in G, where {} denotes the hyperelliptic involution. Note (P )− (∞) = (P )− (∞) = [D]

in J(k)/2J(k). Therefore this confirms the claim for [D] = (P )− (∞).

Example 2.42. Suppose now [D] = (P ) + (Q)− 2(∞) with P = (x1, y1), Q = (x2, y2) in C(k).

The quadratic forms now look like:

QD(v, w) = Tr((x1 − β)(x2 − β)v2/f ′(β))

Q′D(v, w) = Tr((x1 − β)(x2 − β)βv2/f ′(β)) + w2.

Denote by h1(t), h2(t) the polynomials constructed above such that,

(x1 − β)h1(β) = f(x1) = y21

(x2 − β)h2(β) = f(x2) = y22.
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The n-plane

X = Span{(1, 0), . . . , (βn−2, 0), (−y2h1(β) + y1h2(β), y1y2(x1 − x2))}

is a k-rational common isotropic space for QD, Q
′
D. To verify the claim, we need to show that

(P )− PX = (∞)− ((Q)− PX). (2.14)

As before, we don’t need to worry about which ruling the (n+ 1)-plane actually lies on, as long

as there is one ruling that works.

The point P corresponds to the quadric

x1QD −Q′D(v, w) = Tr((x1 − β)2(x2 − β)v2/f ′(β))− w2.

The (n+ 1)-plane

YP = Span{X, (h1(β), 0)}

is isotropic with respect to it. PYP intersect the base locus at PX and

(P )− PX = PSpan{(1, 0), . . . , (βn−2, 0), (y2h1(β) + y1h2(β), y1y2(x1 − x2))}.

Likewise,

YQ = Span{X, (h2(β), 0)},

(Q)− PX = PSpan{(1, 0), . . . , (βn−2, 0), (−y2h1(β)− y1h2(β), y1y2(x1 − x2))}.

This verifies (2.14) as the involution on A given by ∞ is induced from the map on V2n+1 ⊕ k

sending (v, w) to (v,−w).

Example 2.43. Suppose once again [D] = (P ) + (Q) − 2(∞) where P,Q are defined over a

quadratic extension of k and Q = P σ where σ is the unique nontrivial Galois automorphism.
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Note the n-plane

X = Span{(1, 0), . . . , (βn−2, 0), (−y2h1(β) + y1h2(β), y1y2(x1 − x2))}

is k-rational as σ sends the last basis vector of X to its negative and hence no effect on X.

However, one now needs to be careful about rulings. In the notation of the above example, if

the n + 1 plane YP corresponds to the ruling for P , then we have also chosen the correct n + 1

plane for Q = σP since σY P = YQ. If YP corresponds to the ruling for P , then we have shown

PX +G PX = (P ) + (Q)− (∞) = [D] in J(k)/2J(k).

General Case. Write [D] = (P1) + · · · + (Pm) − m(∞) ∈ J(k) with m minimal and

Pi = (xi, yi). The quadratic forms look like,

QD(v, w) = Tr((x1 − β)(x2 − β) · · · (xm − β)v2/f ′(β))

Q′D(v, w) = Tr((x1 − β)(x2 − β) · · · (xm − β)βv2/f ′(β)) + w2.

As above, let hi(t) be the polynomial such that (xi − β)hi(β) = f(xi) = y2i . We now construct

an analogue of the polynomial g(t) as follows. Write

U =
∏

1≤i<j≤m

(xi − xj)

for the Vandermonde polynomial, and for each i = 1, . . . ,m,

qi =
∏

1≤j≤m,j 6=i

(xj − xi), ai = U/qi.

Lemma 2.44. 1. QD(hi(β), 0) = qif(xi), Q′D(hi(β), 0) = xiqif(xi).
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2.
∑m

i=1 x
l
iai = 0, for l = 0, . . . ,m− 2.

3.
∑m

i=1 x
m−1
i ai = (−1)m−1U.

4. Define

gj(t) =
m∑
i=1

xjiai
y1 · · · ym

yi
hi(t).

When m = 2m′ is even, the (m′ + 1)-plane

Z0 = Span{(g0(β), 0), . . . , (gm′−2(β), 0), (gm′−1(β), y1 · · · ymU)}

is k-rational and isotropic with respect to both quadratic forms.

Proof. (1) follows from the definition of hi. Switching xi with xj sends qi, qj, qk to qj, qi, qk

respectively for k 6= i, j. As U is alternating in the xi’s, so is
∑m

i=1 x
l
iai, for any l. Since any

alternating form is a polynomial multiple of U , comparing degrees and leading terms gives (2),

(3). (4) follows as

QD(gj(β), ∗) = U
n∑
i=1

x2ji ai · f(x1) · · · f(xn) = 0, j = 0, . . . ,m′ − 1

Q′D(gj(β), 0) = U
n∑
i=1

x2j+1
i ai · f(x1) · · · f(xn) = 0, j = 0, . . . ,m′ − 2

Q′D(gm′−1(β), y1 · · · ymU) = U
n∑
i=1

xm−1i ai · f(x1) · · · f(xn) + f(x1) · · · f(xn)U2 = 0

and that all gj(β), gm′−1(β) and y1 · · · ymU are antisymmetric in the xi’s.

Suppose now m = 2m′ is even. Observe that the k-rational n-plane

X = Span{(1, 0), . . . , (βn−m
′−1, 0), (g0(β), 0), . . . , (gm′−2(β), 0), (gm′−1(β), y1 · · · ymU)}

is isotropic with respect to both quadratic forms. When m = 2, exclude (g0(β), 0) and use

(g0(β), y1y2U) only. For later reference, we point out that the vector v = (βn−m
′
, 0) lies in
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X⊥QD\X with QD-norm 1. For each i = 1, . . . ,m, the (n+ 1)-plane

Yi = Span{X, (hi(β), 0)}

is isotropic with respect to the quadratic form xiQD −Q′D corresponding to Pi. If Y1 lies in the

ruling corresponding to P 1, then PX + (P1) = −PX1 where

X1 = Span{(1, 0), . . . , (βn−m
′−1, 0),

(g0(β)− 2b1h1(β), 0), . . . , (gm′−2(β)− 2xm
′−2

1 b1h1(β), 0),

(gm′−1(β)− 2xm
′−1

1 b1h1(β), y1 · · · ymU)},

where bi = aiy1 · · · yn/yi.

If P1 is k-rational, then as in Example 2.40, (P1) = (P 1) in J(k)/2J(k), so we don’t need

to worry about the case when Y1 lies in the ruling corresponding to P1. If P1 is not k-rational,

we proceed as in Example 2.43 and suppose P2 = σP1 is one of its conjugate. To compute

PX + (P1) + (P2), we need to find a n+ 1 plane containing X in the ruling that doesn’t contain

σY1 = Y2. The n+ 1 plane

Y ′2 = Span{X1, (h2(β), 0)}

does the job as it intersects Y2 in codimension 1. From this we see PX + (P1) + (P2) = PX2

where

X2 = Span{(1, 0), . . . , (βn−m
′−1, 0), (g0(β)− 2b1h1(β)− 2b2h2(β), 0), . . . ,

(gm′−2(β)− 2xm
′−2

1 b1h1(β)− 2xm
′−2

2 b2h2(β), 0),

(gm′−1(β)− 2xm
′−1

1 b1h1(β)− 2xm
′−1

2 b2h2(β), y1 · · · ymU)},

Let D1 ∈ Div(C)(k) denotes the sum of the conjugates of (P1). If Y1 lies in the other ruling, then

repeating the above procedure computes PX +D1 which differs from PX +D1 by an element in
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2J(k) and thus is not of concern.

Repeating the above to exhaust D, one obtains, up to 2J(k),

PX + (P1) + (P2) + · · ·+ (P2m′) = PSpan{(1, 0), . . . , (βn−m
′−1, 0), (−g0(β), 0), . . . ,

(−gm′−2(β), 0), (−gm′−1(β), y1 · · · ymU)}

= (∞)− PX.

Rearranging gives the desired result.

Now for m = 2m′ + 1 odd, we take the k-rational n-plane

X = Span{(1, 0), . . . , (βn−m
′−2, 0), (βn−m

′−1, 1), (g0(β), 0), . . . , (gm′−2(β), 0), (gm′−1(β), 0)}.

In this case, we can take v to be (gm′(β), 0). Likewise as above, we obtain

PX + (P1) + (P2) + · · ·+ (P2m′+1) = −PSpan{(1, 0), . . . , (βn−m
′−2, 0), (βn−m

′−1, 1),

(−g0(β), 0), . . . , (−gm′−2(β), 0), (−gm′−1(β), 0)}

= −PX,

as we claimed.

2.10.2 Case of a rational non-Weierstrass point

The computation in this case is the same as the above. We will just write down an X to keep

the numerics straight.

Suppose [D] = (P1) + · · · + (Pm) − m1(∞) − (m − m1)(∞′) ∈ J(k) with m minimal and

Pi = (xi, yi). The quadratic forms take the form,

QD(v) = Tr((x1 − β)(x2 − β) · · · (xm − β)v2/f ′(β))

Q′D(v) = Tr((x1 − β)(x2 − β) · · · (xm − β)βv2/f ′(β)).

108



Define hi(t), U, qi, ai, gj(t) exactly as before.

� When m = 1, take

X = Span{1, β, . . . , βn−1}.

� When m = 2, take

X = Span{1, β, . . . , βn−2, y1h2(β)− y2h1(β) + y1y2(x1 − x2)βn−1}.

� When m = 2m′ + 1,m′ ≥ 1, take

X = {1, β, . . . , βn−m′−1, g0(β), . . . , gm′−1(β)}.

� When m = 2m′,m′ ≥ 2, take

X = {1, β, . . . , βn−m′ , g0(β), . . . , gm′−2(β)}.
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3 Adelic approach to orbit counting

Recently Bhargava and Shankar proved in [5] that the average order of the 2-Selmer group of

elliptic curves over Q is 3 by counting certain orbits of binary quartic forms. In [2], Bhargava

and Gross generalized the result to hyperelliptic curves of genus n over Q with a marked rational

Weierstrass point. They proved that the average order of the 2-Selmer group in this case is 3,

independent of the genus. Once again the approach was by relating elements of the 2-Selmer

group to the soluble orbits discussed in Chapter 2 followed by an analytic computation of the

number of such orbits using the Bhargava-Shankar technique of geometry of numbers. In the

case of elliptic curves, Poonen provided an adelic viewpoint to part of the orbit counting in [13].

The goal of this chapter is to complete this adelic analysis in a more abstract setting over

an arbitrary number field. We will describe the setting via four sets of axioms. The goal at

large is the computation of the average size of n-Selmer groups of certain families J of abelian

varieties, often arising as Jacobians of families of curves. Axioms I and II require the existence of

a coregular representation of a semisimple reductive group with an identification of the stabilizers

with the n-torsions of members of this family. Axiom IV requires the existence of a family of

principal homogeneous spaces, one for each J ∈ J . Axiom III is a condition on integral orbits so

our adelic statements are not vacuous. This also corresponds to a “minimization” requirement

needed in the sieves used in the Bhargava-Shankar technique of geometry of number. Thorne

([18]) found examples of families satisfying Axiom I and II.1 for the simple adjoint groups of

type A,D,E and n = 2. Type A2g corresponds to the family of hyperelliptic curves of genus

g with a marked rational Weierstrass point, also known as “odd hyperelliptic curves”. Type

A2g+1 corresponds to the family of hyperelliptic curves of genus g with a marked rational non-

Weierstrass point, also known as “even hyperelliptic curves”. The cases n = 3, 4, 5 for elliptic

curves have been studied by Bhargava and his collaborators ([3],[4],[11]). We will show the

above two families of hyperelliptic curves satisfy all four axioms using results from Chapter 2

extensively. More details on the application of this adelic analysis will follow after the statement

of the main result Theorem 3.3 in Section 3.3 below.
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3.1 Distinguished orbits

Axiom I: (Coregularity) Let G be a semisimple reductive group over k with a coregular linear

representation V0 over k and geometric quotient S0, such that

1. there exists a section κ : S0 → V0, and

2. the map δ : G× S0 → V0 defined by δ(g, f0) = g.κ(f0) is étale.

Here coregular means the geometric quotient S0 is affine N -space for some N . For any field

k′ containing k, elements of V (k′) lying in the image of δ(G(k′) × S0(k
′)) are said to be in the

distinguished orbits.

Let f denote the quotient map V0 → S0. Viewing affine spaces as products of Ga, one has

left invariant top differential forms dµ, dν, dτ over k on S0, V0, G, unique up to k× scaling. Let

dτ ∧ dµ denote the top form on G× S0.

Lemma 3.1.

δ∗dν = c · dτ ∧ dµ,

for some c ∈ k×.

Proof: (Jack Thorne) The measure dν on V0 is G-invariant because semisimple groups do

not have non-trivial characters. Hence δ∗dν/dτ ∧ dµ defines a regular function on S0. Étale-ness

implies that this function is nowhere vanishing, therefore must be constant since S0 = AN .

The baby example of a coregular representation is the adjoint representation of an adjoint

simple group as a consequence of Chevalley’s theorem. A more general source of example is

Vinberg theory [19]. The section κ is the Kostant section and the étale condition is equivalent

to

dimG+ dimS0 = dimV0. (3.1)

We shall verify Axiom I for the two families of hyperelliptic curves we studied in Chapter 2, or

rather the two representations we studied.
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In the odd case, corresponding to hyperelliptic curves with a marked rational Weierstrass

point, we had a 2n+ 1 dimensional split quadratic space (U,<,>) of discriminant 1 over k, and

the group G = PO2n+1 acting by conjugation on the space V0 of traceless self-adjoint operators T

on U . The ring of polynomial invariants is the free polynomial ring generated by the coefficients

of the characteristic polynomial. Therefore S0 = Speck[c2, . . . , c2n+1] = A2n. We shall view a

k′-point of S0 as both the 2n-tuple of coordinates and as the polynomial

f0(x) = x2n+1 + c2x
2n−1 + · · ·+ c2n+1.

This belongs to type A2n-Vinberg satisfying (3.1). We will give a very explicit formula for the

Kostant section in this case, mostly because we will be constructing similar (local) sections for

the other orbits in the next section and it will help visualizing the easy case first.

Let e0, . . . , e2n be a basis for U , let R be any k-algebra, and let f0 = (c2, . . . , c2n+1) ∈ S0(R)

be an R-point of S0. Then κ(f0) is the following operator T on U ⊗R :

T (ei) = ei+1, for i = 0, . . . , n− 1,

T (en) = en+1 −
1

2
c2en−1,

T (en+i) = en+i+1 −
1

2
c2ien−i+1 − c2i+1en−i −

1

2
c2i+2en−i−1, for i = 1, . . . , n− 1,

T (e2n) = −1

2
c2ne1 − c2n+1e0.

The above formula tells us if we were to do everything integrally, then κ is defined over Ok[1/2].

This formula is obtained by working in the case R = k. Recall we had the 2n + 1 dimensional

k-vector space

L = k[x]/(x2n+1 + c2x
2n−1 + · · ·+ c2n+1) = k[β]

with a bilinear form <,> defined by

< λ, µ >= coefficient of β2n in λµ.
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The quadratic space (L,<,>) is split and we can construct a simplectic basis {e0, . . . , e2n}, in

the sense < ei, ej >= δi+j,2n, as follows:

ei = βi, for i = 0, . . . , n,

en+1 = βn+1 +
1

2
c2β

n−1,

en+i = βn+i + c2β
n+i−2 + c3β

n+i−3 + · · ·+ c2i−1β
n−i+1 +

1

2
c2iβ

n−i, for i = 2, . . . , n.

Expressing the multiplication by β operator in this basis gives the above formula for T .

In the even case, for hyperelliptic curves with a marked rational non-Weierstrass point,

(U,<,>) is now a 2n+ 2 dimensional split quadratic space over k with the group G = PSO2n+2

acting by conjugation on the space V0 of traceless self-adjoint operators T on U . The geometric

quotient is S0 = Speck[c2, . . . , c2n+2] = A2n+1. We shall view a k′-point of S0 as both the (2n+1)-

tuple of coordinates and as the polynomial

f0(x) = x2n+2 + c2x
2n + · · ·+ c2n+2.

This belongs to type A2n+1-Vinberg satisfying (3.1). Let f0 = (c2, . . . , c2n+2) ∈ S0(k) be a k-

point of S0. Instead of writing down the formula for κ(f0) as in the odd case, we will write down

a simplectic basis {e0, . . . , e2n+1} for the quadratic space (L,<,>) where

L = k[x]/(x2n+1 + c2x
2n−1 + · · ·+ c2n+1) = k[β]

and the bilinear form <,> is defined by

< λ, µ >= coefficient of β2n+1 in λµ.
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Recall {e0, . . . , e2n+1} is a simplectic basis if < ei, ej >= δi+j,2n+1. We set,

ei = βi, for i = 0, . . . , n+ 1,

en+i = βn+i + c2β
n+i−2 + c3β

n+i−3 + · · ·+ c2i−2β
n−i+2 +

1

2
c2i−1β

n−i+1, for i = 2, . . . , n+ 1.

Expressing the multiplication by β operator in this basis gives κ(f0). As we remarked in the odd

case, κ can be defined over Ok[1/2].

3.2 Soluble orbits

Axiom II.1: (Parametrization of the stabilizers) There is a flat family of abelian varieties

J over an open subscheme S of S0 whose n-torsion2 parametrizes the stabilizers for some n. More

precisely, denote by V the open subscheme of V0 over S, then there is an injective morphism of

V -schemes J [n]×S V → G× V such that the image is precisely the stabilizer subscheme

Stabk(G, V ) = {(g, T )|g.T = T}.

Suppose further this morphism is G-equivariant where G acts on the left via V and on the right

by g.(g0, T ) = (gg0g
−1, g.T ).3

For any f0 ∈ S(k′), put T0 = κ(f0) ∈ V (k′) and denote by Jf0 the fiber of J → S over

f0. Then there is an inclusion Jf0 [n] ↪→ G identifying Jf0 [n] with StabG(T0). The collection of

G(k′)-orbits in G(k′s)T0 is in bijection with

ker(H1(k′, Jf0 [n])→ H1(k′, G)).

2This n is not to be confused with the n we used to denote the genus of the hyperelliptic curves. This n will
be 2 in the hyperelliptic case.

3This last condition is not needed for Theorem 3.3, but will become convenient in Section 3.5.
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Axiom II.2: (Soluble orbits) The following composite map is trivial

Jf0(k
′)/nJf0(k

′) ↪→ H1(k′, Jf0 [n])→ H1(k′, G).

The k′-orbits corresponding to classes coming from Jf0(k
′)/nJf0(k

′) are called the soluble or-

bits. Denote the subset of elements in V (k′), Vf0(k
′) in the soluble orbits by V s(k′), V s

f0
(k′),

respectively.

The odd and even cases satisfy both of these two axioms. In both cases, S is the open

subscheme consisting of f0 ∈ S0 with non-zero discriminant, there is a family of hyperelliptic

curves C → S where the fiber above f0 is the hyperelliptic curve defined by the affine equation

y2 = f0(x). Its relative Pic0C/S is the abelian scheme J . The identification of Jf0 [2] with the

stabilizer subscheme has been done in Section 1.1 for the odd case and in Section 2.7 for the

even case, with explicit formula for the map J [2] ×S V → G given in Remark 1.6 and Remark

1.34. Axiom II.2 was verified in Theorem 2.5 and Theorem 2.20. This new definition of solubility

coincides with the old definitions we saw in Chapter 2.

Suppose k′ is a local field containing k of characteristic not dividing n. Fix any left-invariant

Haar measure µ on k′, for any c0 ∈ k′, define |c0| to be the positive real number such that

µ(c0E) = |c0|µ(E) for all measurable subset E ∈ k′. Since the quotient

|Jf0(k′)/nJf0(k′)|
Jf0 [n](k′)

only depends on n, k′ and the dimension of Jf0 hence independent of f0 ∈ S(k′), and since J [n]k′

is finite étale over Sk′ from the assumption on the characteristic of k′, the number of soluble

k′-orbits is locally constant over S(k′). The following axiom says that one can identify nearby

soluble orbits via a local spreading.

Axiom II.3: (Local spreading) For any f0 ∈ S(k′), [D] ∈ Jf0(k′)/nJf0(k′), under the topology

induced from |.|, there exists a neighborhood U0 ⊂ S(k′) of f0 with a smooth map εD : U0 →
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G(k′s), as |.|-adic manifolds, such that the rational orbit containing εD(f0) corresponds to the

class [D] and the map κD : U0 → V (k′s) defined by κD(f1) = εD(f1)κ(f1) factors through

V (k′).

To go from one G(k′)-orbit to another G(k′)-orbit, one needs to take an element g in G(k′s).

The above axiom requires that one can select g continuously over U0.

Axiom II.4: (Local compatibility of measure)4 Combining κD with the group action gives

a smooth map δD : G(k′) × U0 → V (k′). Denote by τ × µ the product measure on G(k′) × U0,

then

δ∗Dν = |c|τ × µ,

where the constant c comes from Axiom I.

We shall verify these two axioms for the two cases we are mainly interested in. Consider the

odd case first. Fix f0 ∈ S(k′) and fix any [D] ∈ Jf0(k′)/2Jf0(k′), then [D] can be represented

by a sum of points on the curve minus certain multiples of (∞). The coordinates of the points

can be chosen to vary continuous in f0 ∈ U0 by shrinking U0 if necessary. In fact, one can fix

the x-coordinate and let the y-coordinate vary so the point lies on the new curve. Recall [D]

gives rise to a class α ∈ (L
′×/L

′×2)N=1 and a quadratic form <,>α on L′. In Section 2.10,

we constructed explicitly an isotropic n-dimensional k′-vector space X and a k′-rational vector

v ∈ X⊥\X of norm 1 depending algebraically in the coordinates of the points representing [D].

In other words, the triple (L′, X, v) varies continuously in the appropriate moduli space as f0

varies in U0. Finally, the datum (L′, X, v) determines algebraically an isometry L′ → U, and in

(2.9) we saw how such an isometry determines a choice for g = εD(f1) ∈ G(k′s). Moreover, the

image of the multiplication by β map gives κ[D](f1).

Note both εD and κD are analytic and are defined by power series whose coefficients depend

only on the coordinates of the initial collection of points. They are not defined by polynomial

equations because we needed to take square roots. Let k′1 be a finite field extension of k′ such

4Arul Shankar pointed out in a discussion that Axiom II.4 follows from Axiom II.3 and the Principle of
permanence of identities.
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that [D] ∈ 2Jf0(k
′
1), let U1 denote the corresponding neighborhood of f0 in S(k′1) in the same way

U0 was defined in the above. By shrinking U0 and U1 if necessary, we see that the same power

series define sections κD : U0 → V (k′) and κD : U1 → V (k′1). Likewise δD : G(k′) × U0 → V (k′)

and δD : G(k′1) × U1 → V (k′1) are defined by the same power series, hence they have the same

Jacobian change of variable. The upshot is that in order to check Axiom II.4, it suffices to

consider the case where εD factors through G(k′). In this case, δD factors as

G(k′)× U0 → G(k′)× U0
δ−→ V (k′)

(g, f1) 7→ (g.εD(f1), f1)

The first map has unit Jacobian as the left Haar measure on G is also right invariant, the second

map has Jacobian c by Axiom I. Taking |.| of the Jacobian gives the constant |c| as required by

Axiom II.4.

The even case is almost exactly the same except we should mention a bit of extra caution

in defining εD and the local section κD associated to some [D] ∈ Jf0(k
′)/2Jf0(k

′). Let gY0 de-

note an element of PO2n+2(k) not in PSO2n+2(k), for example the reflection about any rational

hyperplane. When (∞) − (∞′) is not divisible by 2 in Jf0(k
′), we choose a set of representa-

tives [D] ∈ Jf0(k′) for Jf0(k
′)/〈2Jf0(k′), (∞) − (∞′)〉 and define εD and κD as usual. We define

ε[D]+(∞)−(∞′) by post-composing εD with left multiplication by gY0 and define κ[D]+(∞)−(∞′) by

post-composing κD with conjugation by gY0 .

Before moving on to state the main theorem, we point out that Axiom II.3 and II.4 allows

us to compute measures of subsets in V s(k′) fiberwise. More precisely,

Proposition 3.2. Assuming Axiom II.3. There exist a measure τf0 on V s
f0

(k′) for every f0 ∈ S(k′)

such that for any measurable subset E ⊂ V s(k′),

ν(E) =

∫
f(E)

τf0(Ef0) df0, (3.2)

where Ef0 denotes the fiber of E over f0.
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Proof: Fix f0 ∈ S(k′). The images of δD as [D] varies in Jf0(k
′)/2Jf0(k

′) are disjoint and

sweep out the entire V s(k′) ∩ f−1(U0). Let δf0 denote the map G(k′) → V (k′) sending g to

δD(g, f0). Denote its image by Vf0,D, then

V s
f0

(k′) =
∐

D∈Jf0 (k
′)/2Jf0 (k

′)

Vf0,D.

We define τf0 on Vf0 as a sum of measures τf0,D on Vf0,D. For any E ⊂ Vf0,D and any open ball

Uε around f0 of radius ε inside U0, we spread E out by taking

Eε = δD(δ−1f0 (E)× Uε) ⊂ V (k′).

We say E is τf0,D-measurable if Eε is ν-measurable for small enough ε and define

τf0,D(E) = lim
ε→0+

ν(Eε)

µ(Uε)
.

From the way it is defined, it is clear that (3.2) is satisfied. Note we didn’t need Axiom II.4 to

know the limit exists. A priori, there is a continuous non-negative real-valued function cD on U0

such that

δ∗Dν = cDτ × µ.

Then

ν(Eε) =
τ(δ−1f0 (E))

|StabG(κD(f0))(k′)|
·
∫
Uε

cD(s) ds

τf0,D(E) =
τ(δ−1f0 (E))

|StabG(κD(f0))(k′)|
· cD(f0).

Axiom II.4 tells us that cD is the constant |c|, independent of [D].

118



3.3 Statement of the Main Theorem and integral orbits

We are now set for stating the main result of our Main Theorem, though not the hypotheses.

Theorem 3.3. Suppose k is a number field. For each finite place ν, let Oν denote the local

ring of integers. Let K be a measurable subset of S(
∏

ν6 |∞Oν ×
∏

ν|∞ kν) of finite measure. Let

VK ⊂ V (Ak) be its soluble preimage. That is VK is the intersection in V (
∏
kν) of f−1(K), V (Ak)

and

V ls = {(Tν)ν |Tν is in a soluble kν orbit, ∀ν}.

Suppose Axioms I, II, III, IV are satisfied, then

ν(G(k)\VK) = τ(G(k)\G(Ak)) · µ(K), (3.3)

where the left hand side is computed by taking the measure of a measurable fundamental set.

In practice, how will one apply this Theorem? The main question we are trying to answer is

the average order of the n-Selmer group of a certain family of abelian varieties J . Over kν , for

a fixed fν ∈ S(kν), there is a bijection between soluble orbits over fν and Jfν (kν)/nJfν (kν) by

definition. For any f0 ∈ S(k), if G satisfies the Hasse principle, then there is a bijection between

classes in Seln(k, Jf0) and G(k)-orbits over f0 that are everywhere locally soluble.

Seln(k, Jf0)
� � // H1(k, Jf0 [n]) //

��

H1(k,G)� _

Hasse Principle
��∏

ν Jf0(kν)/nJf0(kν)
//
∏

ν H
1(kν , Jf0 [n]) //

∏
ν H

1(kν , G)

That is, there is a bijection

Seln(k, Jf0)←→ G(k)\V s
f0

(k).

Suppose one has a notion of “height” on the family J , denoted by H(J), or H(C) if J is the

picard scheme of a family of curves. For positive real number X, one uses the theory of adelic

geometry of numbers to choose a measurable subset S(Ak)<X = KX of S(
∏

ν6 |∞Oν ×
∏

ν|∞ kν)
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such that the following two comparisons hold.

µ(S(Ak)<X) ∼
∑

H(J)<X

1. (3.4)

ν(G(k)\VKX ) ∼
∑

H(J)<X

(#Seln(k, J)− γ), (3.5)

for some integer γ obtained using Bhargava-Shankar’s technique of point counting in truncated

fundamental domains.

Then applying the above comparison Theorem tells us the average order of the n-Selmer

group of the family J is τG + γ, where τG is the Tamagawa number of G.

For the family of hyperelliptic curves with a marked rational Weierstrass point, τPO = 2

and we expect that γ is 1 corresponding to the trivial class. Therefore the average order of

the 2-Selmer group is expected to be 3 over an arbitrary number field, generalizing the work

of Bhargava and Gross [2]. For the family of hyperelliptic curves with a marked rational non-

Weierstrass point, τPSO = 4 and we expect that γ is 2 corresponding to the trivial class and the

class (∞) − (∞′). Therefore the average order of the 2-Selmer group is expected to be 6 over

arbitrary number field in this case.

The heuristic for Theorem 3.3 is that if G acts simply-transtively on V , then just the level of

comparison of measure in Lemma 3.1 is enough. In the general case, the size of each stabilizer

is the same as the number of soluble orbits away from a finite number of places. Over the bad

places, the total number of them also match up due to the following product formula of Tate for

abelian varieties ∏
ν

|J(kν)/nJ(kν)|
|J [n](kν)|

= 1. (3.6)

Proposition 3.2 says one can compute measures in the soluble part fiberwise over a field. However,

the naive approach of extending Proposition 3.2 to adeles fails because there are infinitely many

adelic orbits with infinite adelic stabilizers. The actual approach we take involves “straightening”

out V using torsors of J and defining two adelic measures on this bigger space one of which
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computes the left hand side of (3.12) by definition, while the other one computes the right hand

side of (3.12) very easily. We will show that these two measures are equal, and not surprisingly,

(3.6) is needed.

Before the straightening process, we need to discuss the integral orbits of the action of G on

V . A priori it is not clear that VK maps surjectively to K. Suppose k is a number field.

Axiom III.1: (Integral V ) For almost all finite places ν, every rational soluble orbit contains

an integral orbit, that is, if T ∈ V s(kν) with f(T ) ∈ S(Oν), then there exists g ∈ G(kν) such

that g.T ∈ V (Oν).

Axiom III.2: (Integral G) For almost all finite places ν, let S ′ν ⊂ S(Oν) be the collection of

fν such that if g ∈ G(kν), T1, T2 ∈ V s
fν

(Oν), g.T1 = T2, then g ∈ G(Oν). Define

S ′ = {(fν)ν |fν ∈ S ′ν for almost all finite ν} ⊂ S(
∏
ν6 |∞

Oν). (3.7)

Then µ(S ′) = µ(S(
∏

ν6 |∞Oν)).

Notice Axiom III.2 is equivalent to the following axiom.

Axiom III.2’: For almost all finite places ν, there exists a measurable subset S ′ν ⊂ S(Oν) such

that

(Uniqueness) If fν ∈ S ′ν , then every rational soluble orbit over fν contains a unique integral

orbit.

(Integral stabilizer) If fν ∈ S ′ν and T ∈ V s
fν

(Oν), then StabG(T )(kν) ⊂ G(Oν).

(Full measure) Define S ′ as in (3.7), then µ(S ′) = µ(S(
∏

ν6 |∞Oν)).

To check these for the representations of PO and PSO, we give some equivalent criterions

for integrality. Recall the set up of V being the collection of trace-less self-adjoint operators

on a split quadratic space (U,<,>) of discriminant 1. The dimension of U is either 2n + 1 or
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2n + 2 depending on which case we are in. A lattice in U is a free Oν-submodule M of full

rank, namely such that U = M ⊗Oν kν . A lattice M is self-dual if

M = M∧ = {m′ ∈ U | < m,m′ >∈ Oν ,∀m ∈M}.

An operator T ∈ V (kν) is integral if there is a self-dual lattice M in U invariant under T .

When ν 6 | 2, there is an alternative definition described in [2] Section 8. View f0 ∈ S(Oν)

as the polynomial it corresponds to, define L = kν [x]/f0 and R = Oν [x]/f0, and let β denote

the image of x. For any T ∈ Vf0(kν), up to conjugation by gY0 in the even case, there exists

α ∈ L× with square norm to k such that T is the image of the multiplication by β map under a

k-isometry from (L,<,>α) to (U,<,>). Recall <,>α is defined by

< λ, µ >α= coefficient of β2n or β2n+1 in αλµ.

The existence of a self-dual lattice M translates into the existence of a fractional ideal I of R

such that αI2 = R. Then Axiom III.1 follows from the following Proposition of [2].

Proposition 3.4. ([2] Proposition 16) If the class of α in (L×/L×2)N=1 (odd case) or (L×/L×2k×)N=1

(even case) lies in the image of Jf0(kν)/2Jf0(kν), then I exists.

Proof: The proof in [2] focuses on k = Q and deals with the odd case. It works verbatim in

our more general case, but we will include some of the key points here. Suppose α is given by

the rational divisor

[D] = (P1) + · · ·+ (Pm)−m(∞),

where Pi = (ai, bi) is integral in some finite field extension of kν and m ≤ n. Since we only

care about the image of [D] under the Kummer map, we might as well forget the other point at

infinity in the even case. Also, since the curve has a rational point, it is only a priori clear that

the above expression for [D] is possible without the bound on m. Let R(x) ∈ kν [x] be the monic
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polynomial of degree m− 1 such that for all i, R(ai) = bi and let

P (x) = (x− a1) · · · (x− am) ∈ Oν [x].

Now P (x) divides R(x)2−f(x) in kν [x]. If m > n, then the quotient (R(x)2−f(x))/P (x) = Q(x)

is a polynomial of degree m − 2 unless m = n + 1 and we are in the even case in which case it

has degree m− 1. Therefore replacing [D] by div(y −R(x))− [D] always cuts down m.

As we will show in Lemma 3.5 below, we can further assume that all the bi are nonzero.

Then α = (−1)mP (β). If the polynomial R(x) ∈ Oν [x], then the ideal I = (1, R(β)/α) does

the job. Note αI2 = (α,R(β), Q(β)). The integrality assumption of R(x) is used to show that

R(β), Q(β) ∈ R. A computation of ideal norms shows that αI2 = R.

When R(x) is not integral, a Newton polygon analysis on f(x)−R(x)2 shows that there is a

divisor class [D′] ∈ Jf0(kν) of the form (P ′1) + · · · + (P ′m−2)− (m− 2)(∞) differing from [D] by

an element in 2Jf0(kν). One may apply induction on m to finish the argument.

Lemma 3.5. (Horizontal Moving Lemma)5 Let C be a hyperelliptic curve over kν of genus

g defined by the affine equation y2 = f0(x) where f0 ∈ Oν [x] is a monic polynomial of degree

N. Let α1, . . . , αN denote the roots of f0 and let (P1) = (α1, 0), . . . , (PN) = (αN , 0) denote the

corresponding Weierstrass points. Suppose [D] = (P1) + . . . + (Pr) − r(∞) ∈ J(kν) for some

r ≤ N, then there exists another divisor class [D′] with at most r points in its support away

from ∞, none of which equals to Pi for some i, such that the images of [D] and [D′] in L×/L×2

or L×/L×2k× coincide.

Proof: By replacing [D] with (Pr+1) + · · · + (PN) − (N − r)(∞) if necessary, we assume

r ≤ N/2. We also assume that α1, . . . , αr are all the conjugates of α1 over kν . Let g0(x) be the

minimal polynomial of α1,. Then f0(x) factors as f0(x) = g0(x)g(x) with g(x) monic of degree

5In some sense the Newton polygon argument can be viewed as the Vertical Moving Lemma.

123



d = N − r ≥ r. Let π denote the uniformizer in kν . Consider the divisor

div(y − π
r∏
i=1

(x− αi)) = (P1) + · · ·+ (Pr) + (Q1) + · · ·+ (Qd)−N(∞),

where Qi ∈ C(ksν) and their x-coordinates are the roots of the polynomial

h(x) := g(x)− π2

r∏
i=1

(x− αi) = u

d∏
i=1

(x− bi),

for some unit u in the case N = 2n + 2 = 2r = 2d. Write L0 = kν [x]/(g0(x)), L1 = kν [x]/(g(x))

with generators β0, β1. Then as an element of (L×0 /L
×2
0 )× (L×1 /L

×2
1 ), or further moding out by

the diagonal k×ν in the even case,

image([D]) = image((Q1) + · · ·+ (Qd)− d(∞))

= (
d∏
i=1

(bi − β0),
d∏
i=1

(bi − β1))

= ((−1)dh(β0), (−1)dh(β1))

= ((−1)dg(β0), (−1)d+1π2

r∏
i=1

(β1 − αi)))

= ((−1)r+1g(β0),
r∏
i=1

(αi − β1)).

We seek an r-tuple (x1, . . . , xr) satisfying the following conditions

1. x1, . . . , xr are conjugates of each other.

2. (−1)r+1(
∏r

i=1(xi − β0))/g(β0) is a square in L×0 .

3.
∏r

i=1((xi − β1)/(αi − β1)) is a square in L×1 .

It turns out from the construction below that f(xi) = g0(xi)g(xi) is a square in kν(α1, . . . , αr)
×

for all i.
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Define for each i = 1, . . . , r

qi =
∏

1≤j≤r,j 6=i

(αj − αi) (3.8)

xi = αi + (−1)r+1 qi g(αi)π
M (3.9)

where M is a sufficiently large even integer. Condition 1 is clearly satisfied and 3 is also if

qi g(αi) π
M/(αi − β1) has positive valuation. To check condition 2, we make many uses of the

identity
∏r

i=1(αi − β0) = 0. Indeed, we have

(−1)r+1

r∏
i=1

(xi − β0) = (−1)r+1

r∏
i=1

(
ai − β0 + πM(−1)r+1 qi g(ai)

)
= πM

r∑
i=1

(
qi g(ai)

∏
j 6=i

(aj − β0)

)
+ higher valuation terms,

Focusing on the important piece, we have

r∑
i=1

(
qi g(αi)

∏
j 6=i

(αj − β0)

)
=

r∑
i=1

(
(g(β0) + (αi − β0).(stuff))

∏
j 6=i

((αj − αi)(αj − β0))

)

= g(β0)
r∑
i=1

∏
j 6=i

((αj − β0 + β0 − αi)(αj − β0))

= g(β0)
r∑
i=1

∏
j 6=i

(αj − β0)2

= g(β0)

(
r∑
i=1

∏
j 6=i

(αj − β0)

)2

,

which after dividing by g(β0) becomes a square in L×0 , confirming condition 2. Once again the

smoothness of C ensured that xi 6= αi, and by enlarging M if necessary, xi 6= αj for any j. The

proof of the Moving Lemma is now complete, and moreoever, one can compute, modulo squares

125



in k(α1, . . . , αr)
×,

f(xi) = (
r∏
j=1

(xi − αj)) g(xi)

=

(
(−1)r+1 qi g(αi) π

M
∏
j 6=i

(αi − αj + πM(stuff))

)
(g(αi) + πM(stuff))

= (−1)r+1 qi g(αi)
2 πM(−1)r−1

∏
j 6=i

(αj − αi)

= q2i g(αi)
2πM

∈ k(α1, . . . , αr)
×2.

To check Axiom III.2’, we define for each ν 6 | 2,

S ′ν = {fν ∈ S(Oν)|valν(disc(fν)) ≤ 1}.

If fν ∈ S ′ν , then R = Oν [x]/fν is the maximal order, and uniqueness of integral orbits inside one

rational orbit follows from [2] Corollary 14.

Suppose now T ∈ V s(Oν) over fν ∈ S ′ν , and suppose g ∈ StabG(T )(kν). Let α1, . . . , α2n+1 or

α2n+2 denote the roots of fν . Recall the discriminant of fν is defined by

disc(fν) =
∏
i<j

(αi − αj)2.

The explicit description of StabG(T ) in Remark 1.6 and Remark 1.34 tells us g is of the form

1− 2
∑
i∈I

hi(T )

hi(αi)
,

for some subset I ⊂ {1, . . . , 2n+2} and where hi(x) =: f(x)/(x−αi). Observe that lcmi∈Ihi(αi) ∈

Oν and its square divides the discriminant. Therefore it must be a unit in Oν and g ∈ G(Oν).

Finally, for each finite ν, let µν denote the local measure on S(kν). Then for almost all ν,
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Weil’s formula says

µν(S
′
ν) = µν(S(Oν))(1− (Nν)−2 + o((Nν)−3)). (3.10)

For any finite subset I of the places of k that contains all the infinite places, places where (3.10)

does not hold, define

S ′I =
∏
ν∈I

S(Oν)×
∏
ν /∈I

S ′ν .

Then each S ′I is measurable and S ′ = ∪IS ′I is also measurable. Moreover,

µ(S ′) ≥ µ(S ′I) = µ(S(
∏
ν6 |∞

Oν))
∏
ν /∈I

(1− (Nν)−2 + o((Nν)−3)).

The product converges to 1 as I increases. Hence, µ(S ′) = µ(S(
∏

ν6 |∞Oν)).

Therefore, the two cases we are primarily interested in satisfy Axiom III. So far, all three

axioms are centered around the representation theoretic aspect. The last set of axioms focuses

on torsors of the abelian scheme J .

3.4 Straightening

Axiom IV: (Torsor of J ) Let W
π−→ V be a torsor for J ×S V as a V -scheme, such that

1. G acts on W equivariantly with respect to π,

2. there is a section κW : S → W extending the section κ, that is f ◦ κW = κ,

3. the actions of G×V and J ×S V on W commute and coincide on the common J [n]×S V,

that is the following two diagrams commute,

G× J ×S W //

��

G×W

��

J [n]×S V ×V W //
� _

��

G× V ×V W

��
J ×S G×W // J ×S W //W J ×S W //W

4. for any field k′ containing k, π(W (k′)) = V s(k′).
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When k is a number field and ν is a finite place, we define W (Oν) as π−1(V (Oν)).

We first verify this axiom in our hyperelliptic cases since this axiom might seem fairly artificial

at the moment.

For the odd case, W is a closed subscheme of V ×Gr(n, U⊕k). For any k-algebra R, W0(R) is

the collection of pairs (T,X) with T ∈ V0(R), and X a free sub-R-module of rank n in (U⊗R)⊕R

such that for any x, x′ ∈ X, Q0(x, x
′) = 0 = QT (x, x′), where Q0 and QT are two quadratic forms

on (U ⊗R)⊕R defined as follows over k,

Q0(u,w) = < u, u >

QT (u,w) = < u, Tu > +w2,

for u ∈ U,w ∈ k. As we have seen in Section 2.4, the fibers of W → V form torsors of the

corresponding Jacobians. One has the following action of J on W ,

(J ×S V )×V W = J ×S W → W

([D], T,X) 7→ (T,X + [D]),

where one can view the above + as either the action of J on the fiber, or as the addition in the

disconnected group discussed in Chapter 1. Since [D] is 2-torsion, X + [D] = X − [D] and the

latter definition will be used in the general case.

The section κW is constructed by taking κ for the first coordinate, and by taking the image of

Span{e0, . . . , en−1} for the second coordinate where {e0, . . . , e2n} is the simplectic basis obtained

in Section 3.1. The group G = PO2n+1 acts on U ⊕ k via the normal action on U and via the

identity on k. Therefore it acts on W via g.(T,X) = (gTg−1, gX). It follows directly from the

definition of the action of the Jacobian that the actions of G and J commute. To show they

agree on the common J [2] ×S V , we look at the fiber FT of W → V above some T ∈ V . Let

J denote the corresponding Jacobian. For [D] ∈ J, denote by α([D]) : FT → FT its action on

the fiber. For [E] ∈ J [2], denote by β([E]) : FT → FT the action coming from G. We already
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know from Proposition 2.7 that α([E]), β([E]) coincide on a nonempty subscheme of FT , namely

FT [2]∞. Transitivity of the action of J on FT and the commutativity of the first diagram allow

us to propagate this equality to all of FT . Finally Axiom IV.4 was the content of Theorem 2.5.

For the even case, U has dimension 2n+2, W is a closed subscheme of V ×Gr(n, U). For any

k-algebra R, W0(R) is the collection of pairs (T,X) with T ∈ V0(R), and X a free sub-R-module

of rank n in U ⊗R such that for any x, x′ ∈ X, Q0(x, x
′) = 0 = QT (x, x′), where Q0 and QT are

two quadratic forms on U ⊗R defined as follows over k,

Q0(u) = < u, u >

QT (u) = < u, Tu > .

Axiom IV follows from the parallel discussion in the second half of Chapter 2.

We now work towards the proof of Theorem 3.3. Assume all four sets of axioms are satisfied.

Commutativity of the actions of G and J gives an action of G × J on W over S. Observe

that one can embed J [n]×SW diagonally in G×J ×SW. From the identification of J [n]×S V

as the stabilizer subscheme of the action of G on V in Axiom II.1, and the fact that W is a

J -torsor over V , one can identify J [n]×S W with StabS(G×J ,W ) via the above embedding.

Using the section κ, we get a morphism

ι : J [n]
κ−→ J [n]×S V → G× V → G.

It allows us to embed J [n] diagonally as a finite subgroup scheme of G×J . The above identi-

fication allows us to define the following map,

γ :
G× J
J [n]

id×κW−−−−→ G× J
J [n]

×S κW (S)→ W. (3.11)

More concretely, let k′ be a field over k and for any f0 ∈ S(k′), let Wf0 , Jf0 denote the fibers of

W → S,J → S over f0. View Jf0 [n] as a subgroup of G via ι. An element of (G×Jf0)/Jf0 [n](k′)
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is represented by a pair (g, [D]) with g ∈ G(k′s), [D] ∈ Jf0(k′s) such that for any σ ∈ Gal(k′s/k′),

g−1σg = σ[D]− [D] ∈ Jf0 [n](k′s).

Two representatives (g1, [D1]), (g2, [D2]) are equivalent if and only if there exists some [D0] ∈

Jf0 [n](k′s), or equivalently in Jf0 [n](k), such that

(g2, [D2]) = (g1, [D1]).([D0], [D0]).

Denote by w0 ∈ Wf0(k
′) the image of f0 via the section κW . Then (3.11) is given by

γ : (G× Jf0)/Jf0 [n](k′) → Wf0(k
′)

(g, [D]) 7→ (g, [D]).w0 = g.(w0 − [D]).

Clearly γ is Galois equivariant. The major advantage γ has over δ : G × S → V is that γ

is bijective when k′ is separably closed. Therefore by a descent argument as in the proof of

Theorem 1.4, γ is bijective for arbitrary k′. This straightening suggests comparing measures on

W .

Lemma 3.6. θ is surjective, each fiber is a principal homogeneous space of G(k′).

Proof: The heuristic is the following long exact sequence

1→ G(k′)→ Wf0(k
′)→ Jf0(k

′)→ H1(k′, G),

where the last map factors as

Jf0(k
′)→ Jf0(k

′)/nJf0(k
′)→ H1(k′, Jf0 [n])→ H1(k′, G),

which we know is trivial from Axiom II.2.
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Rigorously, fix any [D] ∈ Jf0(k′), take any [D1] ∈ Jf0(k′s) such that n[D1] = [D]. The 1-cocyle

(σ[D1]− [D1])σ ∈ H1(k′, Jf0 [n]) is the image of [D] under the Kummer map. By Axiom II.2, its

image in H1(k′, G) is trivial. Therefore, there exists g ∈ G(k′s) such that

g−1σg = σ[D1]− [D1].

Then θ((g, [D1]).w0) = [D]. For any g0 ∈ G(k′),

g0.(γ(g, [D1])) = (g0, 0).(g, [D1]).w0

also does the job.

Conversely, (g1, [D1]).w0 and (g2, [D2]).w0 are two elements of Wf0(k
′) mapping to [D0]. Put

[E] = [D2]− [D1] ∈ Jf0 [n](k′s). Then g2[E]−1g−11 ∈ G(k′), and

(g2[E]−1g−11 , 0).(g1, [D1]).([E], [E]) = (g2, [D2]).

Remark 3.7. Suppose k′ is a local field. Fix f0 ∈ S(k′), and w0 = κW (f0). Then θ sends the

G(k) × Jf0(k
′)-orbit of w0 to nJf0(k

′). Suppose [D] ∈ Jf0(k
′) is not divisible by n. Recall in

Axiom II.3, we had a local section κD corresponding to the class of [D] in Jf0(k
′)/nJf0(k

′). Write

TD = κD(f0) and Axiom IV.4 says there exists a wD ∈ W (k′) mapping to TD via π. Then θ

sends the G(k)× Jf0(k′)-orbit of wD to [D] + nJf0(k
′).

We now restrict to the case when k is a number field and extend Lemma 3.6 to Ak using

Axiom III on integral orbits.

Lemma 3.8. Suppose f0 = (fν)ν ∈ S(Ak). Then the map θ : Wf0(Ak)→ Jf0(Ak) is surjective.

Proof: Given any ([Dν ])ν ∈ Jf0(Ak), there exists some (wν)ν ∈ Wf0(
∏

ν kν) mapping to it

via θ. Write Tν = π(wν). Note Tν ∈ V s(kν). For almost all ν, fν ∈ S(Oν) and hence by Axiom

III.1 there exists gν ∈ G(kν) such that gν .Tν ∈ Vf0(Oν). Therefore by definition of W (Oν), for

almost all ν, we can choose gν .wν ∈ Wf0,ν (Oν) mapping to [Dν ] via θ.
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Lemma 3.9. Suppose f0 = (fν)ν ∈ S ′, where S ′ is defined in Axiom III.2. Then the fiber of the

map θ : Wf0(Ak)→ Jf0(Ak) is a principal homogeneous space for G(Ak).

Proof: Just as in the proof of Lemma 3.6, G(Ak) acts on the fibers and clearly if (wν)ν , (w
′
ν)ν ∈

Wf0(Ak) have the same image, then there exists some (gν)ν ∈ G(
∏

ν kν) sending one to the other.

We need to show gν is integral for almost all ν. For almost all ν, Tν = π(wν), T
′
ν = π(w′ν) are

integral and fν ∈ S ′ν . Therefore by Axiom III.2, gν is integral.

We now fix a measurable subset K of S ′ of finite measure. Denote by JK(Ak), VK(Ak),

WK(Ak) the corresponding fibers as subsets of the adelic points. The fibers of the maps

WK(Ak)→ VK(Ak),JK(Ak)→ K are the Ak-points of abelian varieties, and by giving them the

probability measure, one obtains measures ν1 on WK(Ak) and µ0 on JK(Ak).

The above two lemmas imply that WK(Ak) maps surjectively onto JK(Ak) via θ and the

fibers are principal homogeneous spaces for G(Ak). This defines another measure ν2 on WK(Ak)

by taking the tamagawa measure on the fiber.

Theorem 3.10. ν1 = ν2.

Proof: Since every adelic measure in sight is defined as a product measure, it suffices to

work over each local completion kν and K any measurable subset of S(kν). Write k′ for kν .

From Axiom II.3 and II.4, we saw that the measure ν on V s(k′) can be computed fiberwise over

S(k′), hence so can ν1. The measure µ0 on JK(kν) is also defined fiberwise over K, therefore

the measure ν2 can be computed fiberwise. Fix f0 ∈ K, we are reduced to comparing the two

measures ν1, ν2 on Wf0(k
′).

Jf0(k
′) //Wf0(k

′)

π

��

G(k′) //Wf0(k
′)

θ
��

Vf0(k
′) Jf0(k

′)

More explicitly, for any subset E of Wf0(k
′) and any T ∈ V s

f0
(k′), [D] ∈ Jf0(k

′), denote by

ET ⊂ Jf0(k
′), E[D] ⊂ G(k′) the corresponding fibers of the maps π : Wf0(k

′) → V s
f0

(k′) and

132



θ : Wf0(k
′)→ Jf0(k

′). Recall τf0 is the fiber measure on V s
f0

(k′). Then

ν1(E) =

∫
π(E)

µ0(ET ) dτf0(T )

ν2(E) =

∫
θ(E)

τ(E[D]) dµ0([D]).

The unimodular locally compact group G(k′) acts on the locally compact topological space

Wf0(k
′) with quotient Jf0(k

′) and trivial stabilizer. Note this is the titular “straightening”

we wished to achieve. The G(k′)-invariant measures on Wf0(k
′) are in bijection with their

induced measures on Jf0(k
′). Let ν∗1 , ν

∗
2 denote the induced measures on Jf0(k

′). Then ν∗2 = µ0

by definition.

By Remark 3.7, translation by some [D] ∈ Jf0(k′) has the effect to moving between soluble

orbits. Hence ν∗1 is a priori nJf0(k
′)-invariant from Axiom I, and Jf0(k

′)-invariant due to Axiom

II.4. Since Jf0(k
′) is secretly also a (locally) compact group, there exists some nonnegative real

constant cf0 such that ν∗1 = cf0ν
∗
2 and therefore ν1 = cf0ν2. We compute cf0 by computing the

two measures of a model set.

Write T0 = κ(f0) and let H ⊂ G(k′) denote its stabilizer. Then H ' Jf0 [n](k′). Let K ′ be a

compact measurable subset of G(k′) such that K ′H = K ′. Let K ′.T0 ⊂ Vf0(k
′) denote the orbit

of T0 under K ′, and let E ⊂ Wf0(k
′) be its pre-image under π. Then

ν1(E) = τf (E) =
τ(K ′)

|Jf0 [n](k′)|
· |c|ν ,

where c ∈ k× is the constant in Lemma 3.1.

The image of E under θ is nJf0(k
′) and each fiber E[D] is K ′. Therefore,

ν2(E) =
τ(K ′)

|Jf0(k′)/nJf0(k′)|
.
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Combining the two, we get, on the level of fibers,

µ2 = µ1 ·
|Jf0 [n](k′)|

|Jf0(k′)/nJf0(k′)|
· |c|ν .

As shown in [17] Lemma 5.7, Lemma 5.14, the quotient |Jf0 [n](kν)|/|Jf0(k′)/nJf0(kν)| =: aν does

not depend on f0. Therefore on W (kν), we have µ2 = µ1 · aν · |c|ν .

As one takes the product over all places, |c|ν disappears due to the product formula, so does

aν as in (3.6).

We are now in position to prove Theorem 3.3 which we restate for completeness.

Theorem 3.11. Suppose k is a number field. For each finite place ν, let Oν denote the local

ring of integers. Let K be a measurable subset of S(
∏

ν6 |∞Oν ×
∏

ν|∞ kν) be finite measure. Let

VK ⊂ V (Ak) be the soluble preimage. That is VK is the intersection in V (
∏
kν) of f−1(K),

V (Ak) and

V ls = {(Tν)ν |Tν is in a soluble kν orbit, ∀ν}.

Suppose Axiom I, II, III, IV are satisfied, then

ν(G(k)\VK) = τ(G(k)\G(Ak)) · µ(K), (3.12)

where the left hand side is computed by taking the measure of a measurable fundamental set.

Proof: By removing a measure zero set from K, we assume K ⊂ S ′. As before, write

WK(Ak) for (f ◦ π)−1(K). Then VK = π(WK(Ak)). If F is a measurable fundamental set for

G(k)\VK , then one can take π−1(F ) as a measurable fundamental set for G(k)\WK(Ak). Then

ν(G(k)\π(WK(Ak)) = ν1(G(k)\WK(Ak)) by definition of ν1

= ν2(G(k)\WK(Ak)) by Theorem 3.10

= τ(G(k)\G(Ak))µ0(JK(Ak)) by definition of ν2

= τ(G(k)\G(Ak)) · µ(K) by definition of µ0.
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3.5 Alternative formulation for Axiom IV

In this section, we give an alternative formulation for Axiom IV. There are two main inspiration,

namely the difficulty of proving Axiom II.2 encountered in [18], and the fact that in Chapter

1, we not only constructed torsors of Jacobians of hyperelliptic curves, but also a disconnected

group with the Jacobian as the identity component and the torsor as another component.

Lemma 3.12. Suppose Axioms I, II.1, IV.1-3 hold. For any field k′ over k and T ∈ Vf0(k′), let

WT denote the fiber of W → V. Then there exists a morphism

ϕT : W n
T := WT ×WT × · · · ×WT → Jf0

of Jf0-torsors. This morphism is compatible with the action of G in the following sense: if

g.T = T ′ ∈ V (k′), denote by g : WT → WT ′ induced from the action of g on W , let gn denote

the map from W n
T to W n

T ′ , then ϕT ′ ◦ gn = ϕT . Moreover,

κW (f0) = w0 ∈ WT0 [n] := {w ∈ WT0|ϕT0(w, . . . , w) = 0}. (3.13)

Proof: Recall we had a Galois-equivariant isomorphim,

γ :
G× Jf0
Jf0 [n]

(k′)→ Wf0(k
′).

Fix some g0 ∈ G(k′s) such that g0.T0 = T. For any w ∈ WT (k′s), one can choose a unique repre-

sentative of γ−1(w) in G(k′s)× Jf0(k′s) of the form (g0, [Dw]). Then we define, for w1, . . . , wn ∈

WT (k′s),

ϕT (w1, . . . , wn) = [Dw1 ] + · · ·+ [Dwn ].

Choosing a different g0 amounts to changing each [Dw] by a fixed element in Jf0 [n](k′s) which does

not change ϕ. Compatibility with the actions of Jf0 and G follows directly from the definition

of the action of G× J on W . (3.13) follows since [Dw0 ] = 0.
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Lemma 3.13. Suppose Axioms I, II.1, IV.1-3 hold. For any field k′ over k and for any T ∈

Vf0(k
′), let ψT : WT (k′)→ Jf0(k

′) denote the map on k′-points of ϕ ◦∆ where ∆ is the diagonal

embedding of WT into W n
T . Then WT (k′) is non-empty if and only if the class in H1(k′, Jf0 [n])

corresponding to the k′-orbit of T lies in the image of the Kummer map. In fact, it is the image

of ψT (w) for any w ∈ WT (k′).

Proof: Suppose w ∈ WT (k′), write (g, [D]) = γ−1(w). Then ψT (w) = n[D] ∈ Jf0(k′) and for

any σ ∈ Gal(k′s/k′),

g−1σg = (σ[D]− [D])σ = image of n[D] under the Kummer map.

Conversely, if the image of the Kummer map of [D′] ∈ Jf0(k
′) corresponds to the k′-orbit of

some T ∈ V (k′), take any [D] ∈ Jf0(k
′s) such that n[D] = [D′]. The cocycle (σ[D] − [D])σ

becomes trivial in H1(k′, G). Thus, there exists g ∈ G(k′s) such that σ[D] − [D] = g−1σg. Then

γ(g, [D]) ∈ WT (k′).

Corollary 3.14. Assuming Axioms I, II.1, IV.1-3, then Axiom II.2 implies Axiom IV.4.

Axiom IV’: (Torsor of J with a fixed lift) Let W
π−→ V be a torsor for J ×S V as a

V -scheme, such that

1. G acts on W equivariantly with respect to π,

2. for any field k′ over k and T ∈ Vf0(k′), there exists a G-equivariant morphism

ϕT : W n
T := WT ×WT × · · · ×WT → Jf0

of Jf0-torsors and a section κW : S → W such that κW (f0) lands inside WT0 [n] as defined

in (3.13),

3. the actions of G×V and J ×S V on W commute and coincide on the common J [n]×S V,
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4. for any field k′ over k, the images of the maps

WT (k′)
ψT−→ Jf0(k

′)→ Jf0(k
′)/nJf0(k

′) (3.14)

as T runs in Vf0(k
′) cover the entire Jf0(k

′)/nJf0(k
′).

Proposition 3.15. Axioms I, II, IV.1-3 together is equivalent to Axioms I, II.1, IV’.

Proof: We have proven the forward direction. Suppose now Axioms I, II.1, IV’ hold. It

remains to check Axioms II.2 and IV.4. Corollary 3.14 implies that only checking II.2 is enough,

but our argument proves both at the same time.

Fix any T ∈ Vf0(k′), define WT [n] similarly as in (3.13) as the kernel of ϕ ◦∆. Then WT [n]

is a Jf0 [n]-torsor and hence corresponds to a class cT ∈ H1(k′, Jf0 [n]). We claim that cT also

corresponds to the k′-orbit of T .

Indeed, choose g ∈ G(k′s) such that g.T0 = T. Write as usual w0 = κW (f0) ∈ WT0 [n](k′),

then G-equivariance implies that g.w0 ∈ WT [n](k′s). For any σ ∈ Gal(k′s/k′),

σ(g.w0) = (σgg−1)(g.w0).

Thus, σgg−1 is the element in StabG(T )(k′s) sending g.w0 to its σ-conjugate. Let ιT : Jf0 [n] ↪→ G

denote the identification of Jf0 [n] with StabG(T ). Then cT = (Dσ)σ where ιT (Dσ) = σgg−1. To

see what k′-orbit cT corresponds to, we need to look at the image of cT in H1(k′, G). Recall the

map H1(k′, Jf0 [n])→ H1(k′, G) is induced by ιT0 : Jf0 [n] ↪→ G and by Axiom I.1,

ιT0(Dσ) = g−1ιT (Dσ)g = g−1σg,

confirming our claim.

By definition, the image of cT in H1(k′, Jf0 [n]) is the class corresponding to the Jf0-torsor

WT . Therefore, WT (k′) 6= ∅ if and only if cT lies in the image of the Kummer map. Suppose

w ∈ WT (k′), there exists a unique [D] ∈ Jf0(k′s) such that w = g.w0 + [D]. Since ϕ is a map of
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Jf0-torsors, ψT (w) = n[D] ∈ Jf0(k′). Moreover, cT = ([D]− [D]σ)σ since w is rational. Therefore,

cT is the Kummer image of −n[D]. Hence there is a bijection between the images of maps defined

in (3.14) and the subset of elements in Jf0(k
′)/nJf0(k

′) whose images in H1(k′, Jf0 [n]) correspond

to orbits. Therefore Axiom IV’.4 implies II.2 and IV.4.
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