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WITH AN APPENDIX BY TIM DOKCHITSER AND VLADIMIR DOKCHITSER

1. Introduction

In this article, for any fixed genus g ≥ 1, we prove that a positive proportion of
hyperelliptic curves over Q of genus g have points over R and over Qp for all p, but
have no points globally over any extension of Q of odd degree.

By a hyperelliptic curve over Q, we mean a smooth, geometrically irreducible,
complete curve C over Q equipped with a fixed map of degree 2 to P1 defined
over Q. Thus any hyperelliptic curve C over Q of genus g can be embedded in
weighted projective space P(1, 1, g + 1) and expressed by an equation of the form

(1) C : z2 = f(x, y) = f0x
n + f1x

n−1y + · · ·+ fny
n,

where n = 2g + 2, the coefficients fi lie in Z, and f factors into distinct linear
factors over Q̄. Define the height H(C) of C by

(2) H(C) := H(f) := max{|fi|}.
Then there are clearly only finitely many integral equations (1) of height less
than X, and we use the height to enumerate the hyperelliptic curves of a fixed
genus g over Q.

We say that a variety over Q is locally soluble if it has a point over Qν for every
place ν ofQ and is soluble if it has a point overQ. It is known that most hyperelliptic
curves over Q of any fixed genus g ≥ 1 when ordered by height are locally soluble
(cf. [27] and [3], where it is shown that more than 75% of hyperelliptic curves have
this property).

The purpose of this paper is to prove the following theorem.

Theorem 1. Fix any g ≥ 1. Then a positive proportion of locally soluble hyper-
elliptic curves over Q of genus g have no points over any odd degree extension
of Q.
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Let J = Pic0C/Q denote the Jacobian of C over Q, which is an abelian variety
of dimension g. The points of J over a finite extension K of Q are the divisor
classes of degree zero on C that are rational over K. (When C is locally soluble,
we will see that every K-rational divisor class on C is represented by a K-rational
divisor.) Let J1 = Pic1C/Q denote the principal homogeneous space for J whose
points correspond to the divisor classes of degree one on C. A point P on C defined
over an extension field K/Q of odd degree k gives a rational point on J1, by taking
the class of the degree-one divisor that is the sum of the distinct conjugates of
P minus (k − 1)/2 times the hyperelliptic class d obtained by pulling back O(1)
from P1. Thus Theorem 1 is equivalent to the following theorem.

Theorem 2. Fix any g ≥ 1. For a positive proportion of locally soluble hyperelliptic
curves C over Q of genus g, the variety J1 has no rational points.

To prove Theorems 1 and 2, we show that for a positive proportion of locally
soluble hyperelliptic curves C over Q, the varieties J and J1 are not isomorphic
over Q. To distinguish these varieties, which become isomorphic over Q, we will
study their arithmetic fundamental groups. In fact, we need only the quotient of
the arithmetic fundamental group given by two-covers.

Let I be a principal homogeneous space for the abelian variety J . A two-cover
of I is, by definition, an unramified covering π : Y → I by another principal
homogeneous space Y for J with the property that

π(y + a) = π(y) + 2a

for any y ∈ Y and a ∈ J . The degree of any two-cover is 22g.
The simplest example of a two-cover of J is given by the multiplication-by-2

isogeny J
2−→ J . Another interesting two-cover of J is J1 2−→ J2 ∼= J , where the

first map is multiplication by 2 in PicC/Q and J2 is identified with J by translation
by the hyperelliptic class d of degree 2. If π : Y → J is any two-cover of J , then
the fiber over the origin gives a principal homogeneous space Y [2] for the 2-torsion
subgroup J [2], and the class of this homogeneous space in the Galois cohomology
group H1(Q, J [2]) determines the isomorphism class of the two-cover π.

The two-covers π : Y → J where Y has points over Qν for all places ν are called
locally soluble. They correspond to elements in the 2-Selmer subgroup Sel2(J) of
H1(Q, J [2]). The 2-Selmer group is finite and lies in an exact sequence

0 → J(Q)/2J(Q) → Sel2(J) → XJ [2] → 0.

The isogeny J
2−→ J corresponds to the trivial class in the Selmer group, and the

two-cover J1 2−→ J2 ∼= J gives a class W [2] in the Selmer group whenever C (and
hence J1) is locally soluble. This class turns out to be non-trivial 100% of the
time, as points of W [2] correspond to Weierstrass divisors e of degree 1 on C
with 2e ≡ d. These divisors e correspond to odd factorizations of f(x, y) over Q.
An odd (resp., even) factorization of f(x, y) over Q is a factorization of the form
f(x, y) = g(x, y)h(x, y) where g, h are odd (resp., even) degree binary forms that
either are defined over Q or are conjugate over some quadratic extension of Q. By
Hilbert’s irreducibility theorem, such factorizations rarely exist. The class W [2]
maps to the trivial class in XJ [2] if and only if J1 has a rational point. Hence we
obtain the following corollary to Theorem 2.
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A POSITIVE PROPORTION OF HYPERELLIPTIC CURVES 453

Corollary 3. Fix any g ≥ 1. Then a positive proportion of locally soluble hyper-
elliptic curves over Q of genus g have nontrivial 2-torsion in the Tate-Shafarevich
groups of their Jacobians.

Remark 4. Another consequence of the fact that odd and even factorizations of
a binary form f(x, y) over Q rarely exist is that for 100% of all locally soluble
hyperelliptic curves C over Q, the set J1(Q) is either empty or infinite. Indeed, if
J1 has a rational point, then the class of W [2] in H1(Q, J [2]) lies in the image of
the group J(Q)/2J(Q). If f(x, y) has no odd or even factorization over Q, then
W [2] is nontrivial and J(Q)[2] = 0. Therefore, J(Q) has positive rank and hence
is infinite, and as a consequence J1(Q) is infinite.

Similarly, we define the 2-Selmer set Sel2(J
1) of J1 as the set of isomorphism

classes of locally soluble two-covers π : Y → J1. This finite set either is empty or
forms a principal homogeneous space for the finite group Sel2(J). In fact, Sel2(J

1)
is the set of all elements in the 4-Selmer group Sel4(J) which map to the class of
W [2] in Sel2(J) in the first descent.

When the set Sel2(J
1) is empty, the varieties J1 and J are non-isomorphic and

distinguished by their two-covers. We prove the following theorems about Sel2(J1).

Theorem 5. Fix any g ≥ 1. For a positive proportion of locally soluble hyperelliptic
curves C over Q, the 2-Selmer set Sel2(J

1) is empty.

Theorem 6. Fix any g ≥ 1. When all locally soluble hyperelliptic curves C over Q
of genus g are ordered by height, the average size of the 2-Selmer set Sel2(J

1) is at
most 2.

We expect that the average in Theorem 6 is in fact equal to 2, and thus is inde-
pendent of g. To prove Theorem 6, we will use the theory of pencils of quadrics to
construct and count the locally soluble two-covers of J1.

Our methods also allow us to count elements, on average, in more general 2-
Selmer sets. For C a hyperelliptic curve over Q having hyperelliptic class d, and
k > 0 any odd integer, define the 2-Selmer set of order k for C to be the subset of
elements of Sel2(J

1) that locally come from Qν-rational points on J1 of the form
eν − k−1

2 d, where eν is an effective divisor of odd degree k on C over Qν , for all
places ν. Then we prove the following theorem.

Theorem 7. Fix any odd integer k > 0. Then the average size of the 2-Selmer set
of order k, over all locally soluble hyperelliptic curves of genus g over Q, is strictly
less than 2 provided that k < g and tends to 0 as g → ∞.

Theorem 7 implies that most hyperelliptic curves of large genus have no K-
rational points over all extensions K of Q having small odd degree.

Corollary 8. Fix any m > 0. Then as g → ∞, a proportion approaching 100% of
hyperelliptic curves C of genus g over Q contain no points over all extensions of Q
of odd degree ≤ m.

Corollary 8 allows us to construct many smooth surfaces and varieties of higher
degree, as symmetric powers of hyperelliptic curves, that fail the Hasse principle.

Corollary 9. Fix any odd integer k > 0. Then as g → ∞, the variety Symk(C) fails
the Hasse principle for a proportion approaching 100% of locally soluble hyperelliptic
curves C over Q of genus g.
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One may ask what is the obstruction to the Hasse principle for the varieties J1

and Symk(C) occurring in Theorem 2 and Corollary 9, respectively. In both cases,
the obstruction arises from the non-existence of a locally soluble two-cover of J1.
As shown by Skorobogatov [33, Theorem 6.1.1] (see also Stoll [34, Remark 6.5 and
Theorem 7.1]), using the descent theory of Colliot-Thélène and Sansuc [14], this

obstruction yields a case of the Brauer-Manin obstruction for both J1 and Symk(C).
Therefore, we obtain the following theorems.

Theorem 10. Fix any g ≥ 1. For a positive proportion of locally soluble hyperellip-
tic curves C over Q of genus g, the variety J1 of dimension g has a Brauer-Manin
obstruction to having a rational point.

Theorem 11. Fix any odd integer k > 0. As g → ∞, for a density approach-
ing 100% of locally soluble hyperelliptic curves C over Q of genus g, the variety
Symk(C) of dimension k has a Brauer-Manin obstruction to having a rational point.

Recall that the index I(C) of a curve C/Q is the least positive degree of a Q-
rational divisor D on C. Equivalently, it is the greatest common divisor of all
degrees [K : Q] of finite field extensions K/Q such that C has a K-rational point.
Then Theorems 1 and 2 are also equivalent to the following theorem.

Theorem 12. For any g ≥ 1, a positive proportion of locally soluble hyperelliptic
curves C of genus g over Q have index 2.

We will actually prove more general versions of all of these results, where for each
g ≥ 1 we range over any “admissible” congruence family of hyperelliptic curves C
over Q of genus g for which Div1(C) (but not necessarily C) is locally soluble;
see Definition 43 for the definition of admissible.

We obtain Theorem 5 from Theorem 6 by combining it with a result of Dokchitser
and Dokchitser (see Appendix A), which states that a positive proportion of locally
soluble hyperelliptic curves over Q of genus g ≥ 1 have even (or odd) 2-Selmer rank.
Indeed, suppose that C is a locally soluble hyperelliptic curve whose 2-Selmer set
Sel2(J

1) is non-empty. Then the cardinality of Sel2(J
1) is equal to the order of the

finite elementary abelian 2-group Sel2(J). As we have shown earlier, for 100% of
locally soluble hyperelliptic curves, the group Sel2(J) contains at least 2 elements,
namely the trivial class and the class W [2]. Hence the cardinality of Sel2(J

1) is
at least 2. Moreover, if the 2-Selmer rank of the Jacobian is even, then the set
Sel2(J

1) (when nonempty) will have size at least 4. Therefore, Theorem 6 (and
Appendix A) implies that for a positive proportion of locally soluble hyperelliptic
curves, the Selmer set Sel2(J

1) is empty. This proves Theorem 5.
We prove Theorem 6 by relating the problem to a purely algebraic one involving

pencils of quadrics. Let A and B be two symmetric bilinear forms over Q in
n = 2g+2 variables, and assume that the corresponding pencil of quadrics in Pn−1

is generic. Over the complex numbers, the Fano variety F = F (A,B) of common
maximal isotropic subspaces of A and B is isomorphic to the Jacobian J of the
hyperelliptic curve given by C : z2 = disc(Ax − By) := (−1)g+1 det(Ax − By)
(cf. [29], [19], [16]); furthermore, all such pairs (A,B) with the same discriminant
binary form are SLn(C)-equivalent.

However, as shown in [37], over Q the situation is much different. Given A and
B, the Fano variety F = F (A,B) might not have any rational points. In general,
F is a principal homogeneous space for J whose class [F ] in H1(Q, J) has order
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dividing 4 and satisfies 2[F ] = [J1]; hence F gives a two-cover of J1 (see [37] or
Section 4 for more details on the properties of the Fano variety). Moreover, given a
hyperelliptic curve C : z2 = f(x, y) over Q of genus g (equivalently, a binary form of
degree n = 2g+2 over Q with nonzero discriminant), there might not exist any pair
(A,B) of symmetric bilinear forms over Q such that f(x, y) = disc(Ax−By). This
raises the natural question: for which binary forms f(x, y) of degree n = 2g+2 and
nonzero discriminant over Q does there exist a pair (A,B) of symmetric bilinear
forms in n variables over Q such that f(x, y) = disc(Ax−By)?

In this paper, we give a geometric answer to this question in terms of the general-
ized Jacobian Jm of the hyperelliptic curve C : z2 = f(x, y). Assume for simplicity
that f(x, y) = f0x

n + f1x
n−1y + · · · + fny

n has first coefficient f0 	= 0, so that
the curve C has two distinct points P and P ′ above the point ∞ = (1, 0) on P1.
These points are rational and conjugate over the field Q(

√
f0). Let m = P + P ′ be

the corresponding modulus over Q and let Cm denote the singular curve associated
to this modulus as in [30, Chapter IV, Section 4]. Then Cm is given by the equa-
tion z2 = f(x, y)y2 and has an ordinary double point at infinity. The generalized
Jacobian of C associated to the modulus m, denoted by Jm = Jm(C), is the con-
nected component of the identity of PicCm/Q /Z · d, while J1

m = J1
m(C) denotes the

nonidentity component; here d denotes the hyperelliptic class of Cm in Pic2Cm/Q(Q)

obtained by pulling back O(1) from P1. We prove the following theorem which
describes when a binary form f(x, y) over Q can be expressed as disc(Ax−By).

Theorem 13. Let f(x, y) denote a binary form of even degree n = 2g + 2 over Q,
with nonzero discriminant and nonzero first coefficient. Then there exists a pair
(A,B) of symmetric bilinear forms over Q in n variables satisfying f(x, y) =
disc(Ax−By) if and only if there exists a two-cover of homogeneous spaces Fm → J1

m

for Jm over Q, or equivalently, if and only if the class of the homogeneous space J1
m

is divisible by 2 in the group H1(Q, Jm).

See Theorem 24 for a number of other equivalent conditions for the existence of
A and B satisfying f(x, y) = disc(Ax− By). It is of significance that the singular
curve Cm and the generalized Jacobian Jm appear in Theorem 13. The generalized
Jacobians appeared in [28] for the purpose of doing 2-descent on the Jacobians of
hyperelliptic curves with no rational Weierstrass point. As noted in [28, Footnote 2],
in this case it is not always enough to study only unramified covers of C; one needs
also covers of C unramified away from the points above some fixed point on P1.

The group SLn(Q) acts on the space Q2⊗Sym2 Q
n of pairs (A,B) of symmetric

bilinear forms on an n-dimensional vector space, and μ2 ⊂ SLn acts trivially since
n = 2g + 2 is even. The connection with Theorem 6 arises from the fact that
we may parametrize elements of Sel2(J

1) by certain orbits for the action of the
group (SLn /μ2)(Q) on the space Q2 ⊗ Sym2 Q

n. We say that an element (A,B) ∈
Q2 ⊗ Sym2 Q

n, or its (SLn /μ2)(Q)-orbit, is locally soluble if the associated Fano
variety F (A,B) has a point locally over every place of Q. Then we prove the
following bijection.

Theorem 14. Let f(x, y) denote a binary form of even degree n = 2g + 2 over
Q such that the hyperelliptic curve C : z2 = f(x, y) is locally soluble. Then the
(SLn /μ2)(Q)-orbits of locally soluble pairs (A,B) of symmetric bilinear forms in
n variables over Q such that f(x, y) = disc(Ax − By) are in bijection with the
elements of the 2-Selmer set Sel2(J

1).
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To obtain Theorem 6, we require a version of Theorem 14 for integral orbits. Let
Z2 ⊗ Sym2 Z

n denote the space of pairs (A,B) of n × n symmetric bilinear forms
over Z. Then we prove the following theorem on integral representatives.

Theorem 15. There exists a positive integer κ depending only on n such that, for
any integral binary form f(x, y) of even degree n = 2g + 2 with C : z2 = f(x, y)
locally soluble over Q, every (SLn /μ2)(Q)-orbit of locally soluble pairs (A,B) ∈
Q2 ⊗ Sym2 Q

n such that disc(Ax − By) = κ2f(x, y) contains an element in Z2 ⊗
Sym2 Z

n. In other words, the (SLn /μ2)(Q)-equivalence classes of locally soluble
pairs (A,B) ∈ Z2 ⊗ Sym2 Z

n such that disc(Ax− By) = κ2f(x, y) are in bijection
with the elements of Sel2(J

1).

We will prove Theorem 15 for κ = 4 but we expect this can be improved. We
use Theorem 15, together with the results of [1] giving the number of SLn(Z)-orbits
on Z2 ⊗ Sym2 Z

n having bounded height, and a sieve, to deduce Theorem 6.
We note that the emptiness of J1(Q) for hyperelliptic curves C over Q has

been demonstrated previously for certain special algebraic families. In [13], Colliot-
Thélène and Poonen constructed one-parameter algebraic families of curves C = Ct

of genus 1 and genus 2 for which the varieties J1 have a Brauer-Manin obstruction
to having a rational point for all t ∈ Q. (We note that the family of genus 2
curves considered in [13] consists of hyperelliptic curves C over Q with locally
soluble J1(C) but not locally soluble Div1(C).) For arbitrary genus g ≥ 6 with
4 � g, Dong Quan [20] constructed such one-parameter algebraic families of locally
soluble hyperelliptic curves C = Ct having empty J1(Q) for every t ∈ Q.

This paper is organized as follows. In Section 2, we introduce the key represen-
tation 2⊗ Sym2(n) of SLn on pairs of symmetric bilinear forms that we will use to
study the arithmetic of hyperelliptic curves. We adapt the results of Wood [40] to
study the orbits of this representation over a general Dedekind domain D whose
characteristic is not equal to 2. In Section 3, we introduce hyperelliptic curves and
some of the relevant properties of their generalized Jacobians. In Section 4, we then
relate hyperelliptic curves to generic pencils of quadrics over a field K of charac-
teristic not equal to 2, and we review the results that we will need from [37]. In
Section 5, we then study regular pencils of quadrics, which allows us to determine
which binary n-ic forms over K arise as the discriminant of a pencil of quadrics
over K; in particular, we prove Theorem 13.

In Section 6, we describe how the K-soluble orbits (i.e., orbits of those (A,B)
over K such that F (A,B) has a K-rational point), having associated hyperelliptic
curve C over K, are parametrized by elements of the set J1(K)/2J(K). We study
the orbits over some arithmetic fields in more detail in Section 7, and then we focus
on global fields and discuss locally soluble orbits in Section 8. We show that the
locally soluble orbits over Q, having associated hyperelliptic curve C over Q are
parametrized by the elements of the finite set Sel2(J

1), proving Theorem 14. The
existence of integral orbits (Theorem 15) is demonstrated in Section 9. We then
discuss the counting results from [1] that we need in Section 10, and we discuss
the details of the required sieve in Section 11. Finally, we complete the proofs of
Theorems 6 and 7 in the final Section 12.
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2. Orbits of pairs of symmetric bilinear

forms over a Dedekind domain

In this section, we study the orbits of our key representation 2 ⊗ Sym2(n) over
a Dedekind domain D. In later sections, we will specialize to the case when D is
a field, Zp or Z. We will also relate these results on orbits to the arithmetic of
hyperelliptic curves.

Let K denote the quotient field of D. We assume throughout this paper that
the characteristic of K is not equal to 2. Let n ≥ 2 be an integer. The group
SLn(D) acts on the D-module of pairs (A,B) of symmetric bilinear forms on a free
D-module W of rank n. After a choice of basis for W , this is the representation
D2 ⊗ Sym2 D

n = Sym2 D
n ⊕ Sym2 D

n.
The coefficients of the binary n-ic form

f(x, y) = disc(xA−yB) := (−1)n(n−1)/2 det(xA−yB) = f0x
n+f1x

n−1y+· · ·+fny
n,

which we call the invariant binary n-ic form of the element (A,B) ∈ D2⊗Sym2 D
n,

give n + 1 polynomial invariants of degree n which freely generate the ring of
polynomial invariants over D. We also have the invariant discriminant polynomial
Δ(f) = Δ(f0, f1, . . . , fn) given by the discriminant of the binary form f , which has
degree 2n(n− 1) in the entries of A and B.

In Wood’s work [40], the orbits of SL±
n (T ) = {g ∈ GLn(T ) : det(g) = ±1} on

T 2 ⊗ Sym2 T
n were classified for general rings (and in fact even for general base

schemes) T in terms of ideal classes of rings of rank n over T . In this section,
we translate these results into a form that we will use later on, in the important
special case where T = D is a Dedekind domain with quotient fieldK. In particular,
we will need to use the actions by the groups SLn(D) and in the case n is even,
the group (SLn /μ2)(D) rather than SL±

n (D). This causes some key changes in
the parametrization data and will indeed be important for us when we make the
connection with hyperelliptic curves.

Let us assume that f0 	= 0 and write f(x, 1) = f0g(x), where g(x) has coefficients
in the quotient field K and has n distinct roots in a separable closure Ks of K.
Let L = Lf := K[x]/g(x) be the corresponding étale algebra of rank n over K,
and let θ be the image of x in the algebra L. Then g(θ) = 0 in L. Let g′(x) be
the derivative of g(x) in K[x]; since g(x) is separable, the value g′(θ) must be an
invertible element of L. We define f ′(θ) = f0g

′(θ) in L×.
For k = 1, 2, . . . , n− 1, define the integral elements

ζk = f0θ
k + f1θ

k−1 + · · ·+ fk−1θ

in L, and let R = Rf be the free D-submodule of L having D-basis {1, ζ1, ζ2, . . . ,
ζn−1}. For k = 0, 1, . . . , n − 1, let I(k) be the free D-submodule of L with basis
{1, θ, θ2, . . . , θk, ζk+1, . . . , ζn−1}. Then I(k) = I(1)k, and I(0) = R ⊂ I(1) ⊂ · · · ⊂
I(n− 1). Note that I(n− 1) has the power basis {1, θ, θ2, . . . , θn−1}, but that the
elements of I(n− 1) need not be integral when f0 is not a unit in D.

A remarkable fact (cf. [9], [25, Proposition 1.1], [39, Section 2.1]) is that R is a
D-order in L of discriminant Δ(f), and the free D-modules I(k) are all fractional
ideals of R. The fractional ideal (1/f ′(θ))I(n − 2) is the dual of R under the
trace pairing on L, and the fractional ideal I(n− 3) will play a crucial role in the
parametrization of orbits in our representation.
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We then have the following translation of [40, Theorem 1.3] in the case of the
action of SLn(D) on D2 ⊗ Sym2 D

n, where D is a Dedekind domain.

Theorem 16. Assume that f(x, y) is a binary form of degree n over D with Δ(f) 	=
0 and f0 	= 0. Then there is a bijection (to be described below) between orbits for
SLn(D) on D2 ⊗ Sym2 D

n with invariant form f and equivalence classes of triples
(I, α, s), where I is a fractional ideal for R, α ∈ L×, and s ∈ K×, satisfying the
relations I2 ⊂ αI(n−3), N(I) is the principal fractional ideal sD in K, and N(α) =
s2fn−3

0 in K×. The triple (I, α, s) is equivalent to the triple (cI, c2α,N(c)s) for any
c ∈ L×. The stabilizer of a triple (I, α, s) is S×[2]N=1 where S = EndR(I) ⊂ L.

From a triple (I, α, s), we construct an orbit as follows. Since N(I) is the princi-
pal D-ideal sD, the projective D-module I of rank n is free. Since I2 ⊂ αI(n− 3),
we obtain two symmetric bilinear forms on the free module I by defining 〈λ, μ〉A
and 〈λ, μ〉B as the respective coefficients of ζn−1 and ζn−2 in the basis expansion of
the product λμ/α in I(n− 3). We obtain an SLn(D)-orbit of two symmetric n× n
matrices (A,B) over D by taking the Gram matrices of these forms with respect to
any ordered basis of I that gives rise to the basis element s(1∧ ζ1 ∧ ζ2 ∧ · · · ∧ ζn−1)
of the top exterior power of I over D. This normalization deals with the difference
between SLn(D)- and GLn(D)-orbits. The stabilizer statement follows because
elements in S×[2]N=1 are precisely the elements of L×

N=1 that preserve the map
1
α× : I × I → I(n− 3).

Conversely, given an element (A,B) ∈ D2 ⊗ Sym2 D
n, we construct the ring

R = Rf from f as described above, where f(x, y) = disc(xA− yB). The R-module
I is then constructed by letting θ ∈ L act on Kn by the matrix A−1B. Then
ζ1 = f0θ ∈ R preserves the lattice Dn. Similarly, formulas for the action of each
ζi ∈ R on Dn, in terms of integral polynomials in the entries of A and B, can
be worked out when A is assumed to be invertible; these same formulas can then
be used to show that Dn is an R-module, even when A is not invertible. See
[40, Section 3.1] for the details.

When n = 2m is even, the larger group (SLn /μ2)(D) acts on the representation
D2 ⊗ Sym2 D

n, and distinct orbits for the subgroup SLn(D)/μ2(D) may become
identified as a single orbit for the larger group. Since a projective module of rank
n over D whose top exterior power is a free module is itself free of rank n by
[24, Theorem 1.6], we have H1(D, SLn) = 1 and hence an exact sequence of groups

1 → SLn(D)/μ2(D) → (SLn /μ2)(D) → H1(D,μ2) → 1.

By Kummer theory, the quotient group H1(D,μ2) lies in an exact sequence

1 → D×/D×2 → H1(D,μ2) → Pic(D)[2] → 1.

The image of the group H1(D,μ2) in H1(K,μ2) = K×/K×2 is the subgroup
K×(2)/K×2 of elements t such that the principal ideal tD = M2 is a square, and
the map to Pic(D)[2] is given by mapping such an element t to the class of M . The
action of t on a triple (I, α, s) with invariant form f is given by

t · (I, α, s) = (MI, tα, tn/2s).

Along with the action of SLn(D) on such triples, this gives an action of (SLn /μ2)(D)
on these triples. The equivalence classes of triples under this action of (SLn /μ2)(D)
give the orbits of (SLn /μ2)(D) with invariant form f . The stabilizer of the triple
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(I, α, s) contains the finite group S×[2]N=1/D
×[2] where S = EndR(I) ⊂ L, since

that is the image of the stabilizer from SLn(D).

Theorem 17. Assume that f(x, y) is a binary form of even degree n over D with
Δ(f) 	= 0 and f0 	= 0. Then there is a bijection between orbits for (SLn /μ2)(D)
on D2 ⊗ Sym2 D

n with invariant form f and equivalence classes of triples (I, α, s),
where I is a fractional ideal for R, α ∈ L×, and s ∈ K×, satisfying the relations
I2 ⊂ αI(n−3), N(I) is the principal fractional ideal sD in K, and N(α) = s2fn−3

0

in K×. The triple (I, α, s) is equivalent to the triple (cMI, c2tα,N(c)tn/2s) for any
c ∈ L× and t ∈ K×(2), where tD = M2. The stabilizer of the triple (I, α, s) is an
elementary abelian 2-group which contains S×[2]N=1/D

×[2] where S = EndR(I) ⊂
L.

Remark 18. We can simplify the statement of Theorem 17 when the domain D
is a principal ideal domain (PID) and every fractional ideal for the D-order R is
principal. In that case, the fractional ideal I of R is completely determined by the
pair (α, s) and the identities I2 ⊂ (α)I(n − 3), N(I) = (s), and N(α) = s2fn−3

0 .
Indeed, together these force I2 = (α)I(n − 3). There is a bijection from the set
of equivalence classes of α to the set (R×/R×2D×)N=f0 . Moreover, we have S =

EndR(I) = R and K×(2) = D×K×2. An element t ∈ K×(2)/K× preserves an
SLn(D)-orbit if and only if t = c2 ∈ R×2 for some c ∈ R× with N(c) = tn/2. Note
if t = c2, then N(c) = (−t)n/2. Hence the stabilizer in (SLn /μ2)(D) of a triple
(I, α, s) equals (R×[2])N=1/D

×[2] if n ≡ 2 (mod 4) and fits into the exact sequence

(3) 1 → (R×[2])N=1/D
×[2] → Stab(SLn /μ2)(D)(I, α, s) → (R×2 ∩D×)/D×2 → 1,

when n ≡ 0 (mod 4). When L is not an algebra over a quadratic extension of K,
the quotient (R×2 ∩D×)/D×2 is trivial.

In particular, when D = K is a field, we recover [6, Theorems 7 and 8]. These
versions of Theorems 16 and 17 over a field K will also be important in the sequel.
For convenience, we restate them below.

Corollary 19. Assume that f(x, y) is a binary form of degree n over K with
Δ(f) 	= 0 and f0 	= 0. Then there is a bijection between orbits for SLn(K) on
K2 ⊗ Sym2 K

n with invariant form f and equivalence classes of pairs (α, s), where
α ∈ L× and s ∈ K×, satisfying N(α) = s2fn−3

0 in K×. The pair (α, s) is equivalent
to the pair (c2α,N(c)s) for any c ∈ L×. The stabilizer of the orbit corresponding
to a pair (α, s) is the finite commutative group scheme (ResL/K μ2)N=1 over K.

It follows from Corollary 19 that the set of SLn(K)-orbits either is in bijection
with or has a 2-to-1 map to (L×/L×2)N=f0 , in accordance with whether f(x, y)
has an odd degree factor over K or not, respectively. Indeed, the pair (α, s) is
equivalent to the pair (α,−s) if and only if there is an element c ∈ L× with c2 = 1
and N(c) = −1. The stabilizers correspond to the K-rational even degree factors
of f(x, y).

Corollary 20. Assume that f(x, y) is a binary form of even degree n over K with
Δ(f) 	= 0 and f0 	= 0. Then there is a bijection between orbits for (SLn /μ2)(K)
on K2 ⊗ Sym2 K

n with invariant form f and equivalence classes of pairs (α, s),
where α ∈ L× and s ∈ K×, satisfying N(α) = s2fn−3

0 in K×. The pair (α, s) is

equivalent to the pair (c2tα,N(c)tn/2s) for any c ∈ L× and t ∈ K×(2) = K×. The
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stabilizer of the orbit corresponding to a pair (α, s) is the finite commutative group
scheme (ResL/K μ2)N=1/μ2 over K.

It follows from Corollary 20 that the set of (SLn /μ2)(K)-orbits either is in bijec-
tion with or has a 2-to-1 map to (L×/(L×2K×))N=f0 , in accordance with whether
f(x, y) has an odd factorization over K or not, respectively. Here an odd factoriza-
tion of f(x, y) over K is a factorization of the form f(x, y) = g(x, y)h(x, y), where g
and h are odd degree binary forms that either are K-rational or are conjugate over
some quadratic extension of K. Meanwhile, elements of the stabilizer correspond to
even factorizations of f(x, y). When n is congruent to 2 modulo 4, an even factoriza-
tion of f(x, y) must be of the form g(x, y)h(x, y) where both g and h are K-rational
even degree binary forms. In other words, they already appear in the stabilizers in
SLn(K). When n is congruent to 0 modulo 4, f(x, y) can have even factorizations
into conjugate binary forms over some quadratic extensions K ′/K. The image of a
stabilizer element corresponding to such a factorization in (L×2 ∩K×)/K×2 is the
class corresponding to the quadratic extension K ′.

3. Hyperelliptic curves, divisor classes, and generalized Jacobians

Assume from now on that n ≥ 2 is even and write n = 2g + 2. Fix a field K of
characteristic not 2. In order to interpret the orbits for SLn(K) and (SLn /μ2)(K)
having a fixed invariant binary form, we first review some of the arithmetic and
geometry of hyperelliptic curves of genus g over K. As in [21], we define a hyperel-
liptic curve over K as a smooth, projective curve over K with a 2-to-1 map to the
projective line over K, although we now treat the general case (without assuming
any fixed K-rational points at infinity).

Let f(x, y) = f0x
2g+2 + f1x

2g+1y + · · ·+ f2g+2y
2g+2 be a binary form of degree

2g + 2 over K, with Δ 	= 0 and f0 	= 0. We associate to f(x, y) the hyperelliptic
curve C over K with equation

z2 = f(x, y).

This defines a smooth curve of genus g, as a hypersurface of degree 2g + 2 in the
weighted projective plane P(1, 1, g + 1). The weighted projective plane embeds as
a surface in Pg+2 via the map (x, y, z) → (xg+1, xgy, . . . , yg+1, z). The image is a
cone over the rational normal curve in Pg+1, which has a singularity at the vertex
(0, 0, . . . , 1) when g ≥ 1. The curve C is the intersection of this surface with a
quadric hypersurface that does not pass through the vertex of the cone. Finally,
the linear series on C of projective dimension g + 2 and degree 2g + 2 that gives
this embedding is the sum of all the Weierstrass points (i.e., points with z = 0).

There are two points P = (1, 0, z0) and P ′ = (1, 0,−z0) at infinity, where z
2
0 = f0.

If f0 is a square in K×, then these points are rational over K. If not, then they are
rational over the quadratic extension K ′ = K(

√
f0). Let w be the rational function

z/yg+1 on C, and let t be the rational function x/y on C. Both are regular outside
of the two points P and P ′ with y = 0, where they have poles of order g+1 and 1,
respectively. The field of rational functions on C is given by K(C) = K(t, w), with
w2 = f(t, 1) = f0t

2g+2 + f1t
2g+1 + · · · + f2g+2, and the subring of functions that

are regular outside of P and P ′ is K[t, w] = K[t,
√
f(t, 1)] [21].

Let m be the modulus m = P + P ′ on C and let Cm be the singular curve
constructed from C and this modulus in [30, Ch. IV, no. 4]. Then Cm has equation

z2 = f(x, y)y2
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of degree 2g + 4 in P(1, 1, g + 2). This defines a singular, projective curve of arith-
metic genus g+1 whose normalization is C. There is now a single point Q = (1, 0, 0)
at infinity, which is an ordinary double point whose tangents are rational over the
quadratic extension field K ′.

Let PicC/K and PicCm/K denote the Picard functors of the projective curves
C and Cm, respectively. These are represented by commutative group schemes
over K, whose component groups are both isomorphic to Z. Let Ks be a fixed
separable closure of K and let E be any extension of K contained in Ks. The
E-rational points of PicC/K correspond bijectively to the divisor classes on C over
the separable closure Ks that are fixed by the Galois group Gal(Ks/E). When
the curve C has no E-rational points, an E-rational divisor class on C may not be
represented by an E-rational divisor. The subgroup of classes in PicC/K(E) that are

represented by E-rational divisors is just the image of Pic(C/E) = H1(C/E,Gm)
in H0(E,H1(C/Ks,Gm)), under the map induced by the spectral sequence for
the morphism C/E → SpecE. From this spectral sequence, we also obtain an
injection from the quotient group to the Brauer group of K (cf. [33, Section 2.3],
[10, Chapter 8]),

PicC/K(K)/Pic(C/K) → H2(K,Gm) = Br(K).

Since C has a rational point over the quadratic extension K ′ = K(
√
f0), the image

of this injection is contained in the subgroup Br(K ′/K) = K×/N(K ′×). Every class
in Br(K ′/K) corresponds to a quaternion algebra D over K that is split by K ′, or
equivalently, to a curve of genus zero over K with two conjugate points rational
over K ′.

Proposition 21. If a hyperelliptic curve C over K has a rational divisor of odd
degree, or equivalently a rational point over an extension of K of odd degree, then
every K-rational divisor class is represented by a K-rational divisor. If K is a
global field and Div1(C) is locally soluble, then every K-rational divisor class is
represented by a K-rational divisor.

Indeed, a quaternion algebra split by an odd degree extension of K is already
split over K. Similarly, a quaternion algebra over a global field that splits locally
everywhere is split globally.

The distinction between K-rational divisor classes and K-rational divisors does
not arise for the curve Cm, which always has theK-rational singular point Q. Hence
the points of PicCm/K over E correspond to the classes of divisors that are rational
over E and are prime to m, modulo the divisors of functions with f ≡ 1 modulo m.
We have an exact sequence of smooth group schemes over K,

(4) 0 → T → PicCm/K → PicC/K → 0,

where T is the one-dimensional torus that is split by K ′. Taking the long ex-
act sequence in Galois cohomology, and noting that the image of PicCm/K(K) in

PicC/K(K) is precisely the subgroup Pic(C/K) = H1(C/K,Gm) represented by
K-rational divisors, we recover the injection

PicC/K(K)/Pic(C/K) → H1(K,T ) = K×/N(K ′×) = Br(K ′/K).

To see this geometrically, note that the fiber over a K-rational point P of PicC/K

is a principal homogeneous space for T over K, which is a curve of genus zero with
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two conjugate points over K ′ removed. This curve of genus zero determines the
image of P in Br(K ′/K).

The connected components of the identity of the Picard schemes J = Pic0C/K

and Jm = Pic0Cm/K are the Jacobian and generalized Jacobian of [30, Chapter V].
They correspond to the divisor classes of degree zero on these curves. The exact
sequence in (4) restricts to the following exact sequence [30, Chapter V, Section 3],

(5) 0 → T → Jm → J → 0.

There is a line bundle of degree 2 on Cm (and hence on C) which is the pullback
of the line bundle O(1) from the projective line under the map (x, y, z) → (x, y).
This is represented by theK-rational divisor d = (R)+(R′) prime to m consisting of
the two points above a point (x0, y0) on the projective line, whenever y0 is nonzero.
The quotient groups PicC/K /Z ·d = J�J1 and PicCm/K /Z ·d = Jm�J1

m both have
two connected components, represented by the divisor classes of degree 0 and 1.
There are morphisms

C −→ J1,

C − {P, P ′} −→ J1
m

defined over K, which take a point to the corresponding divisor class of degree 1
[30, Chapter V, Section 4].

Proposition 22. Let f(x, y) = f0x
2g+2 + f1x

2g+1y+ · · ·+ f2g+2y
2g+2 be a binary

form with nonzero discriminant and nonzero f0. Let C : z2 = f(x, y) and Cm : z2 =
f(x, y)y2 denote the associated hyperelliptic curve and singular curve with Jacobian
J and generalized Jacobian Jm. Let L = K[x]/f(x, 1) denote the corresponding
étale algebra of rank 2g + 2. Then

1. The 2-torsion subgroup Jm[2] of Jm is isomorphic to the group scheme
(ResL/Kμ2)N=1. Its K-rational points correspond to the even degree fac-
tors of f(x, y) over K.

2. The 2-torsion subgroup J [2] of J is isomorphic to the group scheme
(ResL/Kμ2)N=1/μ2. Its K-rational points correspond to the even factor-
izations of f(x, y) over K.

3. The 2-torsion Wm[2] in the component J1
m of PicCm/K /Z · d = Jm � J1

m

is a torsor for Jm[2] whose K-rational points correspond to the odd degree
factors of f(x, y) over K.

4. The 2-torsion W [2] in the component J1 of PicC/K /Z · d = J � J1 is a
torsor for J [2] whose K-rational points correspond to the odd factorizations
of f(x, y) over K.

Here an odd (resp., even) factorization of f(x, y) over K is a factorization of the
form f = gh, where g and h are odd (resp., even) degree binary forms that either
are defined over K or are conjugate over some quadratic extension of K. Note that
giving a factor of f(x, y) is the same as giving a subset of Weierstrass points and
hence the choice of the letter “W” in the notations “W [2]” and “Wm[2]”.

Proof. To prove the proposition, we observe that the 2-torsion points of Jm over
the separable closure Ks are represented by the classes of divisors of the form
(P1)+(P2)+ · · ·+(P2m)−md, where each Pi = (xi, 1, 0) comes from a distinct root
xi of f(x, 1) [22, Section 4]. Hence the points of Jm[2] overK

s correspond bijectively
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to the factors of even degree of f(x, y) over Ks. Since the Galois group acts by per-
mutation of the roots, we have a canonical isomorphism Jm[2] � (ResL/Kμ2)N=1.
On the quotient J , there is a single relation: (P1)+(P2)+ · · ·+(P2g+2)−(g+1)d =
div(y) ≡ 0, so J [2] � (ResL/Kμ2)N=1/μ2. The last two statements of Proposition 22
follow similarly. �

Finally, we note that the Weil pairing J [2] × J [2] → μ2 gives the self-duality
of the finite group scheme (ResL/Kμ2)N=1/μ2, and the connecting homomorphism

H1(K, J [2]) → H2(K,μ2) whose kernel is the image of H1(K, Jm[2]) is cup product
with the class of W [2] (see [28, Proposition 10.3]).

4. Generic pencils of quadrics

In this section, we relate hyperelliptic curves to pencils of quadrics. In particular,
we will see how pencils of quadrics yield two-covers of J1 for certain hyperelliptic
curves.

Let W = Kn be a vector space of dimension n ≥ 3 over K, and let A and B be
two symmetric bilinear forms on W . Let QA and QB be the corresponding quadric
hypersurfaces in P(W ), so QA is defined by the equation 〈w,w〉A = 0 and QB is
defined by the equation 〈w,w〉B = 0. Let Y be the base locus of the pencil spanned
by A and B, which is defined by the equations 〈w,w〉A = 〈w,w〉B = 0 in P(W ).
Then Y has dimension n − 3 and is a smooth complete intersection if and only if
the discriminant of the pencil disc(xA− yB) = f(x, y) has Δ(f) 	= 0. In this case
we say that the pencil spanned by A and B is generic. In this section, we will only
consider generic pencils. The Fano scheme F = F (A,B) is the Hilbert scheme of
maximal linear subspaces of P(W ) that are contained in Y .

When n = 2g+ 1 is odd, the Fano scheme has dimension zero and is a principal
homogeneous space for the finite group scheme ResL/Kμ2/μ2 � (ResL/Kμ2)N=1.
Here L is the étale algebra of rank 2g + 1 determined by the binary form f(x, y).
The 22g points of F over the separable closure of K correspond to the subspaces Z
of W of dimension g that are isotropic for all the quadrics in the pencil, and the
scheme F depends only on the SLn(K)-orbit of the pair (A,B).

When n = 2g + 2 is even, the Fano scheme F is smooth and geometrically
connected of dimension g, and is a principal homogeneous space for the Jacobian
J of the smooth hyperelliptic curve C with equation z2 = f(x, y). A point of F
corresponds to a subspace Z of W of dimension g that is isotropic for all of the
quadrics in the pencil, whereas a point of C corresponds to a quadric in the pencil
plus a choice of one of the two rulings of that quadric. This interpretation can
be used to define a morphism C × F → F over K, which in turn gives a simply
transitive action of J on F . In this case, the Fano variety F depends only on the
(SLn /μ2)(K)-orbit of the pair (A,B). Proofs of all assertions on the Fano scheme
can be found in [37].

Theorem 23. ([37, Theorem 2.7]) Let F be the Fano variety of maximal linear
subspaces contained in the base locus of a generic pencil of quadrics generated by
symmetric bilinear forms (A,B) ∈ K2⊗Sym2 K

n. Let f(x, y) denote the invariant
binary form of (A,B). Let C : z2 = f(x, y) denote the corresponding hyperelliptic
curve with Jacobian J . Then the disconnected variety

(6) X := J � F � J1 � F
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has a commutative algebraic group structure over K. In particular, [F ] as a class
in H1(K, J) is 4-torsion and 2[F ] = [J1].

The group X contains the subgroup PicC/K /Z · d = J � J1 with index two. Let
F [4] be the principal homogeneous space for J [4] consisting of the points of F of
(minimal) order 4 in the group X. Multiplication by 2 in X gives finite étale covers

F → J1,

F [4] → W [2]

of degree 22g with an action of the group scheme J [2]. This shows that the
class [F ] of the principal homogeneous space F satisfies 2[F ] = [J1] in the group
H1(K, J). Similarly, the class of W [2] in H1(K, J [2]) is the image of the class F [4]
in H1(K, J [4]) under the map m2 : H1(K, J [4]) → H1(K, J [2]) induced by the mul-
tiplication by 2 map from J [4] to J [2]. In general, if an element [F ′] ∈ H1(K, J [2])
is in the image of m2, we say [F ′] is divisible by 2 in H1(K, J [4]).

Consequently, a necessary condition on the existence of a pencil (A,B) over K
with discriminant curve C is that the class of J1 and the class of W [2] should be
divisible by 2 in H1(K, J) and H1(K, J [4]), respectively. However, this condition
is not sufficient. Consider the curve C of genus zero with equation z2 = −x2 − y2

over R. In this case, both J and J [2] reduce to a single point, so any homogeneous
space for J or J [2] is trivial, and hence divisible by 2. On the other hand, since
L = C and f0 = −1 is not a norm, by Corollary 19 (or 20) there are no pencils
over R with discriminant f(x, y) = −x2 − y2. To obtain a geometric condition
that is both necessary and sufficient for the existence of a pencil, we will have to
consider non-generic pencils whose invariant binary form defines the singular curve
Cm. This is the object of the next section.

5. Regular pencils of quadrics

In this section, we give a list of equivalent conditions for the existence of a pencil
over K whose discriminant is some given binary form f(x, y). In particular, we
prove Theorem 13.

Let (A,B) generate a generic pencil of bilinear forms on a vector space W of
even dimension n = 2g+2 over K, and let f(x, y) = disc(xA− yB) be its invariant
binary form of degree 2g + 2 and discriminant Δ(f) 	= 0. We continue to assume
that f0 = disc(A) is also nonzero in K. Let (A′, B′) be a pair of bilinear forms on
the vector space W ′ = W ⊕K2 of dimension n+2 = 2g+4, where A′ is the direct
sum of A and the rank one form 〈(a, b), (a′, b′)〉 = aa′ on K2 and B′ is the direct
sum of B and the split form 〈(a, b), (a′, b′)〉 = ab′ + a′b of rank 2. The invariant
binary form of this pencil

disc(xA′ − yB′) = f(x, y)y2

then has a double zero at (x, y) = (1, 0), and the pencil is not generic. The base
locus defined by the equations QA′ = QB′ = 0 in P(W⊕K2) has an ordinary double
point at the unique singular point R = (0W ; 0, 1) of the quadric QA′ . There are
exactly 2g+3 singular quadrics in the pencil and all of them are simple cones. The
K-algebra L′ associated to the pencil is not étale, but is isomorphic to L⊕K[y]/y2.
Even though L′ is not étale, the vector space W ′ is a free L′-module of rank 1,
so the pencil is regular in the sense of [37, Section 3]. Since the norms from
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K[y]/y2 to K are precisely the squares in K, we have an equality of quotient
groups K×/(K×2N(L×)) = K×/(K×2N(L′×)).

The Fano scheme Fm of this pencil consists of the subspaces Z of dimension g+1
in W ⊕K2 that are isotropic for all of the quadrics in the pencil and do not contain
the unique line that is the radical of the form A′ (so the projective space P(Z),
which is contained in the base locus, does not meet the unique double point R).
The Fano scheme is a smooth variety of dimension g+1. However, in this case Fm

is not projective. It is a principal homogeneous space for the generalized Jacobian
Jm associated to the singular curve Cm of arithmetic genus g + 1 and equation
z2 = f(x, y)y2 in weighted projective space.

For example, when g = 0, the curve C is the non-singular quadric z2 = ax2 +
bxy + cy2 in P2, with a = f0 and b2 − 4ac = Δ(f) both nonzero in K. The
pencil (A′, B′) has discriminant f ′(x, y) = ax2y2 + bxy3 + cy4. Its base locus D
in P3 is isomorphic to a singular curve of arithmetic genus one, with a single node
R whose tangents are rational over the quadratic extension K ′ = K(

√
f0). The

Fano variety Fm in this case is just the affine curve D − {R}, and J1
m is the affine

curve Cm − {Q} = C − {P, P ′}. Both are principal homogeneous spaces for the
one-dimensional torus T = Jm which is split by K ′. We shall see that there is
an unramified double cover Fm → J1

m that extends to a double cover of complete
curves of genus zero M → C which is ramified at P and P ′.

Since the pencil is regular and its associated hyperelliptic curve has only nodal
singularities, we again obtain a commutative algebraic group

(7) Xm = Jm � Fm � J1
m � Fm

over K with connected component Jm and component group Z/4. The group
Xm contains the algebraic group PicCm/K /Z · d = Jm � J1

m with index two [37,
Section 3.2]. Just as in the generic case, multiplication by 2 in the group Xm gives
an unramified cover Fm → J1

m of degree 22g+1 with an action of Jm[2] and shows
that 2[Fm] = [J1

m] in the group H1(K, Jm) of principal homogeneous spaces for Jm.
Hence a necessary condition for the existence of such a pencil (A′, B′) is that the
class of J1

m is divisible by 2. In this case, the necessary condition is also sufficient.

Theorem 24. Let f(x, y) = f0x
2g+2+f1x

2g+1y+· · ·+f2g+2y
2g+2 be a binary form

of degree 2g + 2 over K with Δ(f) and f0 both nonzero. Write f(x, 1) = f0g(x)
with g(x) monic and separable. Let L be the étale algebra K[x]/g(x) of degree n
over K, and let β denote the image of x in L. Let C be the smooth hyperelliptic
curve of genus g with equation z2 = f(x, y), and let Cm be the singular hyperelliptic
curve of arithmetic genus g + 1 with equation z2 = f(x, y)y2. Then the following
conditions are all equivalent:

a. There is a generic pencil (A,B) over K with disc(xA− yB) = f(x, y).
b. There is a regular pencil (A′, B′) over K with disc(xA′ − yB′) = f(x, y)y2.
c. The coefficient f0 lies in the subgroup K×2N(L×) of K×.
d. The class of the homogeneous space J1

m is divisible by 2 in the group
H1(K, Jm).

e. The class of the homogeneous space Wm[2] is in the image of the map m′
2 :

H1(K, Jm[4]) → H1(K, Jm[2]) induced by the multiplication by 2 map from
Jm[4] to Jm[2].

f. There is an unramified two-cover of homogeneous spaces Fm → J1
m for Jm

over K.
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g. The maximal unramified abelian cover U → C−{P, P ′} of exponent 2 over
Ks descends to K.

h. The maximal abelian cover M → C of exponent 2 over Ks that is ramified
only at the points {P, P ′} descends to K.

Note that the maximal abelian covers above all have degree 22g+1. The equiva-
lence of conditions a, d, and f proves Theorem 13.

Proof. c ⇔ a ⇒ b. We have already seen the equivalence of a and c in Corollary 19.
The implication a ⇒ b is obvious from the construction of the regular pencil (A′, B′)
from a generic pencil (A,B) earlier in this section.

b ⇒ d ⇔ e ⇔ f. When a regular pencil (A′, B′) over K with disc(xA′ − yB′) =
f(x, y)y2 exists, the Fano variety Fm of the base locus of this pencil provides a
homogenous space for Jm whose class is a square root of the class of J1

m in the
group H1(K, Jm). The equivalence of conditions d, e, and f is clear.

f ⇒ g ⇒ h. Assuming that a two-cover F → J1
m exists over K, we obtain the

maximal unramified abelian cover of C − {P, P ′} by taking the fiber product with
the morphism C − {P, P ′} → J1

m, and the maximal abelian cover of C ramified
only at the points {P, P ′} by taking the closure of the above unramified cover of
C − {P, P ′}.

h ⇒ c. Finally, assuming the existence of the maximal abelian cover M → C of
exponent 2 that is ramified only at the points {P, P ′}, we show that f0 lies in the
subgroup K×2N(L×) of K×, which will complete the proof of Theorem 24. The
cover M → C corresponds to an inclusion of function fields K(C) → K(M). Over
Ks, the function field Ks(M) is obtained from Ks(C) by adjoining the square roots
of all rational functions on C whose divisors have the form 2d1 or 2d1 + (P ) + (P ′)
for some divisor d1 on C. Since the characteristic of K is not equal to 2, these
square roots give either unramified covers of C or covers that are ramified only at
the two points P and P ′, where the ramification is tame. More precisely, there are
22g+1 − 1 distinct quadratic extensions of Ks(C) of this form that are contained in
Ks(M), and their composition is equal to Ks(M).

Indeed, by Galois theory, these quadratic extensions correspond to the sub-
groups of index 2 in Jm[2](K

s), or equivalently to nontrivial Ks-points in the
Cartier dual ResL/Kμ2/μ2. Let w be the rational function z/yg+1 on C, and

let t be the rational function x/y on C, so w2 = f0g(t). The nontrivial points in
(ResL/Kμ2/μ2)(K

s) correspond bijectively to the nontrivial monic factorizations
g(x) = h(x)j(x) over Ks, and the corresponding quadratic extension of Ks(C) is

given by Ks(C)(
√
h(t)) = Ks(C)(

√
j(t)). When both h(x) and j(x) have even de-

gree, the divisors of the rational functions h(t) and j(t) are of the form 2d1 and the
corresponding quadratic cover of the curve C is unramified. When the factors both
have odd degree, these divisors are of the form 2d1 + (P ) + (P ′) and the quadratic
cover is ramified at the points P and P ′.

Since there might be no nontrivial factorizations of g(x) over K, there might
be no nontrivial K-rational points of ResL/Kμ2/μ2 and hence no quadratic field
extensions of K(C) contained in K(M). However, over L we have the factorization
g(x) = (x − β)j(x) = h(x)j(x), so the algebra L(M) must contain a square root
u of some constant multiple of the function h(t) = (t − β). (The need to adjoin
a square root of t − β whose divisor has the form 2d1 + (P ) + (P ′) is the main
reason for the appearance of the generalized Jacobian Jm (cf. [28, Footnote 2]).)
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Write u2 = α(t − β) with α in L×, and take the norm to K(M) to obtain the
equation N(u)2 = N(α)g(t). Then the two rational functions N(u) and w in
K(M)× have the same divisor, so they are equal up to a constant factor in K×.
Writing bN(u) = w with b in K×, we find w2 = b2N(u)2 = b2N(α)g(t). However,
w2 = f0g(t), so f0 = b2N(α) is in the subgroup K×2N(L×) of K×. This completes
the proof of Theorem 24. �

In fact, the obstruction classes for the eight conditions in Theorem 24 are all
equal. More precisely, the obstruction class for conditions a, b, c is the class of f0
in K×/(K×2N(L×)). This group can be viewed as a subgroup of H2(K, Jm[2]) via

coker
(
N : H1(K,ResL/Kμ2) → H1(K,μ2)

)
↪−→ H2(K, (ResL/Kμ2)N=1).

We denote the image of f0 inH2(K, Jm[2]) by [f0]. This is the cohomological class df
whose non-vanishing obstructs the existence of rational orbits with invariant binary
form f for (all pure inner forms of) SLn; see [6, Section 2.4 and Theorem 9]).

The obstruction class for conditions d, e is the class δ[J1
m] in H2(K, Jm[2]) where

δ is the connecting homomorphism H1(K, Jm) → H2(K, Jm[2]) arising from the

exact sequence 1 → Jm[2] → Jm
2−→ Jm → 1.

The obstruction class for conditions f, g, h comes from Galois descent. There
is an unramified two-cover π : J1

m → J1
m over Ks obtained by identifying J1

m with
Jm using a Ks-point of J1

m, and then taking the multiplication-by-2 map on Jm.
The descent obstruction of this cover to K is the image in H2(K, Jm[2]) of the
class [π : J1

m → J1
m] under the following map from the Hochschild-Serre spectral

sequence:

H0
(
K,H1(C ×K Ks − {P, P ′}, Jm[2])

)
−→ H2(K, Jm[2]).

This obstruction class equals δ[J1
m] for formal reasons (cf. [33, Lemma 2.4.5]). We

have the following strengthening of Theorem 24.

Theorem 25. Let f(x, y) = f0x
2g+2 + f1x

2g+1y + · · · + f2g+2y
2g+2 be a binary

form of degree 2g + 2 over K with Δ(f) and f0 both nonzero. Let C be the smooth
hyperelliptic curve of genus g with equation z2 = f(x, y), and let Jm denote its
generalized Jacobian. Then the obstruction classes for conditions a through h in
Theorem 24 are all equal in H2(K, Jm[2]), i.e., [f0] = δ[J1

m].

Proof. Consider the following commutative diagram:

1 �� Jm[2] ��
� �

��

Jm
2 ��

� �

��

Jm ��

=

��

1

1 �� (Jm � J1
m)[2] ��

����

Jm � J1
m

2 ��

����

Jm �� 1

μ2
= �� μ2 .

Here the map Jm � J1
m

2−→ Jm is given by [D] �→ 2[D] − deg([D]) · d. Theorem 25
follows from the following two results.

Proposition 26. For any a ∈ K, there exists a class [J
1/2
a ] ∈ H1(K, Jm�J1

m) such

that 2[J
1/2
a ] = [J1

m] in H1(K, Jm) and such that the image of [J
1/2
a ] in H1(K,μ2) =

K×/K×2 equals f0g(a) = f0NL/K(a− β).
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Lemma 27. Let 1 → A1 → B1 → C → 1 and 1 → A2 → B2 → C → 1 be central
extensions of algebraic groups over K such that the following diagram commutes:

1 �� A1
��

� �

��

B1
��

� �

��

C ��

=

��

1

1 �� A2
��

����

B2
��

����

C �� 1

D
= �� D

Then the following diagram commutes up to sign:

H1(K,B2) ��

��

H1(K,C)

��
H1(K,D) �� H2(K,A1)

Lemma 27 follows from a direct cocycle computation. For more details, see
[36, Lemma 2.8.2]. We note that when Lemma 27 is used to prove Theorem 25,
all the cohomology groups are 2-torsion, and hence commutativity up to sign is
equivalent to commutativity. We now prove Proposition 26. Fix a ∈ K. Let Pa ∈
C(K(

√
α)) be a point with x-coordinate a, where α = f0g(a), and let P ′

a be the
conjugate of Pa under the hyperelliptic involution. The class [J1

m] ∈ H1(K, Jm) is
given by the 1-cocycle σ �→ σ(P ′

a)− (P ′
a). In other words,

[J1
m]σ =

{
0 if σ(

√
α) =

√
α

(Pa)− (P ′
a) if σ(

√
α) = −

√
α.

Let [J
1/2
a ] denote the following 1-cochain with values in (Jm � J1

m)(K
s):

[J1/2
a ]σ =

{
0 if σ(

√
α) =

√
α

(Pa) if σ(
√
α) = −

√
α.

Since 2(Pa)−d = 2(Pa)− ((Pa)+(P ′
a)) = (Pa)− (P ′

a), we see that 2[J
1/2
a ]σ = [J1

m]σ
for all σ ∈ Gal(Ks/K). Moreover, a direct computation shows that [J

1/2
a ] is a 1-

cocycle and its image in H1(K,μ2) is the 1-cocycle σ �→ σ
√
α/

√
α. This completes

the proof of Proposition 26, and thus Theorem 25. �

6. Soluble orbits

In the previous section, we gave necessary and sufficient conditions for the exis-
tence of pencils of bilinear forms (A,B) ∈ K2 ⊗ Sym2 K

n having a given invariant
binary form. In this section, we consider soluble pencils of bilinear forms (A,B),
i.e., those for which the associated Fano variety F = F (A,B) has a K-rational
point.

Fix a binary form f(x, y) of degree n = 2g+2 overK with Δ(f) and f0 nonzero in
K, and let C be the smooth hyperelliptic curve with equation z2 = f(x, y). Suppose
that (A,B) is a generic pencil of bilinear forms on W over K with invariant binary
form f(x, y) = disc(Ax − By), and let (A′, B′) be the regular pencil of bilinear
forms on W ⊕K2 having invariant binary form f(x, y)y2 constructed in Section 5.
We say that (A,B) lies in a soluble orbit for SLn if the Fano variety Fm of the base
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locus of (A′, B′) has a K-rational point. Similarly, we say that the pencil (A,B)
lies in a soluble orbit for SLn /μ2 if the Fano variety F of the base locus of (A,B)
has a K-rational point. In this section, we classify the soluble orbits for SLn and
SLn /μ2.

Since we have constructed an unramified two-cover Fm → J1
m, a necessary con-

dition for the existence of soluble orbits for SLn is that J1
m(K) is nonempty. In this

case, the group Jm(K) acts simply transitively on the set of points J1
m(K).

Theorem 28. Let f(x, y) be a binary form of degree n = 2g + 2 over K with
Δ(f) and f0 nonzero in K. Then soluble orbits for the action of SLn(K) on K2 ⊗
Sym2 K

n having invariant binary form f(x, y) exist if and only if there is a K-
rational divisor of odd degree on the curve C : z2 = f(x, y). In that case, they are
in bijection with the elements of J1

m(K)/2Jm(K).

Proof. Suppose first that soluble orbits with invariant binary form f(x, y) exist. Let
(A,B) be in K2 ⊗ Sym2 K

n with invariant binary form f(x, y) such that the Fano
variety F (A,B)m of the associated regular pencil (A′, B′) in W ⊕K2 has a rational
point. The stabilizer of (A,B) in SLn is isomorphic to Jm[2] by Corollary 19 and
Proposition 22. SinceH1(K, SLn) = 1, we see that the rational orbits with invariant
binary form f(x, y) are in bijection with the elements in the Galois cohomology
group H1(K, Jm[2]). This bijection depends on the choice of the initial soluble
orbit (A,B) which maps to the trivial class in H1(K, Jm[2]).

Explicitly, suppose the pair (A1, B1) ∈ K2 ⊗ Sym2 K
n has invariant binary

form f(x, y) and corresponds to the class c ∈ H1(K, Jm[2]). Let (A′
1, B

′
1) be

the associated regular pencil with Fano variety F (A1, B1)m. Then as elements of
H1(K, Jm)[4], we have, up to sign,1 the formula

(8) [F (A1, B1)m] = [F (A,B)m] + j′(c),

where j′ denotes the natural map H1(K, Jm[2]) → H1(K, Jm)[2] and the addition
is taking place in H1(K, Jm). Hence we see that F (A1, B1)m is the trivial torsor of
Jm if and only if c is in the Kummer image of Jm(K)/2Jm(K). Therefore, the set
of soluble orbits with invariant binary form f(x, y) forms a principal homogeneous
space for the quotient group Jm(K)/2Jm(K). The choice of the fixed soluble orbit
(A,B) trivializes this principal homogeneous space.

On the other hand, if x ∈ F (A,B)m(K) is any rational point, then the sum
x + x = 2x in the algebraic group Xm in (7) gives a rational point of J1

m well-
defined up to hyperelliptic conjugation (cf. Footnote 1). Hence J1

m(K) is nonempty.
Therefore, the set J1

m(K)/2Jm(K) is also in bijection with Jm(K)/2Jm(K).
To complete the proof of Theorem 28, it remains to show that if J1

m(K) is
nonempty, then soluble orbits with invariant binary form f(x, y) exist. We show
this first in the special case where the curve Cm has a non-singular K-rational
point Q = (x0, 1, z0). Let L = K[x]/f(x, 1) denote as usual the étale algebra of
rank n associated to f(x, y), and let β denote the image of x in L. The rational
orbit corresponding to (Q) is given by the equivalence class of a pair (α, s) (see
Corollary 19) where α = (x− T )(Q). Here “x− T” is the descent map introduced
by Cassels [12]:

J1
m(K)/2Jm(K) → (L×/L×2)N≡f0 .

1The ambiguity of sign comes from the fact that we cannot distinguish between [Fm] and −[Fm]
in H1(K,Jm). In other words, we cannot distinguish the two copies of Fm in the group Xm defined
in (7).
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We note that s is not uniquely determined whenWm[2] is a nontrivial torsor of Jm[2].
In this case, the fibers of the above x−T map also have size 2. From the definition
of the bijection between the set of rational orbits and the set of equivalence classes
of pairs (α, s) in Section 2, we see that if the orbit corresponding to a pair (α, s) is
soluble, then the orbit corresponding to any pair (α′, s′) with α′ = α is also soluble.

Consider the two bilinear forms (A′, B′) on L⊕K2 given by

〈(λ, a, b), (μ, a′, b′)〉A′ = (coefficient of βn−1 in αλμ) + aa′,

〈(λ, a, b), (μ, a′, b′)〉B′ = (coefficient of βn−1 in αβλμ) + ab′ + a′b.

We show that for α = (x−T )(Q), there is a rational (g+1)-plane x′ isotropic with
respect to both bilinear forms.

When z0 	= 0, we have α = (x− T )(Q) = x0 − β. Then

x′ = Span

{
(1, 0, 0), (β, 0, 0), . . . , (βg−1, 0, 0),

(
βg, 1,−1

2

(
x0 +

f1
f0

))}
is isotropic with respect to both bilinear forms. To check this, we note that the
unique polynomial P (x) of degree at most 2g + 1 with P (β) = (x0 − β)β2g+1 has
leading coefficient x0 + f1/f0.

When z0 = 0, we set h0(t) = t − x0 and h1(t) = f(t, 1)/(t − x0). Then α =
(x−T )(Q) = h1(β)−h0(β) and the following (g+1)-plane is isotropic with respect
to both bilinear forms:

x′ =Span
{
(h1(β)− h1(x0), 0, 0), (β − x0, 0, 0), . . . , ((β − x0)

g−1, 0, 0),(
(β − x0)

g, 1,−1

2

(
(2g + 1)x0 +

f1
f0

))}
.

This can be checked by a simple calculation noting that h1(β)(h1(β) − h1(x0)) =
h0(β)h1(β) = 0.

Before moving on to the general case, we make an important observation. Using
this pencil with α = (x − T )(Q) as the base point, we obtain a bijection between
the set of the rational orbits with invariant binary form f(x, y) and H1(K, Jm[2])
as described above. If (A1, B1) is an element of K2 ⊗ Sym2 K

n with invariant
binary form f(x, y) such that its associated α equals (x − T )(D) for some D ∈
J1
m(K)/2Jm(K), then the orbit of (A1, B1) corresponds to the class D − (Q) or

D − (Q′) in Jm(K)/2Jm(K) where Q′ denotes the hyperelliptic conjugate of Q.
Hence the orbit of (A1, B1) is soluble.

We now treat the general case, assuming only that J1
m(K) is nonempty. Now

Cm has a non-singular point Q defined over some extension K ′ of K of odd degree
k. Let D ∈ J1

m(K) denote the divisor class of degree 1 obtained by taking the sum
of the conjugates of Q and subtracting k−1

2 times the hyperelliptic class. We claim
that the orbits corresponding to D are soluble, thereby completing the proof of
Theorem 28. To prove the claim, let (A,B) be an element of K2 ⊗ Sym2 K

n with
invariant binary form f(x, y) such that its associated α equals (x− T )(D), and let
F (A,B)m denote the Fano variety of the associated regular pencil. Since C has a
point over K ′, we have seen that the K ′-rational orbits (α, s) with α = (x− T )(Q)
and hence with α = (x−T )(D) are soluble over K ′. In other words, F (A,B)m(K

′)
is nonempty. Thus, as an element of H1(K, Jm), the class of F (A,B)m becomes
trivial when restricted to H1(K ′, Jm). A standard argument using the corestriction
map shows that this class is killed by the degree k of K ′ over K. Since F (A,B)m
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is a torsor of Jm of order dividing 4 and k is odd, we see that F (A,B)m must be
the trivial torsor. �

The same argument also classifies the soluble orbits for SLn /μ2, provided that
C has a K-rational divisor of odd degree. The descent map “x − T” gives a map
of sets

J1(K)/2J(K) → (L×/(L×2K×))N≡f0

and is either 2-to-1 or injective (depending on the triviality of the class W [2] in
H1(K, J [2])). To see that there are no soluble orbits when C has no divisors
of odd degree, we use the exact sequence of commutative algebraic groups [37,
Corollary 3.22],

1 → T → Xm → X → 1.

If J1
m(K) is empty but both J1(K) and F (K) are nonempty, then the quotient

of X(K) by the image of Xm(K) maps onto the component group Z/4Z of X.
On the other hand, this quotient injects into H1(K,T ), which has exponent 2, a
contradiction. Hence we have proved the following theorem.

Theorem 29. Let f(x, y) be a binary form of degree n = 2g+2 over K with Δ(f)
and f0 nonzero in K. Then soluble orbits for the action of (SLn /μ2)(K) having
invariant binary form f(x, y) exist if and only if there is a K-rational divisor of
odd degree on the curve C : z2 = f(x, y). In that case, they are in bijection with
the cosets of J1(K)/2J(K) and the group J(K)/2J(K) acts simply transitively on
the set of soluble orbits.

7. Finite fields and archimedean local fields

In this section we consider the orbits for the action of (SLn /μ2)(K) on K2 ⊗
Sym2 K

n when the base field K is a finite field or an archimedean local field. In
particular, we compute the number of these orbits with a fixed invariant binary
form f(x, y).

7.1. Finite fields. Let K be a finite field of odd cardinality q. Let f(x, y) be a
binary form of even degree n over K with nonzero discriminant Δ and nonzero first
coefficient f0, and write f(x, 1) = f0g(x). We factor

g(x) =

m∏
i=1

gi(x),

where gi(x) has degree di and is irreducible. Then L is the product of m finite
fields Li of cardinality qdi . Since finite fields have unique extensions of any degree,
we see that either one of the Li has odd degree over K or all of the Li contain the
unique quadratic extension of K. Therefore, f(x, y) always has either an odd or an
even factorization over K.

Since the norm map L× → K× is surjective, f0 is always a norm. By Corol-
lary 20, the number of (SLn /μ2)(K)-orbits with binary form f(x, y) is as follows:
2m if all Li have even degree and n ≡ 0 (mod 4); 2m−1 if all Li have even degree
and n ≡ 2 (mod 4); and 2m−2 if some Li has odd degree over K. The size of
the stabilizer equals the number of even factorizations of f(x, y) over K. Hence
the stabilizer has size given as follows: 2m if all Li have even degree and n ≡ 0
(mod 4); 2m−1 if all Li have even degree and n ≡ 2 (mod 4); and 2m−2 if some Li

has odd degree over K. Therefore, the number of pairs (A,B) ∈ K2 ⊗ Sym2 K
n
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with invariant binary form f(x, y) is |(SLn /μ2)(K)| = |SLn(K)|. This agrees with
[1, Section 3.3]. For the purpose of application in Section 12, the main ingredients
that we need are the number of orbits and the fact that all the orbits with the same
invariant binary form have the same number of elements.

By Lang’s theorem, we have H1(K, J) = H1(K, Jm) = 0. Hence the Fano
varieties F and Fm associated to an orbit always have a K-rational point, and
every orbit is soluble.

7.2. R and C. We now classify the orbits over K = R and K = C. Let f(x, y) be
a binary form of degree n over K with nonzero discriminant Δ and nonzero first
coefficient f0, and write f(x, 1) = f0g(x). Over C there is a single orbit with binary
form f(x, y).

In the case when K = R, we factor

g(x) =

r1∏
i=1

gi(x)

r2∏
j=1

hj(x),

where each gi(x) has degree one while each hj(x) has degree two and is irreducible.
Then the algebra L is the product of r1 copies of R and r2 copies of C, with
r1 + 2r2 = n. Note that r1 has the same parity as n, so is always even. The
quotient group R×/(R×2N(L×)) is trivial unless r1 = 0, in which case it has order
2. Just as in the case of finite fields, f(x, y) always has either an odd or an even
factorization over R.

If the form f is negative definite, then there are no orbits having invariant binary
form f(x, y). Indeed, in this case r1 = 0 and the leading coefficient f0 is negative.
Morever, the hyperelliptic curve C with equation z2 = f(x, y) has no real points,
and the map PicC/R(R) → Br(C/R) = Z/2Z is surjective. The real divisor classes
that are not represented by real divisors have degrees congruent to g− 1 modulo 2.
When g is even, the Jacobian J(R) is connected and every principal homogeneous
space for J is trivial. In particular, J1 has real points (which are not represented
by real divisors of odd degree). When g is odd, the real points of the Jacobian
J(R) have two connected components, and J1 is the unique nontrivial principal
homogeneous space for J . The points in the connected component of J(R) are the
real divisor classes of degree zero that are represented by real divisors.

If f is not negative definite, then the element f0 is a norm from L× to R×. Hence
rational orbits exist. When r1 = 0, so f is positive definite, there are two orbits if
n ≡ 0 (mod 4), and there is only one orbit if n ≡ 2 (mod 4). In both cases, the real
points of the hyperelliptic curve C(R) and its Jacobian J(R) are both connected
and the orbits are all soluble.

If r1 > 0, then the form f is indefinite and the number of orbits is 2r1−2. These
orbits are in bijection with the equivalence classes of sign assignments to the r1
real linear factors of f(x, y) subject to the condition that the product of the signs
matches the sign of the leading coefficient of f(x, y) and where two sign assignments
are equivalent if they are exactly the negative of each other. The hyperelliptic curve
C with equation z2 = f(x, y) has m = r1/2 connected components in its real locus,
and J(R) has 2m−1 connected components. Since the subgroup 2J(R) is equal to
the connected component of J(R), it follows that 2m−1 of these rational orbits with
invariant binary form f are soluble.

The computation for the sizes of the stabilizers is similar to the finite field case.
If r1 = 0, then the size of the stabilizer is 2n/2 if n ≡ 0 (mod 4) and is 2n/2−1 if
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n ≡ 2 (mod 4). If r1 > 0, then the size of the stabilizer is 2n/2+m−2 where again
m = r1/2.

8. Global fields and locally soluble orbits

In this section, we assume that K is a global field of characteristic not 2. Let
f(x, y) be a binary form of degree n = 2g+2 over K with nonzero discriminant. Let
C : z2 = f(x, y) denote the associated hyperelliptic curve. Recall that an element
(A,B) of K2 ⊗ Sym2 K

n (or its (SLn /μ2)(K)-orbit) with invariant binary form
f(x, y) is locally soluble if the associated Fano variety F (A,B) over K has points
over every completion Kν . We wish to determine when rational orbits and locally
soluble orbits for the action of (SLn /μ2)(K) on K2 ⊗ Sym2 K

n exist. Theorem 24
gives a list of necessary and sufficient conditions for the existence of rational orbits
over general fields. In this section, we assume that there exists a locally soluble
two-cover of J1 over K and that Div1(C) is locally soluble. The main result is
that these two conditions are sufficient for the existence of a rational orbit and
indeed a locally soluble orbit with invariant binary form f(x, y). The proof will be
cohomological in nature using Theorem 24.

Recall the torsor W [2] of J [2] which consists of points P ∈ J1 such that 2P = d,
where d is the hyperelliptic class of C. The class of W [2] in H1(K, J [2]) maps to the
class of J1 in H1(K, J)[2]. Since J1(Kν) is nonempty for all ν, we see that a priori
W [2] lies in the 2-Selmer subgroup Sel2(J/K) of H1(K, J [2]). Let π : F0 → J1

denote a locally soluble two-cover of J1 over K. Let F0[4] denote the torsor of J [4]
consisting of points x ∈ F0 such that π(x) ∈ W [2]. Then the class of W [2] equals
m2(F0[4]) where we recall that m2 : H1(K, J [4]) → H1(K, J [2]) is the map induced
by multiplication by 2 from J [4] to J [2]. Since F0(Kν) is nonempty for all ν, the
class of F0[4] is in the 4-Selmer subgroup Sel4(J/K) of H1(K, J [4]).

Conversely, suppose C is any hyperelliptic curve over K with locally soluble
Div1(C) such that W [2] is divisible by 2 in Sel4(J/K). Then a locally soluble two-
cover of J1 over K exists. Indeed, suppose W [2] = m2(F [4]) for some F [4] ∈
Sel4(J/K). Let F denote the principal homogeneous space of J whose class in
H1(K, J) is the image of F [4] in H1(K, J)[4]. Then 2F = [J1], and hence there
exists a map F → J1 realizing F as a two-cover of J1.

Theorem 30. Suppose C : z2 = f(x, y) is a hyperelliptic curve over a global
field K of characteristic not 2 such that C has a rational divisor of degree 1 locally
everywhere and such that J1 admits a locally soluble two-cover over K (equivalently,
W [2] is divisible by 2 in Sel4(J/K)). Then there exists (A,B) ∈ K2 ⊗ Sym2 K

n

with invariant binary form f(x, y). That is, orbits for the action of (SLn /μ2)(K)
on K2 ⊗ Sym2 K

n with invariant binary form f(x, y) exist.

Proof. Let T = (ResK′/K Gm)N=1 be the kernel of Jm → J as in (5), where K ′ =

K[x]/(x2 − f0). We will need the following properties about the cohomology of T :

(1) H1(Kν , T ) = K×
ν /NK ′×

ν has exponent 2 for any local completion Kν of K;
(2) H1(K,T ) = K×/NK ′× satisfies the local-global principle since K ′/K is

cyclic when K ′ is a field, and H1(K,T ) is trivial when K ′ � K ⊕K;
(3) H2(K,T ) = Br(K ′)N=1 satisfies the local-global principle with respect to

places of K;
(4) The map H1(Kν , T ) → H1(Kν , Jm) is injective for any local completion

Kν of K since Div1 is locally soluble.
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Let φ, i, δ be defined by the following diagram arising as part of the long exact
sequence in Galois cohomology:

H1(K,T )
i ��

2

��

H1(K, Jm)
φ ��

2

��

H1(K, J)

2

��

δ �� H2(K,T )

H1(K,T )
i �� H1(K, Jm)

φ �� H1(K, J)

where the vertical maps are all multiplication by 2. Let [F ] be a locally trivial class
in H1(K, J) such that 2[F ] = [J1]. By Theorem 24, it suffices to show that the
class [J1

m] is divisible by 2 in H1(K, Jm).
Since [F ] is locally trivial, its image under δ is also locally trivial. Since H2(K,T )

has the local-global principle, it follows that δ([F ]) = 0, and so [F ] is in the image
of φ. Let [Fm] denote a class in H1(K, Jm) mapping to [F ] via φ. Since φ([Fm]) is
locally trivial, we see that [Fm] locally is in the image of i. Since H1(Kν , T ) has
exponent 2 for every local completion of K, it follows that 2[Fm] is locally trivial.

Now both 2[Fm] and [J1
m] are locally trivial and map to [J1] under φ. We claim

they are in fact equal. Indeed, their difference 2[Fm]−[J1
m] is a locally trivial element

of H1(K, Jm) mapping to 0 under φ. Hence there exists some c ∈ H1(K,T ) such
that 2[Fm]− [J1

m] = i(c). Since the ν-adic restrictions of i are all injective, it follows
that c is locally trivial and hence trivial by the local-global principle of H1(K,T ).
This shows that [J1

m] = 2[Fm] is divisible by 2. �

Under the assumption that Div1(C) is locally soluble, the existence of a locally
soluble two-cover of J1 is in fact equivalent to the existence of a locally soluble
orbit for the action of (SLn /μ2)(K) on K2⊗Sym2 K

n. We will see that Sel2(J/K)
acts simply transitively on the set of locally soluble orbits. Therefore, every locally
soluble two-cover of J1 is isomorphic to the Fano variety F (A,B) associated to the
pencil of quadrics determined by some (A,B) ∈ K2 ⊗ Sym2 K

n. This also proves
Theorem 14.

Theorem 31. Suppose C : z2 = f(x, y) is a hyperelliptic curve over a global
field K of characteristic not 2 such that Div1(C)(Kν) 	= ∅ for all places ν of K.
Then locally soluble orbits for the action of (SLn /μ2)(K) on K2 ⊗ Sym2 K

n with
invariant binary form f(x, y) exist if and only if W [2] is divisible by 2 in Sel4(J/K),
or equivalently J1 admits a locally soluble two-cover over K. Furthermore, when
these conditions are satisfied, the group Sel2(J/K) acts simply transitively on the
set of locally soluble orbits and this set is finite.

Before proving Theorem 31, we note that the notion of locally soluble orbit is a
tricky one. There could exist an integral binary quartic form f(x, y) that has locally
soluble orbits but no soluble orbits over Q. For a specific example (suggested by
Cremona; see also [33, Section 8.1]), consider the elliptic curve E defined by the
equation y2 = x3 − 1221. This curve has trivial Mordell-Weil group E(Q) =
0 and Tate-Shafarevich group isomorphic to (Z/4Z)2. The binary quartic form
f(x, y) = 3x4−12x3y+11xy3−11y4 of discriminant Δ = −40252707 = −35112372

corresponds to a class b in the Tate-Shafarevich group of E that is divisible by 2.
Any of the elements c of order 4 in the Tate-Shafarevich group with 2c = b gives
a locally soluble orbit with invariant binary form f(x, y). The hyperelliptic curve
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z2 = f(x, y) is locally soluble but has no global points; hence, by Theorem 29, there
is no soluble orbit having invariant binary form f(x, y).

There are also examples where rational orbits exist but there are no locally
soluble orbits. For example, consider the binary quartic form f(x, y) = −x4 +
2x3y + 104x2y2 − 104xy3 − 2764y4 of discriminant Δ = −28571. The associated
quartic field L has discriminant −24571 = −9136 and ring of integers Z[θ], where θ
is a root of the polynomial F (t) = t4−2t2+2t−3. Since F (1) = −2, F (0) = −3, and
F (−1) = −6, the element θ3−θ in L× has norm −62 ≡ −1 = f0. So there are orbits
over Q with this invariant binary quartic form. On the other hand, the hyperelliptic
curve C : z2 = f(x, y) of genus one is a principal homogeneous space of order 2 for its
Jacobian E, which is an elliptic curve with equation y2+xy = x3−x2−929x−10595
and prime conductor 571. This curve has trivial Mordell-Weil group E(Q) = 0 and
Tate-Shafarevich group isomorphic to (Z/2Z)2. Hence Sel2(E/Q) and Sel4(E/Q)
are both isomorphic to (Z/2Z)2. The curve C represents one of the nontrivial
locally trivial principal homogeneous spaces for E. Since its class is not in the
image of multiplication by 2 from Sel4(E/Q), there are no locally soluble orbits.
(Thanks to Cremona and Elkies for help with computation in this example.)

Proof of Theorem 31. Suppose locally soluble orbits with invariant binary form
f(x, y) exist. We prove first that Sel2(J/K) acts simply transitively on the set
of locally soluble orbits with invariant binary form f(x, y). Indeed, suppose that
(A,B) is a rational pencil with Fano variety F (A,B) and invariant binary form
f(x, y). Any other rational pencil (A1, B1) with the same binary form corre-
sponds to a class c in H1(K, J [2]) that is in the kernel of the composite map
γ : H1(K, J [2]) → H1(K, SLn /μ2) ↪→ H2(K,μ2) [4, Proposition 1]. The map
γ is cup product with the class W [2] ∈ H1(K, J [2]) [28, Proposition 10.3]. Let
F (A1, B1) denote the Fano variety associated to the pencil (A1, B1). Then one has,
up to sign (cf. Footnote 1),

(9) [F (A1, B1)] = [F (A,B)] + j(c),

where j denotes the natural map H1(K, J [2]) → H1(K, J)[2] and the addition
is taking place in H1(K, J). Since the subgroup J(Kν)/2J(Kν) of H1(Kν , J [2])
maps to the trivial class in H1(Kν , SLn /μ2) for all places ν, the Hasse principle
for the cohomology of the group SLn /μ2 shows that the subgroup Sel2(J/K) of
H1(K, J [2]) also lies in ker γ. It is then clear from (9) that if (A,B) is locally soluble,
then c ∈ Sel2(J/K) if and only if (A′, B′) is locally soluble. Hence Sel2(J/K) acts
simply transitively on the set of locally soluble orbits with invariant binary form
f(x, y). Since the 2-Selmer group is finite, the set of locally soluble orbits with
invariant binary form f(x, y) is also finite. Moreover, if (A,B) is locally soluble,
then F (A,B) gives a locally soluble two-cover of J1 over K.

We now consider the sufficiency of the existence of a locally soluble two-cover of
J1 for the existence of locally soluble orbits. Let F denote the Fano variety corre-
sponding to one rational orbit with invariant binary form f(x, y). The existence of
this rational orbit was the content of Theorem 30. Let F [4] denote the lift of F to a
torsor of J [4] consisting of elements x ∈ F such that x+x+x+x = 0 in the group
X of four components defined in Theorem 23. Let ι : H1(K, J [2]) → H1(K, J [4])
denote the map induced from the inclusion of J [2] inside J [4]. Then we have the
following exact sequence:

(10) H1(K, J [2])
ι−→ H1(K, J [4])

m2−−→ H1(K, J [2]).
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We need to show that there exists a class c ∈ H1(K, J [2]) such that c∪W [2] = 0 and
F [4] + ι(c) ∈ Sel4(J/K). Let d0 be a class in Sel4(J/K) such that W [2] = m2(d0).
Since m2(F [4]− d0) = W [2] −W [2] = 0, there exists an element c0 ∈ H1(K, J [2])
such that ι(c0) = F [4] − d0 by the exact sequence (10). Then it suffices to show
that

(11) c0 ∪W [2] = 0.

For ease of notation, we denote the above cup product by e2(c0,W [2]) since the
cup product is induced from the Weil pairing e2 on J [2]. Since d0 ∈ Sel4(J/K) is
isotropic with respect to e4, we have

e2(c0,W [2]) = e4(F [4]− d0, d0) = e4(F [4], d0).

Fix a place ν and denote by F [4]ν , d0,ν , e4,ν the ν-adic restrictions. Pick any
Dν ∈ J1(Kν). Since F arises from a pencil of quadrics, we define

F [2]Dν = {x ∈ F : x+ x = Dν}.
The image of this torsor of J [2] in H1(Kν , J [4]) is the torsor

F [4]2Dν−d = {x ∈ F : x+ x+ x+ x = 2Dν − d},
where d denotes the hyperelliptic class as before. Therefore, as elements of H1(Kν ,
J [4]), we have

F [4]ν − ιν(F [2]Dν ) = δ4,ν(2Dν − d),

where δ4,ν is the Kummer map J(Kν)/4J(Kν) → H1(Kν , J [4]) and ιν is the ν-adic
restriction of ι. Since d0 ∈ Sel4(K, J), we see that d0,ν is in the image of δ4,ν . Since
J(Kν)/4J(Kν) is isotropic with respect to e4,ν , we have

(12) e4,ν(F [4]ν , d0,ν) = e4,ν(ιν(F [2]Dν ), d0,ν) = e2,ν(F [2]Dν ,W [2]ν).

Choosing a different Dν ∈ J1(Kν) changes F [2]Dν by an element of J(Kν)/2J(Kν).
As J(Kν)/2J(Kν) is isotropic with respect to e2, the value of e2,ν(F [2]Dν ,W [2]ν)
does not depend on the choice of Dν . Theorem 31 then follows from the following
general lemma. �

Lemma 32. Suppose K is any local field of characteristic not 2. Let f(x, y) be
a binary form of degree 2g + 2 with nonzero discriminant such that the associated
hyperelliptic curve C : z2 = f(x, y) satisfies Div1(C)(K) 	= ∅. Suppose there is
a rational orbit for the action of (SLn /μ2)(K) on K2 ⊗ Sym2 K

n with invariant
binary form f(x, y), and let F denote the associated Fano variety. Then

(13) e2(F [2],W [2]) = 0,

where F [2] denotes any lift of F to a torsor of J [2] using a point of J1(K).

Proof. The first key point is that if (13) holds for one rational orbit, then it holds
for any rational orbit with the same invariant binary form. Indeed, if F ′ denotes
the torsor of J coming from a different orbit, then F ′ − F ∈ ker γ, where γ :
H1(K, J [2]) → H2(K,μ2) is cup product with W [2]. In other words, e2(F

′ −
F,W [2]) = 0. Hence e2(F [2],W [2]) = e2(F

′[2],W [2]).
The second key point is that since Div1(C)(K) 	= ∅, there exists a soluble orbit

by Theorem 29. Let F denote the corresponding torsor arising from this soluble
pencil. Then F [2] ∈ J(K)/2J(K), and hence e2(F [2],W [2]) = 0. �
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This completes the proof of Theorem 31. �
We conclude by remarking that the natural generalization of the fake 2-Selmer

set Sel2,fake(C) of C ([11]), namely the fake 2-Selmer set Sel2,fake(J
1) of J1, is in

natural bijection with the set of locally soluble orbits for the group (SL±
n /μ2)(K),

where SL±
n denotes as before the subgroup of elements of GLn with determinant

±1. Using the group SLn instead of SL±
n allows us to “unfake” this fake Selmer set

(cf. [35]).

9. Existence of integral orbits

The purpose of this section is to prove Theorem 15. More precisely, we prove
the following theorem.

Theorem 33. Assume that n ≥ 2 is even. Let f(x, y) be a binary form of degree
n = 2g + 2 with coefficients in 16nZ such that the hyperelliptic curve C : z2 =
f(x, y) has locally soluble Div1. Then every locally soluble orbit for the action of
(SLn /μ2)(Q) on Q2 ⊗ Sym2 Q

n with invariant binary form f(x, y) has an integral
representative, i.e., a representative in Z2 ⊗ Sym2 Z

n.

By Theorem 17 with D = Z and Zp, it suffices to find a representative over Zp

for every soluble orbit over Qp with f(x, y) ∈ Zp[x, y] since an ideal can be defined
by giving its localization and its norm is always principal since Z is a PID. We begin
by recalling from [1, Section 2] the construction of an integral orbit associated to a
rational point on C, or a p-adically integral orbit associated to a p-adic point on C.
For this we recall some of the notations in Section 2. Without loss of generality, we
may assume f0 	= 0. (By our convention, C being a hyperelliptic curve is equivalent
to Δ(f) 	= 0.) Write f(x, 1) = f0g(x) and let L = Qp[x]/g(x) be the corresponding
étale algebra of rank n over Qp. For k = 1, 2, . . . , n− 1, there are integral elements

ζk = f0θ
k + f1θ

k−1 + · · ·+ fk−1θ

in L. Let Rf be the free Zp-submodule of L having Zp-basis {1, ζ1, ζ2, . . . , ζn−1}.
For k = 0, 1, . . . , n − 1, let If (k) be the free Zp-submodule of L with basis
{1, θ, θ2, . . . , θk, ζk+1, . . . , ζn−1}. By Theorem 17, an integral orbit is an equiva-
lence class of triples (I, α, s) where I is an ideal of Rf , α ∈ L×, and s ∈ K×, such

that I2 ⊂ αIf (n− 3), N(I) = sZp, and N(α) = s2fn−3
0 . The rational orbit is given

by the equivalence class of the pair (α, s).
By a change of variable, we may assume that we have an integral point P =

(0, 1, c) on the curve z2 = f(x, y) over Zp, so that the coefficient fn = c2 is a
square. Then set α = θ, and we have

(14) θIf (n− 3) = SpanZp
{c2, θ, θ2, . . . , θn−2, f0θ

n−1}.

Let I = SpanZp
{c, θ, θ2, . . . , θ(n−2)/2, ζn/2, . . . , ζn−1}. Then it is easy to check that

I is an ideal of Rf , I
2 ⊆ αIf (n− 3), and

N(I)2 = N(θ)N(If (n− 3)) = [c/f
(n−2)/2
0 ]2Zp.

Let s = ±c/f
(n−2)/2
0 be such that (α, s) corresponds to the rational orbit determined

by P . The triple (I, α, s) gives an integral orbit representing the soluble orbit given
by P in J1(Qp)/2J(Qp). We note that this association of an integral orbit to a
Q-rational point, and the paucity of integral orbits, was the key to the arguments
of [1] showing that rational points are rare.
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Given one such f(x, y) = f0x
n + f1x

n−1y + · · ·+ fny
n with coefficients in 16Z,

then 24i | f i−1
0 fi for i = 1, . . . , n. Therefore, Theorem 33 follows from the following

proposition where the assumption on the coefficients is asymmetrical in contrast to
Theorem 33.

Proposition 34. Assume that n ≥ 2 is even. Let f(x, y) = f0x
n+f1x

n−1y+ · · ·+
fny

n be a binary form of degree n = 2g + 2 satisfying f0 	= 0 and 24i | f i−1
0 fi for

i = 1, 2, . . . , n such that the hyperelliptic curve C : z2 = f(x, y) has locally soluble
Div1. Then every locally soluble rational orbit for the action of (SLn /μ2)(Q) on
Q2 ⊗ Sym2 Q

n with invariant binary form f(x, y) has an integral representative.

Proof. We work over Zp and give an explicit construction of the ideal I, in a manner
similar to the one-point case shown above (cf. [1, Section 2]) and the corresponding
statements in [5, Proposition 8.2] and [31, Proposition 2.9]. There are several
important differences due to f0 not being 1.

Define g(x, y) = xn + f1x
n−1y + f0f2x

n−2y + · · ·+ fn−1
0 fny

n. Then g(f0x, y) =

fn−1
0 f(x, y), and so (f0θ, 1) is a root of g. The condition 24i | f i−1

0 fi, which is
nontrivial only when p = 2, implies that if a ∈ Qp is non-integral, then a−f0θ ∈ L×

lies in L×2Q×
p .

We claim that it suffices to consider classes in J1(Qp)/2J(Qp) that can be rep-
resented by a Galois-invariant divisor of the form

(15) D = (P1) + (P2) + · · ·+ (Pm)−D∗,

such that

(1) The points Pi = (ai, bi, ci) are non-Weierstrass and non-infinite;
(2) The effective divisor D∗ is supported on points above ∞;
(3) The positive integer m is odd with m ≤ g + 1;
(4) For every i = 1, . . . ,m, scale ai, bi, ci so that bi = 1. Then f0ai is integral

and the ai’s are distinct.

Since Div1(C)(Qp) 	= ∅, every Qp-rational divisor class can be represented by
a rational divisor by Proposition 21. By [38, Lemma 3.8], every class in J1(Qp)/
2J(Qp) has the desired form satisfying conditions 1, 2, 3 except for the oddness
of m. As remarked above, if f0ai is not integral, then f0ai − f0θ ∈ L×2Q×

p and
so is ai − θ. Removing all the points Pi with f0ai non-integral gives a rational
divisor D′ that has the same image as D via the x− T map from J1(Qp)/2J(Qp)
to (L×/(L×2Q×

p ))N=f0 . By Theorem 17, a triple (I, α, s) exists for D if and only
if it exists for D′. We may impose the condition that the ai’s are all distinct since
we are working modulo 2J(Qp).

We now show that we only need to consider the case m odd. If m is even, then
it forces f0 to be a square, and so the points at infinity are rational. Let ∞ denote
one of them. Since D has degree 1, we see that the degree of D∗ is odd. Let
x0 be an element of Zp to be chosen later and consider the change of coordinate

(x, y) �→ (x−x0y, y) �→ (−y, x−x0y). Let f̃(x, y) denote the new binary form, which

is SL2(Zp) equivalent to f(x, y). Let C̃ and J̃ denote the new hyperelliptic curve

and its Jacobian. Let Q1, . . . , Qm, Q0 ∈ C̃ denote the images of P1, . . . , Pm,∞. We

pick x0 so that none of the points Qi are Weierstrass for C̃. The divisor D becomes

the divisor D̃ = (Q0) + · · · + (Qm) − points at infinity, up to 2J̃(Qp). If integral

orbits exist for D̃, then applying the inverse of the above SL2(Zp) transformation
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gives the desired integral orbits for D. There are m+ 1 non-Weierstrass and non-

infinite points in D̃ and so we are done if m ≤ g.

Suppose now m = g+1 is even. Let R̃(x) be a polynomial of degree at most g+1

such that R̃(ãi) = c̃i where Qi = (ãi, 1, c̃i) for each i = 0, . . . , g+1. Then f̃(x, 1)−
R̃(x)2 has degree at most 2g + 2 and vanishes at ã0, . . . , ãg+1. So it has at most

g other roots. This shows that D̃ is rationally equivalent to a divisor of the form
(R1)+ · · ·+(Rm′)− points at infinity, with m′ ≤ g. If m′ is odd, then we are done.
If m′ is even, then since m′ is now at most g, we may apply the above construction
to obtain a divisor D′′ of the form (S1) + · · · + (Sm′+1) − points at infinity, such

that the existence of integral orbits is equivalent for D′′, D̃, and D.
Suppose now D is a divisor of the form (15) satisfying conditions 1–4. Define

P (x) = (x−f0a1) · · · (x−f0am). By our assumption on the integrality of f0ai, P (x)
is an integral polynomial. Write α0 = (a1−θ) · · · (am−θ). Then P (f0θ) = −fm

0 α0.
Next define R(x) to be a polynomial of degree at most m − 1 so that R(f0ai) =

f
n/2
0 ci for each i = 1, . . . ,m. Then R(x)2−f0g(x, 1) vanishes at f0a1, . . . , f0am. So
there exists an integral polynomial h(x) such that R(x)2 − f0g(x, 1) = P (x)h(x).
Note we have R(f0θ)

2 = P (f0θ)h(f0θ).
Suppose first R(f0x) is an integral polynomial. Then we set ID to be the follow-

ing Rf -submodule of L:

ID = 〈f2m
0 R(f0θ), P (f0θ)If (

n− 3−m

2
)〉.

Computing its square gives

I2D = P (f0θ) · 〈f4m
0 h(f0θ), f

2m
0 R(f0θ)If (

n− 3−m

2
), P (f0θ)If (n− 3−m)〉

= P (f0θ)f
m
0 · 〈f3m

0 h(f0θ), f
m
0 R(f0θ)If (

n− 3−m

2
),

(θ − a1) · · · (θ − am)If (n− 3−m)〉
⊂ f2m

0 α0If (n− 3).

The last containment follows from computing the degrees of h and R. (When
m = 1, one checks directly that h ∈ I(n − 3).) We then set α = f2m

0 α0 to get
I2 ⊂ αI(n− 3).

To compute the norm of ID, we use a specialization argument. Let R denote
the ring

R = Zp[f0, . . . , fn, a1, . . . , am][
√
f(a1, 1), . . . ,

√
f(am, 1)],

where f(x, 1) = f0x
n+f1x

n−1+· · ·+fn. Write ci =
√
f(ai, 1) for each i = 1, . . . ,m.

Inside R[x]/f(x, 1), we define ζ1, . . . , ζn−1 as before and denote the corresponding
Rf , If , ID by Rf , If , ID. One has the notion of NID as an R-submodule of the
fraction field of R.

We claim thatNID is the principal ideal generated by s=c1· · · cmf
nm−(n−3+m)/2
0 .

Specializing to particular f0, . . . , fn, a1, . . . , am then completes the proof. We prove
this claim by first inverting f0. In this case, the result follows from [4, Proposi-
tion 8.5]. Next we localize at (f0) to check that the correct power of f0 is attained.
Since every ideal is invertible now, it suffices to show that I2

D = αIn−3
f which

follows from the statements

(16) (θ − ai)(Rf )(f0) = (If )(f0)

Licensed to Univ of Waterloo. Prepared on Tue Aug 13 17:08:57 EDT 2019 for download from IP 129.97.91.218.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



480 MANJUL BHARGAVA, BENEDICT H. GROSS, AND XIAOHENG WANG

for i = 1, . . . ,m. To prove (16), note that the containment ⊂ is clear since θ− ai ∈
If ; equality follows because they have the same norm. We now give another more
explicit proof of (16). Note that it remains to show that 1 ∈ (θ − ai)(Rf)(f0).

Consider the polynomial hi(t) = (f(t, 1)−c2i )/(t−ai). By definition hi(θ)(θ−ai) =
−c2i . Moreover, writing out hi(t) explicitly, one sees that

hi(θ) = ζn−1 + aiζn−2 + a2i ζn−3 + · · ·+ an−2
i ζ1 + hi(0) ∈ Rf .

This shows that c2i ∈ (θ − ai)(Rf )(f0), and hence 1 ∈ (θ − ai)(Rf )(f0) since ci is a
unit in (Rf )(f0).

We now deal with the case when R(f0x) is not integral. The rational function

y − R(f0x)/f
n/2
0 vanishes at P1, . . . , Pm which prompts us to consider the divisor

div(y − R(f0x)/f
n/2
0 ), which amounts to studying the roots of j(x) = f(x, 1) −

R(f0x)
2/fn

0 . Now j(x) is a polynomial of degree n with leading coefficient f0 since
the degree of R2 is at most 2m − 2 < n. Since R(f0x) is not integral, j(x) has
a coefficient of valuation strictly less than −nνp(f0), where νp denotes the p-adic
valuation. Then j(x) has at least n − (2m − 2) roots with valuation less than
−n+1

n νp(f0) as seen from its Newton polygon. In other words, j(x) has at least
n − (2m − 2) roots a∗i such that f0a

∗
i is not integral. These roots will then give a

divisor that is divisible by 2 in J(Qp). Since j(x) vanishes at the x-coordinates of
P1, . . . , Pm, we see that it has at most m−2 other roots a such that f0a is integral.

Hence div(y −R(f0x)/f
n/2
0 )−D has the form D′ +E where D′ has the form (15)

with m replaced by m′ ≤ m − 2 and where E ∈ 2J(Qp). If m′ is even, then as
we have shown above, there exists a divisor D′′ of the form (15) with m′ + 1 < m
non-Weierstrass non-infinite points. The proof now concludes by induction on m.
Once m = 1, the polynomial R(f0x) is integral. �

In certain cases, we may show that a soluble rational orbit has a unique integral
representative up to the action of (SLn /μ2)(Zp).

Proposition 35. Let p be any odd prime, and let f(x, y) ∈ Zp[x, y] be a binary form
of even degree n such that p2 � Δ(f) and f0 	= 0. Let C denote the hyperelliptic
curve z2 = f(x, y). Suppose that Div1(C)(Qp) 	= ∅. Then the (SLn /μ2)(Zp)-
orbits on Z2

p ⊗ Sym2 Z
n
p with invariant binary form f(x, y) are in bijection with

soluble (SLn /μ2)(Qp)-orbits on Q2
p ⊗ Sym2 Q

n
p with invariant binary form f(x, y).

Furthermore, if (A,B) ∈ Z2
p ⊗ Sym2 Z

n
p with invariant binary form f(x, y), then

Stab(SLn /μ2)(Zp)(A,B) = Stab(SLn /μ2)(Qp)(A,B).

Proof. As noted earlier, we only need to focus on the pair (I, α). The condition
p2 � Δ(f) implies that the order Rf is maximal and that the projective closure C of

C over Spec(Zp) is regular. By Theorem 29, the assumption that Div1(C)(Qp) 	= ∅
implies that soluble Qp-orbits with invariant binary form f(x, y) exist. Since p is
odd, the p-adic version of Proposition 34 implies that Zp-orbits with invariant
binary form f(x, y) exist. Therefore, by Remark 18, the set of equivalence classes
of pairs (I, α) is nonempty and is in bijection with (R×

f /(R
×2
f Z×

p ))N≡1. Since the
special fiber of C is geometrically reduced and irreducible, the Neron model J of
its Jacobian JQp

is fiberwise connected [10, Section 9.5, Theorem 1] and its 2-
torsion J [2] is isomorphic to (ResR/Zp

μ2)N=1/μ2. We have via étale cohomology
[31, Proposition 2.11] that

J (Zp)/2J (Zp) � (R×
f /(R

×2
f Z×

p ))N≡1.
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The Néron mapping property implies that J (Zp)/2J (Zp) = J(Qp)/2J(Qp).
For the stabilizer statement, we have L×[2] = R×

f [2] which suffices when n ≡ 2

(mod 4). When n ≡ 0 (mod 4), the exact sequence (3) implies that it remains to
compare (L×2 ∩ Q×

p )/Q
×2
p and (R×2

f ∩ Z×
p )/Z

×2
p . These two groups are nontrivial

only when L contains a quadratic extensionK ′ ofQp. Since p
2 � Δ(f) and n ≥ 4, the

discriminant of the extension K ′/Qp cannot be divisible by p. Hence K ′ = Qp(
√
u)

can only be the unramified quadratic extension of Qp. In other words, u ∈ Z×
p .

Hence in this case (L×2 ∩ Q×
p )/Q

×2
p and (R×2

f ∩ Z×
p )/Z

×2
p both are equal to the

group of order 2 generated by the class of u. �

10. The number of irreducible integral orbits of bounded height

Let V = Sym2(W
∗) ⊕ Sym2(W

∗) be the scheme of pairs of symmetric bilinear
forms on W . Define the height H(v) of an element v ∈ V (Z) to be the height
of its invariant binary form. We say that v ∈ V (Z) is irreducible if its invariant
binary form has nonzero discriminant. In [1, Section 4], the asymptotic number of
irreducible SL±1

n (Z)-orbits on V (Z) having height less than X was determined, and
also the asymptotic number of such orbits whose invariant binary forms satisfy any
finite set of congruences. The same computation applies also with G = SLn /μ2 in
place of SL±1

n . We assume henceforth that n is even.
To state this counting result precisely, recall from the discussion of Section 7.2

that we may naturally partition the set of elements in V (R) with Δ 	= 0 and whose

invariant binary form is not negative definite into
∑n/2

m=0 r(m) components, which

we denote by V (m,r) for m = 0, 1, . . . , n/2 and r = 1, . . . , r(m) where r(m) = 22m−2

if m ≥ 1; r(0) = 2 if n ≡ 0 (mod 4); and r(0) = 1 if n ≡ 2 (mod 4). A very similar
partition is used in [1, Section 4.1.1].

For a given value of m, the component V (m,r) of V (R) maps to the component
I(m) of non-negative definite binary n-ic forms in Rn+1 having nonzero discriminant
and 2m real linear factors. Let F (m,r) denote a fundamental domain for the action
of G(Z) on V (m,r), and set

cm,r = Vol(F (m,r) ∩ {v ∈ V (R) : H(v) < 1});

here Vol denotes the Euclidean measure on V (R). The number of r’s that corre-
spond to orbits soluble at R is #(J1(R)/2J(R)) where J denotes the Jacobian of a
hyperelliptic curve z2 = f(x, y) with f(x, y) ∈ I(m). The size of this quotient does
not depend on the choice of f(x, y) ∈ I(m). Then from [1, Theorems 9 and 17], we
obtain the following counting result.

Theorem 36. Fix m, r. Suppose S is a G(Z)-invariant subset of V (Z)(m,r) :=
V (Z)∩V (m,r) defined by finitely many congruence conditions modulo prime powers.
Let N(S;X) denote the number of G(Z)-equivalence classes of elements v ∈ S
satisfying H(v) < X. Then

N(S;X) = cm,r ·
∏
p

νp(S) ·Xn+1 + o(Xn+1),

where νp(S) denotes the p-adic density of S in V (Z).
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11. Sieving to locally soluble orbits

Since local solubility is defined by infinitely many congruence conditions, we
need a weighted version of Theorem 36 in which we allow weights to be defined
by certain infinite sets of congruence conditions. The technique for proving such a
result involves using Theorem 36 to impose more and more congruence conditions.

To describe which weight functions on V (Z) are allowed, we need the following
definition.

Definition 37. Suppose U = AM is some affine space. A function φ : U(Z) →
[0, 1] is said to be defined by congruence conditions if there exist local functions
φp : U(Zp) → [0, 1] satisfying the following conditions:

(1) For all v ∈ U(Z), the product
∏

p φp(v) converges to φ(v).

(2) For each prime p, the function φp is locally constant outside some (p-
adically) closed subset of U(Zp) of measure 0.

(3) The p-adic integral

∫
U(Zp)

φp(v)dv is nonzero.

A subset U ′ of U(Z) is said to be defined by congruence conditions if its character-
istic function is defined by congruence conditions.

Then we have the following theorem, which follows from Theorem 36 via a sifting
argument just as in [7, Section 2.7].

Theorem 38. Let φ : V (Z) → [0, 1] be a G(Z)-invariant function that is defined by
congruence conditions via local functions φp : V (Zp) → [0, 1]. Fix m, r. Let S be a

G(Z)-invariant subset of V (Z)(m,r) defined by congruence conditions. Let Nφ(S;X)
denote the number of G(Z)-equivalence classes of irreducible elements v ∈ S having
height bounded by X, where each equivalence class G(Z)v is counted with weight
φ(v). Then

Nφ(S;X) ≤ cm,rX
n+1

∏
p

∫
v∈V (Zp)

φp(v)dv + o(Xn+1).

Identify the scheme of all binary n-ic forms over Z with An+1
Z , and let F0 denote

the set of all integral binary forms of degree n. If F is a subset of F0, denote by
F (Fp) the reduction modulo p of the p-adic closure of F in An+1

Z (Zp).

Definition 39. A subset F of F0 is large if the following conditions are satisfied:

(1) It is defined by congruence conditions.
(2) There exists a subscheme S0 of An+1

Z of codimension at least 2 such that
for all but finitely many p, we have F0(Fp)\F (Fp) ⊂ S0(Fp).

We identify hyperelliptic curves with their associated binary forms. We say that a
family of hyperelliptic curves z2 = f(x, y) is large if the set of binary forms f(x, y)
appearing is large.

As an example, the subset F1 of F0 consisting of binary n-ic forms f(x, y) such
that the corresponding hyperelliptic curves C given by z2 = f(x, y) have locally
soluble Div1 is large. The set F2 ⊂ F1 of integral binary n-ic forms such that
the corresponding hyperelliptic curves are locally soluble is also large. These two
statements follow from [26, Lemma 15]. Our aim is to prove the analogue of The-
orem 6 for all large families of hyperelliptic curves whose associated binary forms
are contained in F1.
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A POSITIVE PROPORTION OF HYPERELLIPTIC CURVES 483

Let F be a large subset of F0 contained in F1. Since the curves z2 = f(x, y)
and z2 = κ2f(x, y) are isomorphic over Q, where κ is the constant in Theorem 15,
we assume without loss of generality that the coefficients of every f(x, y) in F
lie in κ2Z. To prove Theorem 6, we need to weigh each locally soluble element
v ∈ V (Z) whose invariant binary form is in F by the reciprocal of the number
of G(Z)-orbits in the G(Q)-equivalence class of v in V (Z). However, in order for
our weight function to be defined by congruence conditions, we instead define the
following weight function w : V (Z) → [0, 1]:

w(v) :=

(17)

⎧⎪⎨⎪⎩
(∑

v′

#StabG(Q)(v
′)

#StabG(Z)(v′)

)−1

if v is locally soluble with invariant binary form in F ,

0 otherwise,

where the sum is over a complete set of representatives for the action of G(Z) on
the G(Q)-equivalence class of v in V (Z). We then have the following theorem.

Theorem 40. Let F be a large subset of F0 contained in F1. Moreover, suppose
that the coefficients of every f(x, y) ∈ F lie in 16nZ. Then

(18)
∑
C∈F

H(C)<X

#Sel2(J
1) ≤

n/2∑
m=0

∑
r soluble

Nw(V (Z)
(m,r)
F ;X) + o(Xn+1),

where V (Z)
(m,r)
F is the set of all elements in V (Z)(m,r) whose invariant binary forms

lie in F and “r soluble” is short for “every element of V (Z)
(m,r)
F is soluble over R”.

Proof. By Theorems 31 and 33, the left-hand side is equal to the number of G(Q)-
equivalence classes of elements in V (Z) that are locally soluble, have invariant
binary forms in F , and have height bounded by X. Given a locally soluble element
v ∈ V (Z) with invariant binary form in F , let v1, . . . , vk denote a complete set of
representatives for the action of G(Z) on the G(Q)-equivalence class of v in V (Z).
Then
(19)
k∑

i=1

w(vi)

#StabG(Z)(vi)
=
( k∑
i=1

#StabG(Q)(v)

#StabG(Z)(vi)

)−1 k∑
i=1

1

#StabG(Z)(vi)
=

1

#StabG(Q)(v)
.

When StabG(Q)(v) is trivial, which happens for all but negligibly many v ∈ V (Z)
by [1, Proposition 14], (19) simplifies to

(20)

k∑
i=1

w(vi) = 1.

Since the size of StabG(Q)(v) is bounded above by 22g, (20) always holds up to an
absolutely bounded factor. Therefore, the right-hand side of (18) also counts the
number of G(Q)-equivalence classes of elements in V (Z) that are locally soluble,
have invariant binary forms in F , and have height bounded by X. �

In order to apply Theorem 38 to bound Nw(V (Z)(m,r);X), we need to know that
w is defined by congruence conditions. The proof that w is indeed a product

∏
p wp

of local weight functions is identical to the proof of [7, Proposition 3.6]. Therefore,
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to compute Nw(V (Z)(m,r);X), it remains to compute cm,r and the p-adic integrals∫
wp(v)dv. We fix left-invariant top differentials dτ, dμ on G and An+1

Z defined over
Z and denote by τ∞, τp, μ∞, μp the induced measures on G(R), G(Qp),R

n+1,Qn+1
p ,

respectively. We normalize dμ such that μ∞ is the usual Euclidean measure on
Rn+1 and μp(Z

n+1
p ) = 1 for all primes p. Then, we have the following results:

cm,rX
n+1 =

|J |τ∞(G(Z)\G(R))

#J [2](R)
μ∞({f ∈ I(m)|H(f) < X});∫

v∈V (Zp)

wp(v)dv = |J |pτp(G(Zp))μp(Fp)
#(J1(Qp)/2J(Qp))

#J [2](Qp)
;

here J is a nonzero rational constant; J denotes the Jacobian of any hyperelliptic
curve defined by z2 = f(x, y) where f(x, y) ∈ F ∩I(m); and Fp is the p-adic closure
of F. The first equation is proved in [1, Section 4.4]. The second equation follows
from the identical computation as in [31, Section 4.5].

For every place ν of Q, we let aν denote the following quotient:

aν =
#(J1(Qν)/2J(Qν))

#J [2](Qν)
.

Because of the assumption that J1(Qν) 	= ∅, this quotient depends only on ν, g.
Indeed, it is equal to 2−g for ν = ∞, 2g for ν = 2, and 1 for all other primes (see,
e.g., [4, Lemma 12.3]). The aν ’s satisfy the product formula

∏
ν aν = 1.

We now combine Theorem 38, Theorem 40, and the product formula
∏

ν |J |ν = 1
to obtain the following result.

Theorem 41. Let F be a large subset of F0 contained in F1. Moreover, suppose
that the coefficients of every f(x, y) in F lie in 16nZ. Then
(21)∑

C∈F
H(C)<X

#Sel2(J
1) ≤

n/2∑
m=0

τ (G)μ∞({f ∈ I(m)|H(f) < X})
∏
p

μp(Fp) + o(Xn+1),

where τ (G) = 2 denotes the Tamagawa number of G.

12. Proofs of main theorems

All the results stated in the Introduction, starting with Theorem 6, hold even if
for each g ≥ 1 we range over any large congruence family of hyperelliptic curves C
over Q of genus g for which Div1(C) is locally soluble. (See Definition 39 for the
definition of “large”.)

We prove Theorems 6 and 7 in this generality.
Proof of Theorem 6. Let F be a large family of hyperelliptic curves with locally
soluble Div1. Since Condition 2 in Definition 39 is a mod p condition, the Ekedahl
sieve as in [2, Theorem 3.3] can be applied to obtain the following tail estimate.

Proposition 42. Let Fp denote the p-adic closure of F in Zn+1
p . For any M > 0,

we have

#
⋃

p>M

{f ∈ I(m)|f /∈ Fp, H(f) < X} = O(Xn+1/M) +O(Xn),

where the implied constant is independent of X and M .
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Then by a sifting argument just as in [7, Section 2.7], we have

(22)
∑
C∈F

H(C)<X

1 =

n/2∑
m=0

μ∞({f ∈ I(m)|H(f) < X})
∏
p

μp(Fp) + o(Xn+1).

Dividing (21) by (22) gives Theorem 6. �

Proof of Theorem 7. Let F be a large family of hyperelliptic curves with locally
soluble Div1. Let k > 0 be an odd integer. Recall that the 2-Selmer set of order
k is defined to be the subset of elements of Sel2(J

1) that locally everywhere come
from points in J1(Qν) of the form d1 − k−1

2 d where d1 is an effective divisor of
degree k and d is the hyperelliptic class. To obtain the average size of this 2-Selmer
set of order k, we need to perform a further sieve from the whole 2-Selmer set to
this subset. Let ϕν ≤ 1 denote the local sieving factor at a place ν of Q. Then, to
prove that the average size of the 2-Selmer set of order k is less than 2, it suffices
to show that ϕν < 1 for some ν.

We use the archimedean place. Suppose that f(x, y) is a degree 2g+2 binary form
having 2m real linear factors with m > 0 and let C be its associated hyperelliptic
curve. Then C(R) hasm connected components and J(R)/2J(R) has size 2m−1. Let
σ denote complex conjugation. Then for any P ∈ C(C) with x-coordinate t ∈ C×,
we have that (t−β)(σt−β) = NC/R(t−β) ∈ R×2 for any β ∈ R. Hence the descent

“x− T” map sends the class of (P ) + (σP )− d to 1 in L×/L×2R where L denotes
the étale algebra of rank n associated to f(x, y). Thus (P ) + (σP ) − d ∈ 2J(R).

Therefore, the image of (Symk(C))(R) in J1(R)/2J(R) is equal to the image of

Symk(C(R)) in J1(R)/2J(R). Since m is positive, C has a rational Weierstrass
point over R. Hence if P ∈ C(R), then 2(P ) − d ∈ 2J(R). Since C(R) has m

connected components, we see that the image of Symk(C(R)) in J1(R)/2J(R) has
size at most

Sm(k) =

(
m

1

)
+

(
m

3

)
+ · · ·+

(
m

k

)
.

There is a positive proportion of hyperelliptic curves C : z2 = f(x, y) in F such
that f(x, y) splits completely over R. For any odd integer k < g, we have Sg+1(k) <
2g = |J1(R)/2J(R)|. Therefore, ϕ∞ < 1.

Consider now the second statement that the average size of the 2-Selmer set of
order k goes to 0 as g approaches ∞. We use the archimedean place again. Suppose
that f(x, y) is a degree n = 2g + 2 binary form having 2m real linear factors and
let C be its associated hyperelliptic curve. For a fixed odd integer k > 0, we have

(23) lim
m→∞

Sm(k)

|J1(R)/2J(R)| = lim
m→∞

Sm(k)

2m−1
= 0.

On the other hand, [15, Theorem 1.2] states that the density of real polynomials of
degree n having fewer than log n/ log log n real roots is O(n−b+o(1)) for some b > 0.
Therefore, the result now follows from this and (23). �

Our approach to Theorem 5 (which in turn implies Theorems 1 and 2), using a
result of Dokchitser and Dokchitser (Appendix A), does not work in the generality
of large families, but does work for “admissible” families as defined below.
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486 MANJUL BHARGAVA, BENEDICT H. GROSS, AND XIAOHENG WANG

Definition 43. A subset F of the set F0 of all integral binary forms of degree n is
admissible if the following conditions are satisfied:

(1) It is defined by congruence conditions;
(2) For large enough primes p, the p-adic closure of F contains all binary forms

f(x, y) of degree n over Zp such that the hyperelliptic curve z2 = f(x, y)
has a Qp-rational point.

We say that a family of hyperelliptic curves z2 = f(x, y) is admissible if the set of
binary forms f(x, y) appearing is admissible.

To prove Theorem 5 where we range over any admissible family of hyperelliptic
curves over Q of genus g ≥ 1 with locally soluble Div1, we note that the result of
Dokchitser and Dokchitser holds for admissible families (Theorem A.2). The rest
of the proof is identical to that given in the Introduction.

We conclude by giving a version of Theorem 1 in the most general setting that
our methods allow.

Theorem 44. Suppose F is a large congruence family of integral binary forms
of degree n = 2g + 2 for which there exist two primes p, q neither of which is a
quadratic residue modulo the other such that the following conditions hold for a
positive proportion of f(x, y) in F :

1. The four integral binary forms f(x, y), pf(x, y), qf(x, y), pqf(x, y) all lie
inside F and the hyperelliptic curves have points over Qp and Qq.

2. If J denotes the Jacobian of the hyperelliptic curve z2 = f(x, y), then J has
split semistable reduction of toric dimension 1 at p and good reduction at q.

Then for a positive proportion of binary forms f(x, y) in F , the corresponding
hyperelliptic curve C : z2 = f(x, y) has no points over any odd degree extension
of Q (i.e., the variety J1 has no rational points), and moreover the 2-Selmer set
Sel2(J

1) is empty.

Appendix A. A positive proportion of hyperelliptic curves have

odd/even 2-Selmer rank

In this appendix we show that both odd and even 2-Selmer ranks occur a positive
proportion of the time among hyperelliptic curves of a given genus.

For an abelian variety A defined over a number field K, write rk2(A/K) =
dimF2

Sel2(A/K) for the 2-Selmer rank, and rk2∞(A/K) for the 2∞-Selmer rank2.
We will say ‘rank of a curve’ meaning ‘rank of its Jacobian’.

Theorem A.1. The proportion of both odd and even 2∞-Selmer ranks in the family
of hyperelliptic curves over Q,

y2 = anx
n + an−1x

n−1 + · · ·+ a0 (n � 3),

ordered by height as in (2) is at least 2−4n−4. In particular, assuming finiteness of
the 2-part of X, at least these proportions of curves have Jacobians of odd and of
even Mordell-Weil rank.

2Mordell-Weil rank + number of copies of Q2/Z2 in XA/K ; if X is finite, this is just the

Mordell-Weil rank.
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A POSITIVE PROPORTION OF HYPERELLIPTIC CURVES 487

Theorem A.2. Let K be a number field with ring of integers Ø. Fix n � 3.
Consider the family of all hyperelliptic curves

y2 = anx
n + an−1x

n−1 + · · ·+ a0, ai ∈ Ø,

or any other “admissible” family (see Definition 43). Then a positive proportion of
the hyperelliptic curves in the family, when ordered by height, have even 2-Selmer
rank and a positive proportion have odd 2-Selmer rank. The same conclusion holds
for the 2∞-Selmer rank.

The proofs resemble that of [8, Section 4.1] for elliptic curves over Q. Recall that
the conjecture of Birch and Swinnerton-Dyer implies, in particular, that the parity
of the rank of an elliptic curve E is determined by whether its root number—that
is, the sign of the functional equation of the L-function L(E, s) of E—is +1 or
−1. The proof in [8] uses that twisting by −1 does not affect the height of the
curve but often changes the root number, and that the parity of the Selmer rank
is (unconjecturally) compatible with the root number.

This compatibility is not known for hyperelliptic curves (but see the forthcoming
work of Morgan for 2-Selmer ranks for quadratic twists). Instead, we tweak the
argument to use Brauer relations in biquadratic extensions, where it is known in
enough cases. To illustrate the method, consider an elliptic curve E/Q with split

multiplicative reduction at 2. Then it has root number −1 over F = Q(i,
√
2), since

the unique place above 2 in F contributes −1, while every other rational place splits
into an even number of places in F and so contributes +1. In other words, the sum
of the Mordell-Weil ranks for the four quadratic twists

rk(E/F ) = rk(E/Q) + rk(E−1/Q) + rk(E2/Q) + rk(E−2/Q) (∗)

should be odd, and so both odd and even rank should occur among the 4 twists.
The point is that for the 2∞-Selmer rank, the parity in (∗) can be computed uncon-
ditionally, using a Brauer relation in Gal(F/Q) ∼= C2 × C2. Moreover, this works

for general abelian varieties and over a general number field K, replacing Q(i,
√
2)

by a suitable biquadratic extension of K. The fact that most of the decomposition
groups are cyclic allows us to avoid all the hard local computations and restric-
tions on the reduction types, and varying the curve in the family gives the required
positive proportions.

The exact result we will use is as follows.

Theorem A.3. Let F = K(
√
α,

√
β) be a biquadratic extension of number fields.

Suppose that some prime p0 of K has a unique prime above it in F . Let C/K be a
curve with Jacobian J , such that

1. C(Kp0
) 	= ∅ and J has split semistable reduction of toric dimension 1 at

p0;
2. C(Kp) 	= ∅ and J has good reduction at p for every p 	= p0 that has a

unique prime above it in F/K.

Then

rk2∞(J/K) + rk2∞(Jα/K) + rk2∞(Jβ/K) + rk2∞(Jαβ/K) ≡ 1 mod 2.

If, in addition, Cα(Kp), Cβ(Kp), and Cαβ(Kp) are non-empty for all primes p of
K that have a unique prime above them in F , then the same conclusion holds for
the 2-Selmer rank as well.
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Postponing the proof of this theorem, we first explain how it implies Theo-
rems A.1 and A.2.

Proof of Theorem A.1. For Theorem A.1, it suffices to prove the following propo-
sition.

Proposition A.4. Consider a squarefree polynomial f(x) ∈ Q[x],

f(x) = anx
n + an−1x

n−1 + · · ·+ a0 (n � 3, n = 2g + 1 or 2g + 2),

whose coefficients satisfy a2 ≡ 1 mod 8, a2g+1 ≡ 4 mod 8, and all other ai ≡ 0
mod 8. Then among the four hyperelliptic curves

y2=f(x), y2=−f(x), y2=2f(x), y2=−2f(x)

at least one has even and at least one has odd 2∞-Selmer rank.

Proof. Replacing y �→ 2y+x in C : y2 = f(x) and dividing the equation by 4 yields
a curve with reduction

C̄/F2 : y2 + xy = x2g+1.

This equation has a split node at (0, 0) and no other singularities, so Jac(C) has
split semistable reduction at 2 of toric dimension 1. Hensel lifting the non-singular
point at ∞ on C̄ we find that C(Q2) 	= ∅. Now apply Theorem A.3 with K = Q,

F = Q(i,
√
2), and p0 = 2. (Note that all odd primes split in F/Q, and that

Jac(Cα) = (Jac(C))α.) �

Proof of Theorem A.2.

Lemma A.5. Let K be a finite extension of Qp (p odd), with residue field Fq. Take
a hyperelliptic curve

C : y2 = anx
n + an−1x

n−1 + · · ·+ a0, ai ∈ ØK ,

and let f(x) ∈ Fq[x] be the reduction of the right-hand side.

1. If f is squarefree of degree n and has an Fq-rational root, then Jac(C) has
good reduction, and Cα(K) 	= ∅ for every α ∈ K×.

2. If f(x) = (x − a)2h(x) for some a ∈ Fq and some squarefree polynomial
h(x) of degree n− 2 that possesses an Fq-rational root and satisfies h(a) ∈
F×2

q , then Jac(C) has split semistable reduction of toric dimension 1, and

Cα(K) 	= ∅ for every α ∈ K×.
3. If f(x) is not of the form λh(x)2, λ ∈ Fq, and q > 4n2, then C(K) 	= ∅.

Proof. In the first case, C has good reduction, and therefore so does Jac(C). In the
second case, C has one split node and no other singular points, and so its Jacobian
has split semistable reduction of toric dimension 1. In both cases, f(x) has a simple
root b ∈ Fq, by assumption. Lifting it by Hensel’s lemma, we get a point (B, 0) on
C/K. This point gives a K-rational point on every quadratic twist of C.

For (3), this is the argument in [26, Lemma 15]: write f(x) = l(x)h(x)2 with
l and h coprime and l non-constant and squarefree. By the Weil conjectures, the
curve y2 = l(x) has at least q + 1 − n

√
q > n rational points over Fq. So there is

at least one whose x-coordinate is not a root of f . It is non-singular on y2 = f(x),
and by Hensel’s lemma it lifts to a point in C(K). �
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A POSITIVE PROPORTION OF HYPERELLIPTIC CURVES 489

Proof of Theorem A.2. Write Ø for the ring of integers of K, and Fp for the residue
field at p.

Suppose we are given an admissible family F of hyperelliptic curves. In other
words, for every prime p the curves lie in some open set Fp of p-adic curves C/Øp,
defined by congruence conditions modulo pmp , and outside a finite set of primes Σ
of Ø these sets include all curves with C(Øp) 	= ∅. Enlarge Σ to include all primes
p|2, with mp chosen so that units of the form 1 + pmp are squares in Øp, and all
primes of norm � 4n2.

Take a prime p0 /∈ Σ. Pick α, β ∈ Ø with α ≡ β ≡ 1 mod
∏

p∈Σ pmp , and such
that α has valuation 1 at p0 and β is a non-square unit modulo p0. Then p0 ramifies
in K(

√
α) and is inert in K(

√
β), so F = K(

√
α,

√
β) is a biquadratic extension

with a unique prime above p0. There is a finite set of primes U of K that have a
unique prime above them in F , and U ∩Σ = ∅. (The set is finite since such primes
must ramify in F/K.)

Within our family F consider those curves C : y2 = f(x) whose reductions are
as in Lemma A.5(2) at p0, as in Lemma A.5(1) at all p ∈ U \ {p0}, and such that
f mod p is not a unit times the square of a polynomial at any p /∈ Σ ∪ U . (This is
a positive proportion of curves in F by [27].) For each such curve C, Theorem A.3
implies that both odd and even 2-Selmer ranks occur among the twists of Jac(C)
by 1, α, β, and αβ, in other words, the Jacobians of C,Cα, Cβ, and Cαβ. Note that
these twists are in F , since for p ∈ Σ this twisting does not change the class modulo
pmp , while for p 	∈ Σ these twists are all locally soluble by Lemma A.5(3).

Because quadratic twists by α, β, and αβ only change the height by at most
NK/Q(αβ)

n, we get the asserted positive proportion. �

Proof of Theorem A.3. We refer the reader to [18, Section 2] for the theory of
Brauer relations and their regulator constants.

Notation A.6. Let F/K be a Galois extension of number fields with Galois group
G, and A/K an abelian variety. Fix a global invariant exterior form ω on A/K.
For K ⊂ L ⊂ F and a prime p, we write

X[p]
A/L p-primary part of XA/L modulo divisible elements

(a finite abelian p-group).
c̃A/L

∏
cv|ω/ωo

v|v, where the product is taken over all primes of L, cv is
the Tamagawa number of A/L at v, ωo

v the Néron exterior form,
and | · |v the normalized absolute value at v.

In the theorem below we write

S the set of self-dual irreducible QpG-representations.

Θ =
∑

niHi a Brauer relation in G (i.e.,
∑

i ni Ind
G
Hi

1 = 0).

C(Θ, ρ) the regulator constant
∏

i det
(

1
|Hi| 〈, 〉|ρ

Hi
)ni ∈ Q∗

p/Q
∗2
p ,

where 〈, 〉 is some non-degenerate G-invariant pairing on ρ.

Finally, as in [17] we let3

SΘ = {ρ ∈ S | ordp C(Θ, ρ) ≡ 1 mod 2}.

3[17] also includes representations of the form T ⊕ T ∗ for some irreducible T �∼= T ∗ (T ∗ is the
contragredient of T ), but these have trivial regulator constants by [18, Corollary 2.25].
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Theorem A.7. Suppose A/K is a principally polarized abelian variety. For ρ ∈ S
write mρ for its multiplicity in the dual p∞-Selmer group of A/F . Then∑

ρ∈SΘ

mρ ≡ ordp
∏
i

c̃A/FHiX
[p]

A/FHi
mod 2.

Proof. This is essentially [17, Theorem 1.6], except for the X[p] term in the right-
hand side. For odd p, this term is a square and does not contribute to the formula.
For p = 2, this is the formula that comes out of the proof of [17, Theorem 1.6]. There
the main step of the proof [17, Theorem 3.1] assumes that A/K has a principal
polarization induced by a K-rational divisor to get rid of the X[2] term coming
from [17, Theorem 2.2]. �
Corollary A.8. Let F = K(

√
α,

√
β) be a biquadratic extension of number fields.

For every principally polarized abelian variety A/K,

(†)

rk2∞(A/K) + rk2∞(Aα/K) + rk2∞(Aβ/K) + rk2∞(Aαβ/K)

≡ ord2
c̃A/K(

√
α) c̃A/K(

√
β) c̃A/K(

√
αβ)

c̃A/F (c̃A/K)2

+ord2
|X[2]

A/K(
√

α)
||X[2]

A/K(
√

β)
||X[2]

A/K(
√

αβ)
|

|X[2]

A/F
||X[2]

A/K
|2

mod 2.

Proof. Write 1,Ca
2 ,C

b
2,C

c
2 for the proper subgroups of G = Gal(F/K), and 1, εa,

εb, εc for its one-dimensional representations (so C[G/C•
2]
∼=1 ⊕ ε• for • = a, b, c).

Thus the four 2∞-Selmer ranks in question are the multiplicities of these four rep-
resentations in the dual 2∞-Selmer group of A/F . Now apply the theorem to the
Brauer relation

(24) Θ = {1} − Ca
2 − Cb

2 − Cc
2 + 2G.

Its regulator constants are (see [18, 2.3 and 2.14])

CΘ(1) = CΘ(εa) = CΘ(εb) = CΘ(εc) = 2 ∈ Q×/Q×2,

and so SΘ = {1, εa, εb, εc} in this case. �
Proof of Theorem A.3. We write the two expressions in ord2(· · · ) on the right-hand
side of Corollary A.8 as a product of local terms. The modified Tamagawa numbers
c̃J/K , c̃J/K(

√
α), . . . are, by definition, products over primes of K, K(

√
α), . . ., and we

group all terms by primes of K. Similarly, as shown by Poonen and Stoll in [26,
Section 8], the parity of ord2 X[2] is a sum of local terms that are 1 or 0 depending
on whether Picg−1(C) is empty or not empty over the corresponding completion,
and again we group them by primes p of K. This results in an expression

rk2∞(J/K) + rk2∞(Jα/K) + rk2∞(Jβ/K) + rk2∞(Jαβ/K) ≡
∑
p

tp mod 2.

There are three cases to consider for p:
If there are several primes qi|p in F , then the decomposition groups of qi are

cyclic, and this forces tp = 0. This is a general fact about Brauer relations and
functions of number fields that are products of local terms; see [18, 2.31, 2.33,
2.36(l)].

If there is a unique prime q|p in F , then C(Kp) 	= ∅ by assumption. So Picg−1(C)

is non-empty in every extension of Kp, and all the local terms for X[2] above p

vanish. Also J has semistable reduction, again by assumption, so its Néron minimal
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model stays minimal in all extensions. The term |ω/ωo
v |v always cancels in Brauer

relations in this case; see, e.g., [18, 2.29]. So the only contribution to tp comes from
Tamagawa numbers.

When p 	= p0, the Jacobian J has good reduction and the Tamagawa numbers
are trivial, so tp = 0. Finally, if p = p0, then J has split semistable reduction at p
of toric dimension 1. In this case, the Tamagawa number term at p multiplies to
2 ∈ Q×/Q×2; in other words, tp = 1. This follows, e.g., from [18, 3.3, 3.23] for the
Brauer relation (24). This proves the claim for the 2∞-Selmer rank.

It remains to deduce the formula for rk2 from the one for rk2∞ . The difference
between rk2 and rk2∞ comes from X[2] and the 2-torsion in the Mordell-Weil group
on J , Jα, Jβ , and Jαβ . Two-torsion is the same for all four twists, and so gives

an even contribution. As for X[2], the local terms that define its parity give an
even contribution at every prime of K that splits in F , as the twists then come
in isomorphic pairs. At the non-split primes, all four twists have local points by
assumption, and so the local terms are 0. �
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