- 1: Let *n* be a positive integer and let *p* be a prime such that $p^p | n!$. Prove that $p^{p+1} | n!$.
- 2: Prove that every integer is a sum of 5 cubes. (It is an open problem whether every integer is a sum of 4 cubes.)
- 3: Let p be a prime. Prove that there does not exist positive integers a_1, a_2, \ldots, a_p , not all equal, such that for any positive integer n, the number $(a_1 + n)(a_2 + n) \cdots (a_p + n)$ is a perfect power. Here, a perfect power is a positive integer of the form a^b for some $a, b \in \mathbb{Z}$ with $a, b \geq 2$.
- 4: Find all integers a, b, c, d such that $1 < a < b < c < d$ and

$$
(a-1)(b-1)(c-1)(d-1)
$$
 | $abcd-1$.

5: Let $a \neq -1/2$ be a real number. Find all continuous functions $f : [0,1] \to \mathbb{R}$ such that for any $x \in [0, 1],$

$$
f(x^{2}) + 2af(x) = (x+a)^{2}.
$$

6: Let S be a finite set of positive integers such that

$$
\sum_{a \in S} \arctan \frac{1}{a} < \frac{\pi}{2}.
$$

Prove that there exists a finite set T of positive integers containing S such that

$$
\sum_{a \in T} \arctan \frac{1}{a} = \frac{\pi}{2}.
$$

1: Looking at p-adic valuation works.

If $n < p^2$, then at most $p-1$ positive integers up to n are divisible by p, and they are all not divisible by p^2 . This would imply $\nu_p(n!) \leq p-1$; a contradiction.

If $n \geq p^2$, then p^{p+1} divides $p \cdot (2p) \cdot \ldots \cdot (p^2)$, which divides n!.

Note: Legendre's formula allows for another solution. This will be left as an exercise for the reader.

2: The major formula is $(x + 1)^3 + (x - 1)^3 + (-x)^3 + (-x)^3 = 6x$.

Indeed, $(x+1)^3 = x^3 + 3x^2 + 3x + 1$ and $(x-1)^3 = x^3 - 3x^2 + 3x - 1$, so $(x+1)^3 + (x-1)^3 = 2x^3 + 6x$. This proves the formula.

Due to the formula, $6x$, $6x + 1$, $6x + 8$, $6x + 27$, $6x - 8$, and $6x - 1$ are all sums of 5 cubes. On the other hand, $0, 1, 8, 27, -8, -1$ forms a complete residue classes mod 6. That is, every integer is congruent to one of these six number mod 6. Thus, every number is either of form $6x$, $6x + 1$, $6x + 8$, $6x + 27$, $6x - 8$, or $6x - 1$ for some integer x. This proves that every number is a sum of 6 cubes.

Note: By working mod 9, it is easy to prove that 4 is not a sum of 3 cubes.)

3: Let b_1, b_2, \ldots, b_k be the distinct integers among a_1, a_2, \ldots, a_p , and for each i, let m_i be the multiplicity of b_i in the a_j s. Then we have

$$
(a_1+n)(a_2+n)\cdots(a_p+n)=(b_1+n)^{m_1}(b_2+n)^{m_2}\cdots(b_k+n)^{m_k}.
$$

Choose arbitrary distinct primes p_1, p_2, \ldots, p_k , all greater than the b_i s. By Chinese Remainder Theorem, there exists a positive integer n such that

$$
n \equiv p_i - b_i \pmod{p_i^2} \implies \nu_{p_i}(b_i + n) = 1.
$$

Furthermore, for each $i \neq j$, we see that $p_i > |b_i - b_j| > 0$, and so $n + b_j = (n + b_i) + (b_j - b_i)$ is not divisible by p_i . As a result, for each i,

$$
\nu_{p_i}((b_1+n)^{m_1}(b_2+n)^{m_2}\cdots(b_k+n)^{m_k})=m_i.
$$

If $(b_1 + n)^{m_1} (b_2 + n)^{m_2} \cdots (b_k + n)^{m_k}$ is a prime power, then there exists $m > 1$ such that $m \mid m_i$ for each *i*. But then *m* divides $m_1 + m_2 + \ldots + m_k = p$. This implies $m = p$, and thus $k = 1$; a contradiction.

4: Answer. $(2, 4, 10, 80)$ and $(3, 5, 17, 255)$.

We need to combine bound argument with divisibility argument.

Write $k(a-1)(b-1)(c-1)(d-1) = abcd-1$ for some (positive) integer k. Note that $abc(d-1) <$ $abcd-1$ < abcd; the first inequality holds since $abc > 1$. Thus, we get the bound

$$
\frac{abc}{(a-1)(b-1)(c-1)} < k < \frac{abcd}{(a-1)(b-1)(c-1)(d-1)}.\tag{4.1}
$$

By the given equality, $k(a - 1)(b - 1)(c - 1)(d - 1)$ and abcd are coprime. Thus, each of the five integers $k, a-1, b-1, c-1, d-1$ are coprime with the four integers a, b, c, d . We now have two cases based on the parity of $abcd-1$.

• Case 1: $abcd - 1$ is odd.

Then $k(a-1)(b-1)(c-1)(d-1)$ is odd. In particular, k is odd and a, b, c, d are even. The latter yields $a \geq 2$, $b \geq 4$, $c \geq 6$, and $d \geq 8$. By (4.1),

$$
k \le \frac{2 \cdot 4 \cdot 6 \cdot 8}{1 \cdot 3 \cdot 5 \cdot 7} = \frac{384}{105} < 4.
$$

Since k is odd and $k \geq 2$, this implies $k = 3$. If $a > 4$, then $b > 6$, $c > 8$, $d > 10$, and

$$
a \ge 4
$$
, then $0 \ge 0$, $c \ge 8$, $a \ge 10$, and

$$
\frac{abcd}{(a-1)(b-1)(c-1)(d-1)} = \frac{4 \cdot 6 \cdot 8 \cdot 10}{3 \cdot 5 \cdot 7 \cdot 9} = \frac{1920}{945} < 3.
$$

This contradicts (4.1) , so $a = 2$.

Now suppose that $b \geq 6$. Since $k = 3$ has to be coprime to b, we get $b \geq 8$. Thus $c \geq 10$, $d \geq 12$, and

$$
\frac{abcd}{(a-1)(b-1)(c-1)(d-1)} \le \frac{2 \cdot 8 \cdot 10 \cdot 12}{1 \cdot 7 \cdot 9 \cdot 11} = \frac{1920}{693} < 3.
$$

This contradicts (4.1) , so $b = 4$.

The equality $k(a-1)(b-1)(c-1)(d-1) = abcd - 1$ now becomes

$$
9(c-1)(d-1) = 8cd - 1 \iff cd - 9(c+d) + 10 = 0 \iff (c-9)(d-9) = 71.
$$

Since $c-9 < d-9$ and 71 is prime, this yields either $(c-9, d-9) = (-71, -1)$ or $(c-9, d-9) =$ (1, 71). The former does not work since then $c = -62 < 0$. The latter yields $c = 10$, $d = 80$, and so $(a, b, c, d) = (2, 4, 10, 80)$.

• Case 2: $abcd-1$ is even.

Then a, b, c, d are odd, so $a \geq 3$, $b \geq 5$, $c \geq 7$, $d \geq 9$, and

$$
k \le \frac{3 \cdot 5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6 \cdot 8} = \frac{945}{384} < 3.
$$

Since $k \geq 2$, this implies $k = 2$.

If $a > 5$, then $b > 7$, $c > 9$, $d > 11$, and

$$
\frac{abcd}{(a-1)(b-1)(c-1)(d-1)} \le \frac{5 \cdot 7 \cdot 9 \cdot 11}{4 \cdot 6 \cdot 8 \cdot 10} = \frac{3465}{1920} < 2.
$$

This contradicts (4.1) , so $a = 3$.

If $b \ge 7$, then $b \ge 9$ since $b - 1 = 6$ is not coprime with $a = 3$. Then $c \ge 11$ and $d \ge 13$, but $13 - 1$ is not coprime with 3, so $d \ge 15$ and

$$
\frac{abcd}{(a-1)(b-1)(c-1)(d-1)} \le \frac{3\cdot 9\cdot 11\cdot 15}{2\cdot 8\cdot 10\cdot 14} = \frac{4455}{2240} < 2.
$$

This contradicts (4.1) , so $b = 5$. Now the equality $k(a-1)(b-1)(c-1)(d-1) = abcd - 1$ becomes

$$
16(c-1)(d-1) = 15cd - 1 \iff cd - 16(c+d) + 17 = 0 \iff (c-16)(d-16) = 239.
$$

Note that 239 is also prime. Since $c-16 < d-16$, this yields either $(c-16, d-16) = (-239, -1)$ or $(c-16, d-16) = (1, 239)$. The former does not work since $c = -223 < 0$. The latter yields $c = 17, d = 255, \text{ and so } (a, b, c, d) = (3, 5, 17, 255).$

5: Answer. $f(x) = x +$ a^2 $2a + 1$.

Plugging $x = 0$ yields $(2a + 1)f(0) = a^2$, while plugging $x = 1$ yields $(2a + 1)f(1) = (a + 1)^2$. For convenience, let $C =$ a^2 $2a + 1$; then $f(0) = C$ and $f(1) = \frac{(a+1)^2}{2}$ $2a + 1$ $= C + 1$. At this point, it is natural to guess that $f(x) = x +$ a^2 $2a + 1$ works.

Consider the function $g(x) = f(x) - x - C$. Substituting $f(x) = g(x) + x + C$ yields

$$
f(x^{2}) + 2af(x) = g(x^{2}) + x^{2} + C + 2a(g(x) + x + C)
$$

= $g(x^{2}) + 2ag(x) + x^{2} + 2ax + (2a + 1)C$
= $g(x^{2}) + 2ag(x) + (x + a)^{2}$.

Thus, $f(x^2) + 2af(x) = (x + a)^2$ for all $x \in [0, 1]$ if and only if g satisfies the functional equation

$$
g(x^{2}) + 2ag(x) = 0 \quad \forall x \in [0, 1].
$$

Clearly, $q \equiv 0$ works, so $f(x) = x + C$ satisfies the original functional equation. It remains to show that the only q satisfying the above functional equation is $q \equiv 0$.

Rewrite the above functional equation as $g(x^2) = -2ag(x)$. Plugging $x = 0$ and $x = 1$ yields $g(0) = g(1) = 0$. If $a = 0$, then $g(x^2) = 0$ for all $x \in [0,1]$ and we are done, so now assume that $a \neq 0$.

By induction on k, we get $g(x^{2^k}) = (-2a)^k g(x)$ for any $x \in [0,1]$ and non-negative integer k. For each $x \in (0,1)$, the sequence $(x^{2^k})_{k \geq 0}$ converges to 0. By continuity,

$$
\lim_{k \to \infty} (-2a)^k g(x) = \lim_{k \to \infty} g\left(x^{2^k}\right) = g(0) = 0.
$$

This forces $g(x) = 0$ for each $x \in (0,1)$ if either $|-2a| > 1$ or $-2a = -1$ holds. It remains to consider the case $0 < |-2a| < 1$.

The formula $g(x^{2^k}) = (-2a)^k g(x)$ yields $g(x^{1/2^k}) = (-2a)^{-k} g(x)$ for all $k \ge 0$ and $x \in [0,1]$. For each $x \in (0, 1)$, the sequence $(x^{1/2^k})_{k \geq 0}$ converges to 1. By continuity,

$$
\lim_{k \to \infty} (-2a)^{-k} g(x) = \lim_{k \to \infty} g\left(x^{1/2^k}\right) = g(1) = 0.
$$

Since $|-2a| < 1$, this gives $g(x) = 0$ for all $x \in (0, 1)$. Together with $g(0) = g(1) = 0$, we get $g \equiv 0$.

6: The greedy algorithm suggests constructing t_1, t_2, \ldots such that t_{n+1} is the smallest integer larger than everything in S and all of t_1, \ldots, t_n and that adding $\arctan(1/t_{n+1})$ does not exceed $\pi/2$. Suppose for a contradiction that the sequence (t_n) continues forever. Let

$$
b_n = \tan\left(\frac{\pi}{2} - \sum_{a \in S} \arctan\frac{1}{a} - \sum_{i=1}^n \arctan\frac{1}{t_i}\right).
$$

Then (b_n) is a sequence of positive rational numbers approaching 0 with

$$
\frac{1}{b_{n+1}} = \frac{\frac{1}{b_n} + \frac{1}{t_{n+1}}}{1 - \frac{1}{b_n t_{n+1}}},
$$
 that is
$$
b_{n+1} = \frac{b_n t_{n+1} - 1}{b_n + t_{n+1}}.
$$

Our greedy algorithm requires $t_{n+1} \geq \lceil \frac{1}{b_n} \rceil$. What if we define $t_{n+1} = \lceil \frac{1}{b_n} \rceil$. $\frac{1}{b_n}$ for all *n*? Suppose we write $b_n = p_n/q_n$ in reduced form. Then

$$
\frac{p_{n+1}}{q_{n+1}} = \frac{p_n t_{n+1} - q_n}{p_n + t_{n+1} q_n}.
$$

Note that $t_{n+1} < 1 + q_n/p_n$ and so $p_n t_{n+1} - q_n < p_n$. So we get $p_{n+1} < p_n$, which can't continue forever.

The problem with defining $t_{n+1} = \lceil \frac{1}{b_n} \rceil$ $\frac{1}{b_n}$ is that this might be smaller than or equal to t_n . Note if $1/b_n > t_n$ for some *n*, then we have $t_{n+1} = \lceil \frac{1}{b_n} \rceil$ $\frac{1}{b_n}$] $< 1 + \frac{1}{b_n}$ and

$$
\frac{1}{b_{n+1}} = \frac{b_n + t_{n+1}}{b_n t_{n+1} - 1} > \frac{b_n + t_{n+1}}{b_n} > t_{n+1} t_n > t_{n+1}.
$$

So we have $t_{n+k} = \lceil \frac{1}{b_{n}} \rceil$ $\frac{1}{b_{n+k}}$ for all $k \geq 1$ and we may use the above to arrive at contradiction. It remains to consider the case $1/b_n \le t_n$ for all n. In this case, we have $t_{n+1} = t_n + 1 = t_1 + n$ for all n. However,

$$
\sum_{i=1}^{\infty} \arctan \frac{1}{t_i} \gg \sum_{i=1}^{\infty} \frac{1}{t_1 + (i-1)} = \infty.
$$