- 1: Let n be a positive integer and let p be a prime such that $p^p \mid n!$. Prove that $p^{p+1} \mid n!$.
- **2**: Prove that every integer is a sum of 5 cubes. (It is an open problem whether every integer is a sum of 4 cubes.)
- **3:** Let p be a prime. Prove that there does not exist positive integers a_1, a_2, \ldots, a_p , not all equal, such that for any positive integer n, the number $(a_1 + n)(a_2 + n) \cdots (a_p + n)$ is a perfect power. Here, a perfect power is a positive integer of the form a^b for some $a, b \in \mathbb{Z}$ with $a, b \geq 2$.
- 4: Find all integers a, b, c, d such that 1 < a < b < c < d and

$$(a-1)(b-1)(c-1)(d-1) \mid abcd-1.$$

5: Let $a \neq -1/2$ be a real number. Find all continuous functions $f : [0,1] \to \mathbb{R}$ such that for any $x \in [0,1]$,

$$f(x^2) + 2af(x) = (x+a)^2.$$

6: Let S be a finite set of positive integers such that

$$\sum_{a \in S} \arctan \frac{1}{a} < \frac{\pi}{2}.$$

Prove that there exists a finite set T of positive integers containing S such that

$$\sum_{a \in T} \arctan \frac{1}{a} = \frac{\pi}{2}.$$

1: Looking at *p*-adic valuation works.

If $n < p^2$, then at most p - 1 positive integers up to n are divisible by p, and they are all not divisible by p^2 . This would imply $\nu_p(n!) \le p - 1$; a contradiction.

If $n \ge p^2$, then p^{p+1} divides $p \cdot (2p) \cdot \ldots \cdot (p^2)$, which divides n!.

Note: Legendre's formula allows for another solution. This will be left as an exercise for the reader.

2: The major formula is $(x + 1)^3 + (x - 1)^3 + (-x)^3 + (-x)^3 = 6x$.

Indeed, $(x+1)^3 = x^3+3x^2+3x+1$ and $(x-1)^3 = x^3-3x^2+3x-1$, so $(x+1)^3+(x-1)^3 = 2x^3+6x$. This proves the formula.

Due to the formula, 6x, 6x + 1, 6x + 8, 6x + 27, 6x - 8, and 6x - 1 are all sums of 5 cubes. On the other hand, 0, 1, 8, 27, -8, -1 forms a complete residue classes mod 6. That is, every integer is congruent to one of these six number mod 6. Thus, every number is either of form 6x, 6x + 1, 6x + 8, 6x + 27, 6x - 8, or 6x - 1 for some integer x. This proves that every number is a sum of 6 cubes.

Note: By working mod 9, it is easy to prove that 4 is not a sum of 3 cubes.)

3: Let b_1, b_2, \ldots, b_k be the distinct integers among a_1, a_2, \ldots, a_p , and for each *i*, let m_i be the multiplicity of b_i in the a_i s. Then we have

$$(a_1+n)(a_2+n)\cdots(a_p+n)=(b_1+n)^{m_1}(b_2+n)^{m_2}\cdots(b_k+n)^{m_k}.$$

Choose arbitrary distinct primes p_1, p_2, \ldots, p_k , all greater than the b_i s. By Chinese Remainder Theorem, there exists a positive integer n such that

$$n \equiv p_i - b_i \pmod{p_i^2} \implies \nu_{p_i}(b_i + n) = 1.$$

Furthermore, for each $i \neq j$, we see that $p_i > |b_i - b_j| > 0$, and so $n + b_j = (n + b_i) + (b_j - b_i)$ is not divisible by p_i . As a result, for each i,

$$\nu_{p_i}\left((b_1+n)^{m_1}(b_2+n)^{m_2}\cdots(b_k+n)^{m_k}\right)=m_i.$$

If $(b_1 + n)^{m_1}(b_2 + n)^{m_2} \cdots (b_k + n)^{m_k}$ is a prime power, then there exists m > 1 such that $m \mid m_i$ for each *i*. But then *m* divides $m_1 + m_2 + \ldots + m_k = p$. This implies m = p, and thus k = 1; a contradiction.

4: Answer. (2, 4, 10, 80) and (3, 5, 17, 255).

We need to combine bound argument with divisibility argument.

Write k(a-1)(b-1)(c-1)(d-1) = abcd-1 for some (positive) integer k. Note that abc(d-1) < abcd - 1 < abcd; the first inequality holds since abc > 1. Thus, we get the bound

$$\frac{abc}{(a-1)(b-1)(c-1)} < k < \frac{abcd}{(a-1)(b-1)(c-1)(d-1)}.$$
(4.1)

By the given equality, k(a-1)(b-1)(c-1)(d-1) and *abcd* are coprime. Thus, each of the five integers k, a-1, b-1, c-1, d-1 are coprime with the four integers a, b, c, d. We now have two cases based on the parity of abcd-1.

• Case 1: abcd - 1 is odd.

Then k(a-1)(b-1)(c-1)(d-1) is odd. In particular, k is odd and a, b, c, d are even. The latter yields $a \ge 2, b \ge 4, c \ge 6$, and $d \ge 8$. By (4.1),

$$k \le \frac{2 \cdot 4 \cdot 6 \cdot 8}{1 \cdot 3 \cdot 5 \cdot 7} = \frac{384}{105} < 4.$$

Since k is odd and $k \ge 2$, this implies k = 3.

If $a \ge 4$, then $b \ge 6$, $c \ge 8$, $d \ge 10$, and

$$\frac{abcd}{(a-1)(b-1)(c-1)(d-1)} = \frac{4 \cdot 6 \cdot 8 \cdot 10}{3 \cdot 5 \cdot 7 \cdot 9} = \frac{1920}{945} < 3$$

This contradicts (4.1), so a = 2.

Now suppose that $b \ge 6$. Since k = 3 has to be coprime to b, we get $b \ge 8$. Thus $c \ge 10$, $d \ge 12$, and

$$\frac{abcd}{(a-1)(b-1)(c-1)(d-1)} \le \frac{2 \cdot 8 \cdot 10 \cdot 12}{1 \cdot 7 \cdot 9 \cdot 11} = \frac{1920}{693} < 3.$$

This contradicts (4.1), so b = 4.

The equality k(a-1)(b-1)(c-1)(d-1) = abcd - 1 now becomes

$$9(c-1)(d-1) = 8cd - 1 \iff cd - 9(c+d) + 10 = 0 \iff (c-9)(d-9) = 71.$$

Since c-9 < d-9 and 71 is prime, this yields either (c-9, d-9) = (-71, -1) or (c-9, d-9) = (1, 71). The former does not work since then c = -62 < 0. The latter yields c = 10, d = 80, and so (a, b, c, d) = (2, 4, 10, 80).

• Case 2: abcd - 1 is even.

Then a, b, c, d are odd, so $a \ge 3, b \ge 5, c \ge 7, d \ge 9$, and

$$k \le \frac{3 \cdot 5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6 \cdot 8} = \frac{945}{384} < 3.$$

Since $k \ge 2$, this implies k = 2.

If $a \ge 5$, then $b \ge 7$, $c \ge 9$, $d \ge 11$, and

$$\frac{abcd}{(a-1)(b-1)(c-1)(d-1)} \le \frac{5 \cdot 7 \cdot 9 \cdot 11}{4 \cdot 6 \cdot 8 \cdot 10} = \frac{3465}{1920} < 2.$$

This contradicts (4.1), so a = 3.

If $b \ge 7$, then $b \ge 9$ since b - 1 = 6 is not coprime with a = 3. Then $c \ge 11$ and $d \ge 13$, but 13 - 1 is not coprime with 3, so $d \ge 15$ and

$$\frac{abcd}{(a-1)(b-1)(c-1)(d-1)} \le \frac{3 \cdot 9 \cdot 11 \cdot 15}{2 \cdot 8 \cdot 10 \cdot 14} = \frac{4455}{2240} < 2$$

This contradicts (4.1), so b = 5. Now the equality k(a-1)(b-1)(c-1)(d-1) = abcd - 1 becomes

$$16(c-1)(d-1) = 15cd - 1 \iff cd - 16(c+d) + 17 = 0 \iff (c-16)(d-16) = 239.$$

Note that 239 is also prime. Since c-16 < d-16, this yields either (c-16, d-16) = (-239, -1) or (c-16, d-16) = (1, 239). The former does not work since c = -223 < 0. The latter yields c = 17, d = 255, and so (a, b, c, d) = (3, 5, 17, 255).

5: Answer. $f(x) = x + \frac{a^2}{2a+1}$.

Plugging x = 0 yields $(2a + 1)f(0) = a^2$, while plugging x = 1 yields $(2a + 1)f(1) = (a + 1)^2$. For convenience, let $C = \frac{a^2}{2a+1}$; then f(0) = C and $f(1) = \frac{(a+1)^2}{2a+1} = C+1$. At this point, it is natural to guess that $f(x) = x + \frac{a^2}{2a+1}$ works.

Consider the function g(x) = f(x) - x - C. Substituting f(x) = g(x) + x + C yields

$$\begin{split} f(x^2) + 2af(x) &= g(x^2) + x^2 + C + 2a(g(x) + x + C) \\ &= g(x^2) + 2ag(x) + x^2 + 2ax + (2a+1)C \\ &= g(x^2) + 2ag(x) + (x+a)^2. \end{split}$$

Thus, $f(x^2) + 2af(x) = (x + a)^2$ for all $x \in [0, 1]$ if and only if g satisfies the functional equation

$$g(x^2) + 2ag(x) = 0 \quad \forall x \in [0, 1]$$

Clearly, $g \equiv 0$ works, so f(x) = x + C satisfies the original functional equation. It remains to show that the only g satisfying the above functional equation is $g \equiv 0$.

Rewrite the above functional equation as $g(x^2) = -2ag(x)$. Plugging x = 0 and x = 1 yields g(0) = g(1) = 0. If a = 0, then $g(x^2) = 0$ for all $x \in [0, 1]$ and we are done, so now assume that $a \neq 0$.

By induction on k, we get $g(x^{2^k}) = (-2a)^k g(x)$ for any $x \in [0,1]$ and non-negative integer k. For each $x \in (0,1)$, the sequence $(x^{2^k})_{k\geq 0}$ converges to 0. By continuity,

$$\lim_{k \to \infty} (-2a)^k g(x) = \lim_{k \to \infty} g\left(x^{2^k}\right) = g(0) = 0.$$

This forces g(x) = 0 for each $x \in (0, 1)$ if either |-2a| > 1 or -2a = -1 holds. It remains to consider the case 0 < |-2a| < 1.

The formula $g(x^{2^k}) = (-2a)^k g(x)$ yields $g(x^{1/2^k}) = (-2a)^{-k} g(x)$ for all $k \ge 0$ and $x \in [0, 1]$. For each $x \in (0, 1)$, the sequence $(x^{1/2^k})_{k\ge 0}$ converges to 1. By continuity,

$$\lim_{k \to \infty} (-2a)^{-k} g(x) = \lim_{k \to infty} g\left(x^{1/2^k}\right) = g(1) = 0.$$

Since |-2a| < 1, this gives g(x) = 0 for all $x \in (0, 1)$. Together with g(0) = g(1) = 0, we get $g \equiv 0$.

6: The greedy algorithm suggests constructing t_1, t_2, \ldots such that t_{n+1} is the smallest integer larger than everything in S and all of t_1, \ldots, t_n and that adding $\arctan(1/t_{n+1})$ does not exceed $\pi/2$. Suppose for a contradiction that the sequence (t_n) continues forever. Let

$$b_n = \tan\left(\frac{\pi}{2} - \sum_{a \in S} \arctan\frac{1}{a} - \sum_{i=1}^n \arctan\frac{1}{t_i}\right).$$

Then (b_n) is a sequence of positive rational numbers approaching 0 with

$$\frac{1}{b_{n+1}} = \frac{\frac{1}{b_n} + \frac{1}{t_{n+1}}}{1 - \frac{1}{b_n t_{n+1}}}, \quad \text{that is} \quad b_{n+1} = \frac{b_n t_{n+1} - 1}{b_n + t_{n+1}}.$$

Our greedy algorithm requires $t_{n+1} \ge \lfloor \frac{1}{b_n} \rfloor$. What if we define $t_{n+1} = \lfloor \frac{1}{b_n} \rfloor$ for all *n*? Suppose we write $b_n = p_n/q_n$ in reduced form. Then

$$\frac{p_{n+1}}{q_{n+1}} = \frac{p_n t_{n+1} - q_n}{p_n + t_{n+1} q_n}.$$

Note that $t_{n+1} < 1 + q_n/p_n$ and so $p_n t_{n+1} - q_n < p_n$. So we get $p_{n+1} < p_n$, which can't continue forever.

The problem with defining $t_{n+1} = \lceil \frac{1}{b_n} \rceil$ is that this might be smaller than or equal to t_n . Note if $1/b_n > t_n$ for some n, then we have $t_{n+1} = \lceil \frac{1}{b_n} \rceil < 1 + \frac{1}{b_n}$ and

$$\frac{1}{b_{n+1}} = \frac{b_n + t_{n+1}}{b_n t_{n+1} - 1} > \frac{b_n + t_{n+1}}{b_n} > t_{n+1} t_n > t_{n+1}.$$

So we have $t_{n+k} = \lceil \frac{1}{b_{n+k}} \rceil$ for all $k \ge 1$ and we may use the above to arrive at contradiction. It remains to consider the case $1/b_n \le t_n$ for all n. In this case, we have $t_{n+1} = t_n + 1 = t_1 + n$ for all n. However,

$$\sum_{i=1}^{\infty} \arctan \frac{1}{t_i} \gg \sum_{i=1}^{\infty} \frac{1}{t_1 + (i-1)} = \infty.$$