Week 1: Mock Putnam 1

: Let n be a positive integer and let p be a prime such that p? | n!. Prove that pP*! | nl.

: Prove that every integer is a sum of 5 cubes. (It is an open problem whether every integer is a sum
of 4 cubes.)

: Let p be a prime. Prove that there does not exist positive integers a;, as, ..., a,, not all equal, such
that for any positive integer n, the number (a; +n)(az +n)-- - (a, +n) is a perfect power. Here, a
perfect power is a positive integer of the form a’ for some a,b € Z with a,b > 2.

: Find all integers a, b, ¢,d such that 1 < a < b < ¢ < d and

(a—1)(b—1)(c—=1)(d—1) | abed — 1.

: Let a # —1/2 be a real number. Find all continuous functions f : [0,1] — R such that for any
x € [0,1],
f(@®) +2af(z) = (x + a)*

: Let S be a finite set of positive integers such that

1 s
Zarctan— < —.
a 2

a€esS

Prove that there exists a finite set T" of positive integers containing S such that

Zarctanl -
a 2



Week 1: Sketch of proofs

: Looking at p-adic valuation works.

If n < p?, then at most p — 1 positive integers up to n are divisible by p, and they are all not
divisible by p?. This would imply v,(n!) < p — 1; a contradiction.

If n > p? then pP*! divides p- (2p) - ... - (p?), which divides n!.

Note: Legendre’s formula allows for another solution. This will be left as an exercise for the
reader.

: The major formula is (z + 1) + (x — 1)® + (—2)3 + (—x)® = 6.
Indeed, (z+1)% = 2°+322+3z+1 and (z—1) = 23—32?+3x—1, s0 (x+1)3+(z—1)® = 223+6x.
This proves the formula.

Due to the formula, 6z, 62 + 1, 6x + 8, 6x + 27, 62 — 8, and 6x — 1 are all sums of 5 cubes. On
the other hand, 0,1,8,27, —8, —1 forms a complete residue classes mod 6. That is, every integer
is congruent to one of these six number mod 6. Thus, every number is either of form 6z, 6x + 1,
6x + 8, 6x + 27, 6 — 8, or 6o — 1 for some integer x. This proves that every number is a sum of 6
cubes.

Note: By working mod 9, it is easy to prove that 4 is not a sum of 3 cubes.)

: Let by, b, . .., by be the distinct integers among a4, as, . . ., a,, and for each ¢, let m; be the multiplicity
of b; in the a;s. Then we have

(a1 +n)(ag+n)---(ap+n)=(by +n)"™ (by +n)"* - (b +n)™*.

Choose arbitrary distinct primes pq,ps,...,pr, all greater than the b;s. By Chinese Remainder
Theorem, there exists a positive integer n such that

n=p;,—b (modp?) = v, (bi+n)=1

Furthermore, for each i # j, we see that p; > |b; —b;| > 0, and so n+b; = (n+b;) + (b; — b;) is not
divisible by p;. As a result, for each 1,

e (b1 )™ (b )™ - (b + m)™) = .

If (by +mn)™ (by +n)™---(bg +n)™* is a prime power, then there exists m > 1 such that m | m;
for each ¢. But then m divides m; +my + ... + my = p. This implies m = p, and thus £ = 1; a
contradiction.

: Answer. (2,4,10,80) and (3,5,17,255).

We need to combine bound argument with divisibility argument.

Write k(a—1)(b—1)(c—1)(d—1) = abed—1 for some (positive) integer k. Note that abe(d—1) <
abed — 1 < abed; the first inequality holds since abc > 1. Thus, we get the bound

abc abed
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By the given equality, k(a — 1)(b — 1)(c — 1)(d — 1) and abed are coprime. Thus, each of the five
integers k,a — 1,b — 1,¢ — 1,d — 1 are coprime with the four integers a, b, c,d. We now have two
cases based on the parity of abed — 1.

e Case 1: abed — 1 is odd.

Then k(a —1)(b —1)(c — 1)(d — 1) is odd. In particular, k is odd and a, b, ¢,d are even. The
latter yields a > 2, b >4, ¢ > 6, and d > 8. By (4.1),

2-4-6-8 384
k< =
—1-3-5-7 105
Since k is odd and k& > 2, this implies k = 3.

If a>4,thenb>6,c>8,d>10, and

< 4.

abed B

4-6-8-10 1920
@a—Db-Dc—Dd—-1) 3. ~ 945 ©

8
-7-9 945 >

This contradicts (4.1), so a = 2.

Now suppose that b > 6. Since £ = 3 has to be coprime to b, we get b > 8. Thus ¢ > 10,

d> 12, and

abed <2-8'10-12_1920

= <
(a—1)(b—1)(c—1)(d—-1) — 1-7-9-11 693
This contradicts (4.1), so b = 4.
The equality k(a — 1)(b—1)(¢ — 1)(d — 1) = abed — 1 now becomes

IYe—1)(d—1)=8cd—1 <= cd—9(c+d)+10=0 <= (c—9)(d—9) =T1.

Since c—9 < d—9 and 71 is prime, this yields either (c—9,d—9) = (=71, —1) or (¢—9,d—9) =
(1,71). The former does not work since then ¢ = —62 < 0. The latter yields ¢ = 10, d = 80,
and so (a, b, c,d) = (2,4, 10, 80).

e Case 2: abed — 1 is even.
Then a,b,c,d are odd, soa >3,b>5,¢>7,d>9, and

3-5-7-9 945
k< =

S 168 38 %

Since k > 2, this implies k = 2.
Ifa>5thenb>7¢>9,d>11, and

abed 5.7-9-11 3465 _
(a—1)(b—1)(c—1)(d—1) ~4-6-8-10 1920

This contradicts (4.1), so a = 3.
If b> 7, then b > 9 since b — 1 = 6 is not coprime with a = 3. Then ¢ > 11 and d > 13, but
13 — 1 is not coprime with 3, so d > 15 and

abed 2 3:9-11-15 4455 _
(a—1Db—-1D(c—1)(d—1) ~ 2-8-10-14 2240




This contradicts (4.1), so b = 5.
Now the equality k(a — 1)(b—1)(c — 1)(d — 1) = abcd — 1 becomes

16(c—1)(d—1) =15cd —1 <= cd —16(c+d)+17=0 <= (c—16)(d — 16) = 239.

Note that 239 is also prime. Since c—16 < d—16, this yields either (¢—16,d—16) = (—239, —1)
or (c—16,d—16) = (1,239). The former does not work since ¢ = —223 < 0. The latter yields
c¢=17,d =255, and so (a,b,c,d) = (3,5,17,255).

(12

20+ 1
Plugging x = 0 yields (2a + 1) f(0) = a?, while plugging x = 1 yields (2a + 1) f(1) = (a + 1)%.
2

1 2
For convenience, let C = 2aa,+ 1; the; f(0) =C and f(1) = (;a_:_ i

5: Answer. f(z) =z +

= C' 4+ 1. At this point, it is

works.

tural t that =
natural to guess that f(x) :1:+2a+1

Consider the function g(z) = f(z) — z — C. Substituting f(x) = g(z) + z + C yields

f(a?) +2af(x)

(%) 4+ 22 + C + 2a(g(z) + 2+ C)
(z°) + 2ag(x) + 2% + 2ax + (2a + 1)C
(%) + 2ag(z) + (z + a)*.

g

Y

g

Thus, f(z?) + 2af(z) = (x + a)? for all z € [0, 1] if and only if ¢ satisfies the functional equation
g(2?) +2ag(z) =0 Vz €[0,1].

Clearly, g = 0 works, so f(x) = x4 C satisfies the original functional equation. It remains to show

that the only ¢ satisfying the above functional equation is g = 0.

Rewrite the above functional equation as g(z?) = —2ag(z). Plugging x = 0 and z = 1 yields
g(0) = g(1) = 0. If @ = 0, then g(z*) = 0 for all x € [0,1] and we are done, so now assume that

a # 0.
By induction on k, we get g(2%") = (—2a)*g(x) for any x € [0,1] and non-negative integer k.
For each z € (0,1), the sequence (22 )0 converges to 0. By continuity,

lim (—2a)*g(z) = lim g¢ <x2k> =¢(0) =0.

k—o0 k—o0

This forces g(z) = 0 for each x € (0,1) if either | — 2a] > 1 or —2a = —1 holds. It remains to
consider the case 0 < | — 2a| < 1.

The formula g(22") = (—2a)*g(z) yields g(z'/2") = (—=2a) *¢(x) for all k > 0 and « € [0,1]. For
each z € (0,1), the sequence (x'/2");>¢ converges to 1. By continuity,

lim (—2a) *g(z) = lim g <x1/2k> =g(1) =0.

k—00 k—infty

Since | — 2a| < 1, this gives g(z) = 0 for all = € (0, 1). Together with ¢g(0) = g(1) = 0, we get g = 0.



6: The greedy algorithm suggests constructing tq, o, ... such that ¢,,; is the smallest integer larger
than everything in S and all of ¢,...,¢, and that adding arctan(1/¢,,1) does not exceed /2.
Suppose for a contradiction that the sequence (¢,) continues forever. Let

™ 1 & 1
b, = tan (5 — Z arctan P ; arctan tj) )

a€S

Then (b,) is a sequence of positive rational numbers approaching 0 with

1 1
1 b bptnir — 1
=l fhatis by =
bn+1 1— m bn + tn+1

Our greedy algorithm requires ¢, > [%1 What if we define t,,,, = [i] for all n? Suppose we

write b, = p,/¢, in reduced form. Then

Pn+1 _ pnthrl —Qn
Gn+1 DPn + ths1Gn

Note that t,11 < 1+ ¢,/pn and 80 pptui1 — ¢ < Pp. S0 We get ppyq < pp, which can’t continue
forever.

The problem with defining ¢, = f%} is that this might be smaller than or equal to t,.

Note if 1/b,, > t,, for some n, then we have ¢,,; = [%} <1+ i and

1 bn + tn+1 bn + tn+1
= >
bn+1 bntn—H —1 bn

> tpy1tn > thga.

So we have ¢, = [ﬁ} for all £ > 1 and we may use the above to arrive at contradiction. It

remains to consider the case 1/b, < t,, for all n. In this case, we have t,,,1 =t, + 1 =t; +n for all

n. However,
i arctan ! > i ! = 00
p ti T =t (-1



