
Week 1: Mock Putnam 1

1: Let n be a positive integer and let p be a prime such that pp | n!. Prove that pp+1 | n!.

2: Prove that every integer is a sum of 5 cubes. (It is an open problem whether every integer is a sum
of 4 cubes.)

3: Let p be a prime. Prove that there does not exist positive integers a1, a2, . . . , ap, not all equal, such
that for any positive integer n, the number (a1 + n)(a2 + n) · · · (ap + n) is a perfect power. Here, a
perfect power is a positive integer of the form ab for some a, b ∈ Z with a, b ≥ 2.

4: Find all integers a, b, c, d such that 1 < a < b < c < d and

(a− 1)(b− 1)(c− 1)(d− 1) | abcd− 1.

5: Let a ̸= −1/2 be a real number. Find all continuous functions f : [0, 1] → R such that for any
x ∈ [0, 1],

f(x2) + 2af(x) = (x+ a)2.

6: Let S be a finite set of positive integers such that∑
a∈S

arctan
1

a
<

π

2
.

Prove that there exists a finite set T of positive integers containing S such that∑
a∈T

arctan
1

a
=

π

2
.



Week 1: Sketch of proofs

1: Looking at p-adic valuation works.

If n < p2, then at most p − 1 positive integers up to n are divisible by p, and they are all not
divisible by p2. This would imply νp(n!) ≤ p− 1; a contradiction.

If n ≥ p2, then pp+1 divides p · (2p) · . . . · (p2), which divides n!.

Note: Legendre’s formula allows for another solution. This will be left as an exercise for the
reader.

2: The major formula is (x+ 1)3 + (x− 1)3 + (−x)3 + (−x)3 = 6x.

Indeed, (x+1)3 = x3+3x2+3x+1 and (x−1)3 = x3−3x2+3x−1, so (x+1)3+(x−1)3 = 2x3+6x.
This proves the formula.

Due to the formula, 6x, 6x+ 1, 6x+ 8, 6x+ 27, 6x− 8, and 6x− 1 are all sums of 5 cubes. On
the other hand, 0, 1, 8, 27,−8,−1 forms a complete residue classes mod 6. That is, every integer
is congruent to one of these six number mod 6. Thus, every number is either of form 6x, 6x + 1,
6x+ 8, 6x+ 27, 6x− 8, or 6x− 1 for some integer x. This proves that every number is a sum of 6
cubes.

Note: By working mod 9, it is easy to prove that 4 is not a sum of 3 cubes.)

3: Let b1, b2, . . . , bk be the distinct integers among a1, a2, . . . , ap, and for each i, letmi be the multiplicity
of bi in the ajs. Then we have

(a1 + n)(a2 + n) · · · (ap + n) = (b1 + n)m1(b2 + n)m2 · · · (bk + n)mk .

Choose arbitrary distinct primes p1, p2, . . . , pk, all greater than the bis. By Chinese Remainder
Theorem, there exists a positive integer n such that

n ≡ pi − bi (mod p2i ) =⇒ νpi(bi + n) = 1.

Furthermore, for each i ̸= j, we see that pi > |bi − bj| > 0, and so n+ bj = (n+ bi) + (bj − bi) is not
divisible by pi. As a result, for each i,

νpi ((b1 + n)m1(b2 + n)m2 · · · (bk + n)mk) = mi.

If (b1 + n)m1(b2 + n)m2 · · · (bk + n)mk is a prime power, then there exists m > 1 such that m | mi

for each i. But then m divides m1 + m2 + . . . + mk = p. This implies m = p, and thus k = 1; a
contradiction.

4: Answer. (2, 4, 10, 80) and (3, 5, 17, 255).

We need to combine bound argument with divisibility argument.

Write k(a−1)(b−1)(c−1)(d−1) = abcd−1 for some (positive) integer k. Note that abc(d−1) <
abcd− 1 < abcd; the first inequality holds since abc > 1. Thus, we get the bound

abc

(a− 1)(b− 1)(c− 1)
< k <

abcd

(a− 1)(b− 1)(c− 1)(d− 1)
. (4.1)



By the given equality, k(a − 1)(b − 1)(c − 1)(d − 1) and abcd are coprime. Thus, each of the five
integers k, a − 1, b − 1, c − 1, d − 1 are coprime with the four integers a, b, c, d. We now have two
cases based on the parity of abcd− 1.

• Case 1: abcd− 1 is odd.

Then k(a− 1)(b− 1)(c− 1)(d− 1) is odd. In particular, k is odd and a, b, c, d are even. The
latter yields a ≥ 2, b ≥ 4, c ≥ 6, and d ≥ 8. By (4.1),

k ≤ 2 · 4 · 6 · 8
1 · 3 · 5 · 7

=
384

105
< 4.

Since k is odd and k ≥ 2, this implies k = 3.

If a ≥ 4, then b ≥ 6, c ≥ 8, d ≥ 10, and

abcd

(a− 1)(b− 1)(c− 1)(d− 1)
=

4 · 6 · 8 · 10
3 · 5 · 7 · 9

=
1920

945
< 3.

This contradicts (4.1), so a = 2.

Now suppose that b ≥ 6. Since k = 3 has to be coprime to b, we get b ≥ 8. Thus c ≥ 10,
d ≥ 12, and

abcd

(a− 1)(b− 1)(c− 1)(d− 1)
≤ 2 · 8 · 10 · 12

1 · 7 · 9 · 11
=

1920

693
< 3.

This contradicts (4.1), so b = 4.

The equality k(a− 1)(b− 1)(c− 1)(d− 1) = abcd− 1 now becomes

9(c− 1)(d− 1) = 8cd− 1 ⇐⇒ cd− 9(c+ d) + 10 = 0 ⇐⇒ (c− 9)(d− 9) = 71.

Since c−9 < d−9 and 71 is prime, this yields either (c−9, d−9) = (−71,−1) or (c−9, d−9) =
(1, 71). The former does not work since then c = −62 < 0. The latter yields c = 10, d = 80,
and so (a, b, c, d) = (2, 4, 10, 80).

• Case 2: abcd− 1 is even.

Then a, b, c, d are odd, so a ≥ 3, b ≥ 5, c ≥ 7, d ≥ 9, and

k ≤ 3 · 5 · 7 · 9
2 · 4 · 6 · 8

=
945

384
< 3.

Since k ≥ 2, this implies k = 2.

If a ≥ 5, then b ≥ 7, c ≥ 9, d ≥ 11, and

abcd

(a− 1)(b− 1)(c− 1)(d− 1)
≤ 5 · 7 · 9 · 11

4 · 6 · 8 · 10
=

3465

1920
< 2.

This contradicts (4.1), so a = 3.

If b ≥ 7, then b ≥ 9 since b− 1 = 6 is not coprime with a = 3. Then c ≥ 11 and d ≥ 13, but
13− 1 is not coprime with 3, so d ≥ 15 and

abcd

(a− 1)(b− 1)(c− 1)(d− 1)
≤ 3 · 9 · 11 · 15

2 · 8 · 10 · 14
=

4455

2240
< 2.



This contradicts (4.1), so b = 5.

Now the equality k(a− 1)(b− 1)(c− 1)(d− 1) = abcd− 1 becomes

16(c− 1)(d− 1) = 15cd− 1 ⇐⇒ cd− 16(c+ d) + 17 = 0 ⇐⇒ (c− 16)(d− 16) = 239.

Note that 239 is also prime. Since c−16 < d−16, this yields either (c−16, d−16) = (−239,−1)
or (c−16, d−16) = (1, 239). The former does not work since c = −223 < 0. The latter yields
c = 17, d = 255, and so (a, b, c, d) = (3, 5, 17, 255).

5: Answer. f(x) = x+
a2

2a+ 1
.

Plugging x = 0 yields (2a + 1)f(0) = a2, while plugging x = 1 yields (2a + 1)f(1) = (a + 1)2.

For convenience, let C =
a2

2a+ 1
; then f(0) = C and f(1) =

(a+ 1)2

2a+ 1
= C + 1. At this point, it is

natural to guess that f(x) = x+
a2

2a+ 1
works.

Consider the function g(x) = f(x)− x− C. Substituting f(x) = g(x) + x+ C yields

f(x2) + 2af(x) = g(x2) + x2 + C + 2a(g(x) + x+ C)

= g(x2) + 2ag(x) + x2 + 2ax+ (2a+ 1)C

= g(x2) + 2ag(x) + (x+ a)2.

Thus, f(x2) + 2af(x) = (x+ a)2 for all x ∈ [0, 1] if and only if g satisfies the functional equation

g(x2) + 2ag(x) = 0 ∀x ∈ [0, 1].

Clearly, g ≡ 0 works, so f(x) = x+C satisfies the original functional equation. It remains to show
that the only g satisfying the above functional equation is g ≡ 0.

Rewrite the above functional equation as g(x2) = −2ag(x). Plugging x = 0 and x = 1 yields
g(0) = g(1) = 0. If a = 0, then g(x2) = 0 for all x ∈ [0, 1] and we are done, so now assume that
a ̸= 0.

By induction on k, we get g(x2k) = (−2a)kg(x) for any x ∈ [0, 1] and non-negative integer k.
For each x ∈ (0, 1), the sequence (x2k)k≥0 converges to 0. By continuity,

lim
k→∞

(−2a)kg(x) = lim
k→∞

g
(
x2k
)
= g(0) = 0.

This forces g(x) = 0 for each x ∈ (0, 1) if either | − 2a| > 1 or −2a = −1 holds. It remains to
consider the case 0 < | − 2a| < 1.

The formula g(x2k) = (−2a)kg(x) yields g(x1/2k) = (−2a)−kg(x) for all k ≥ 0 and x ∈ [0, 1]. For
each x ∈ (0, 1), the sequence (x1/2k)k≥0 converges to 1. By continuity,

lim
k→∞

(−2a)−kg(x) = lim
k→infty

g
(
x1/2k

)
= g(1) = 0.

Since |−2a| < 1, this gives g(x) = 0 for all x ∈ (0, 1). Together with g(0) = g(1) = 0, we get g ≡ 0.



6: The greedy algorithm suggests constructing t1, t2, . . . such that tn+1 is the smallest integer larger
than everything in S and all of t1, . . . , tn and that adding arctan(1/tn+1) does not exceed π/2.
Suppose for a contradiction that the sequence (tn) continues forever. Let

bn = tan

(
π

2
−
∑
a∈S

arctan
1

a
−

n∑
i=1

arctan
1

ti

)
.

Then (bn) is a sequence of positive rational numbers approaching 0 with

1

bn+1

=

1
bn

+ 1
tn+1

1− 1
bntn+1

, that is bn+1 =
bntn+1 − 1

bn + tn+1

.

Our greedy algorithm requires tn+1 ≥ ⌈ 1
bn
⌉. What if we define tn+1 = ⌈ 1

bn
⌉ for all n? Suppose we

write bn = pn/qn in reduced form. Then

pn+1

qn+1

=
pntn+1 − qn
pn + tn+1qn

.

Note that tn+1 < 1 + qn/pn and so pntn+1 − qn < pn. So we get pn+1 < pn, which can’t continue
forever.

The problem with defining tn+1 = ⌈ 1
bn
⌉ is that this might be smaller than or equal to tn.

Note if 1/bn > tn for some n, then we have tn+1 = ⌈ 1
bn
⌉ < 1 + 1

bn
and

1

bn+1

=
bn + tn+1

bntn+1 − 1
>

bn + tn+1

bn
> tn+1tn > tn+1.

So we have tn+k = ⌈ 1
bn+k

⌉ for all k ≥ 1 and we may use the above to arrive at contradiction. It

remains to consider the case 1/bn ≤ tn for all n. In this case, we have tn+1 = tn + 1 = t1 + n for all
n. However,

∞∑
i=1

arctan
1

ti
≫

∞∑
i=1

1

t1 + (i− 1)
= ∞.


