
Week 2: Mock Putnam 2

1: Let k be a positive integer and let S = {n ∈ Z : k2 < n < (k+1)2}. Prove that there does not exist
distinct integers a, b ∈ S such that ab is a perfect square.

2: Evaluate

lim
n→∞

1

n

∫ n

0

x ln(1 + x/n)

1 + x
dx.

3: For any positive integer n, let d(n) denote the number of its positive divisors and let ϕ(n) denote
the Euler-totient function of n (the number of integers 1, 2, . . . , n coprime with n). Prove that

sup
n

d(ϕ(n))

d(n)
= ∞, inf

n

d(ϕ(n))

d(n)
= 0.

4: Let f(x) be a polynomial with integer coefficients and let (an) be a strictly increasing sequence of
positive integers such that an ≤ f(n) for all n. Prove that the set of primes dividing some an is
infinite.

5: Prove that there exists a positive integer N such that for any integer n > N , there exists a finite

set S of primes such that n =
∑
p∈S

⌊n/p⌋.

6: Find all functions f : R → R such that f(x+ yf(x)) + f(xy) = f(x) + f(69y) for all x, y ∈ R.



Week 2: Sketch of proofs

1: Let a, b ∈ S such that ab is a perfect square and a ̸= b. Let d = gcd(a, b); then we can write a = dx
and b = dy for some positive integers x and y with gcd(x, y) = 1. However, ab = d2xy is a square,
so xy is a square. Since gcd(x, y) = 1, both x and y must be squares. Let z and w be positive
integers such that x = z2 and y = w2. Since a ̸= b, we have z ̸= w. The goal a = b reduces to
showing that z = w.

Notice that for any n ∈ S, we have k <
√
n < k+1 =⇒ ⌊

√
n⌋ = k. Since a = dx = dz2 ∈ S and

b = dy = dw2 ∈ S, we get ⌊z
√
d⌋ = ⌊w

√
d⌋ = k. The equality between floors yield |z

√
d−w

√
d| < 1.

On the other hand,
|z
√
d− w

√
d| = |(z − w)

√
d| = |z − w|

√
d.

We have
√
d ≥ 1, and since z ̸= w, we also have |z −w| ≥ 1. Thus |z −w|

√
d ≥ 1; a contradiction.

2: Answer. 2 ln 2− 1.

By the substitution x = nt, we get

lim
n→∞

1

n

∫ 1

0

nt ln(1 + t)

1 + nt
ndt = lim

n→∞

∫ 1

0

ln(1 + t)

1 + 1
nt

dt.

Since 1 + 1
nt

→ 1 as n → ∞, one would expect

lim
n→∞

∫ 1

0

ln(1 + t)

1 + 1
nt

dt. =

∫ 1

0

ln(1 + t) dt =

∫ 2

1

ln t dt = [t ln t− t]21 = 2 ln 2− 1.

To prove the above equality, take the difference:

∆ =

∫ 1

0

ln(1 + t) dt− lim
n→∞

∫ 1

0

ln(1 + t)

1 + 1
nt

dt = lim
n→∞

∫ 1

0

ln(1 + t)

1 + nt
dt.

For each n,

0 ≤
∫ 1

0

ln(1 + t)

1 + nt
dt ≤

∫ 1

0

t

1 + nt
dt <

∫ 1

0

1

n
dt =

1

n
.

By squeeze theorem, ∆ = 0 and we are done.

3: For the supremum, take n to be prime with n ≡ 1 (mod 2k), and let k → ∞. Note that by
Dirichlet’s theorem, such n exists for each k. Then

d(ϕ(n))

d(n)
=

d(n− 1)

2
≥ k + 1

2
,

and thus sup
n

d(ϕ(n))

d(n)
= ∞.

For the infimum, denote by N# =
∏

p≤N p the primorial of N ; here p ranges over all primes

less than or equal to N . We take n = (N#)M(2N)#, where M and N are arbitrary large positive
integers. Then

d(n) = 2π(2N)−π(N)(M + 2)π(N).



Since N# divides (2N)#, we get

ϕ(n) = (N#)Mϕ((2N)#) = (N#)M
∏
p≤2N

(p− 1) = (N#)M2π(2N)
∏

2<p≤2N

p− 1

2
.

The terms in the product of the right hand side are pairwise distinct and less than N . Thus, ϕ(n)
divides (N#)M2π(2N)N !, so

d(ϕ(n)) ≤ d
(
(N#)M2π(2N)N !

)
.

For each prime p dividing (N#)M2π(2N)N !, it is easy to see that p ≤ N . Then νp(N#) = 1 and
by Legendre’s formula,

νp(N !) =
N − sp(N)

p− 1
< N.

Thus we get the bound

νp((N#)M2π(2N)N !) ≤

{
M + π(2N) +N, p = 2,

M +N, p ̸= 2.

Since π(2N) ≤ N for N large enough, we get

d(ϕ(n)) ≤ (M + π(2N) +N)(M +N)π(N)−1 ≤ 2(M +N)π(N).

As a result,

d(ϕ(n))

d(n)
≤ 1

2π(2N)−π(N)−1

(
M +N

M + 2

)π(N)

.

For fixed N , letting M → ∞ yields

inf
n

d(ϕ(n))

d(n)
≤ 1

2π(2N)−π(N)−1
∀N ∈ N.

By Prime Number Theorem,

π(2N)− π(N) ∼ N

lnN
=⇒ lim

N→∞
(π(2N)− π(N)) = ∞.

Thus inf
n

d(ϕ(n))

d(n)
= 0.

4: Let k = deg(f). Note that k > 0, since (an)n≥1 is strictly increasing. There exists a positive integer
N such that all coefficients of (X +N)k − f(X) are non-negative, and thus f(n) ≤ (n+N)k for all
positive integers n.

Suppose for the sake of contradiction that the set S of primes dividing some an is finite. Let T
be the set of positive integers whose all its prime divisors belong in S. Then {an : n ≥ 1} ⊆ T .
Since an ≤ f(n) ≤ (n+N)k, we get the inequality

∞∑
n=1

1

n+N
≤

∞∑
n=1

1

a
1/k
n

≤
∑
x∈T

1

x1/k
=

∏
p∈S

∞∑
i=1

1

pi/k
=

∏
p∈S

1

1− p−1/k
.

The leftmost side is infinite, while the rightmost side is finite since S is finite. Contradiction.



5: We prove an alternate statement first: for any 0 < m ≤ n, there exists a finite set Sm of primes less
than or equal to n with the following properties:

• |Sm| ≤ log2m;

• for each k > 0, there exists at most one prime p ∈ Sm such that ⌊n/p⌋ = k;

• for each m ≤ n, the integer ∆m := m−
∑

p∈Sm
⌊n/p⌋ satisfies 0 ≤ ∆m ≤ log2m+ 1.

Proceed by induction on m. For the base case m = 1, just take S1 = ∅.
Now we proceed for the induction step. Suppose that m > 1 and the above statement holds for

all lesser m. By Bertrand’s postulate, there exists a prime p0 such that

n

m+ 1
< p0 ≤

2n

m+ 1
⇐⇒ (m+ 1)/2 ≤ n/p0 < m+ 1 =⇒ ⌊(m+ 1)/2⌋ ≤ ⌊n/p0⌋ ≤ m.

Let m0 = m−⌊n/p0⌋. The above bound gives ⌊n/p0⌋ ≥ m/2. If m0 = 0, then Sm = {p0} works.
If 0 < m0 < m/2, then m0 < ⌊n/p0⌋, so we claim that Sm = {p0} ∪ Sm0 works. Indeed, we have
∆m = ∆m0 , ⌊n/p0⌋ > m0 ≥ ⌊n/p⌋ for all p ∈ Sm0 , and

|Sm| = 1 + |Sm0| ≤ 1 + log2m0 ≤ 1 + log2(m/2) = log2m.

Otherwise, we take Sm = {p0} ∪ Sm/2−1 instead. By the same argument as before, the first two
properties hold on Sm. For the third property, note that

∆m = m− ⌊n/p0⌋ −
∑

p∈Sm/2−1

⌊n/p⌋ = m/2−
∑

p∈Sm/2−1

⌊n/p⌋ = ∆m/2−1 + 1.

The bound ∆m/2−1 ≤ log2(m/2− 1) + 1 ≤ log2m yields ∆m ≤ log2m+ 1.

Now we go back to the main problem. For N large enough and n ≥ N , the prime number
theorem yields that there exists at least log2 n+2 primes in the interval (n/2, n). Then there exists
at least log2 n+1 ≥ ∆n such primes not in Sn. Let T denote the set of these ∆n primes. Note that
⌊n/p⌋ = 1 for each p ∈ T . By choice of T , it is disjoint with Sn, so S := Sn ∪ T works.

6: Answer. Constant functions, x 7→ 69− x, and x 7→

{
0, x ̸= 0,

α, x = 0,
for any constant α ∈ R.

For convenience, write C = 69. Clearly, constant functions work. On the other hand, if f(x) =
C − x for all x ∈ R, then

f(x+ yf(x)) + f(xy) = 2C − (x+ y(C − x) + xy) = 2C − (x+ Cy) = f(x) + f(Cy).

Thus, x 7→ C − x works as well.

Meanwhile, suppose that f(x) = 0 if x ̸= 0 and f(0) ̸= 0. If x ̸= 0, then since C ̸= 0, no matter
whether y equals 0 or not,

f(x+ yf(x)) + f(xy) = f(x) + f(xy) = f(x) + f(Cy).

If x = 0, then instead

f(x+ yf(x)) + f(xy) = f(yf(0)) + f(0) = f(0) + f(f(0)y) = f(0) + f(Cy).



It remains to show that no other functions work. We may assume that f is non-constant and
f(x0) ̸= C − x0 ⇐⇒ x0 + f(x0) ̸= C for some x ∈ R. Our goal is to show that f(x) = 0 for all
x ∈ R such that x ̸= 0.

Plugging x = C into the original equality gives f(C+yf(C)) = f(C) for all y ∈ R. If f(C) ̸= 0,
then plugging y = z−C

f(C)
into this equality gives f(z) = f(C) for every z ∈ R, and so f is constant;

contradiction. Thus, f(C) = 0.

Plugging y = 1 into the original equation gives f(x+ f(x)) = f(C) = 0 for all x ∈ R. Recall by
our assumption that x0+f(x0) ̸= C for some x0 ∈ R. Thus, there exists α ̸= C such that f(α) = 0.

Plugging x = α into the original equality yields f(αy) = f(Cy) for all y ∈ R. Replacing y with
y/C yields f(βy) = f(y) for all y ∈ R, where β = α/C. Note that β ̸= 1, since C ̸= α.

Replacing x with βx in the original equality and using the above equality gives us

f(βx+ yf(x)) + f(xy) = f(βx) + f(Cy) = f(x) + f(Cy) = f(x+ yf(x)) + f(xy).

Thus f(βx+ yf(x)) = f(x+ yf(x)) for all x, y ∈ R. Finally, we show that f(x) = 0 for all x ̸= 0.

Suppose that there exists x0 ∈ R such that x0 ̸= 0 and f(x0) ̸= 0. Then substituting (x, y) =
(x0, (z−x0)/f(x0)) into the above equation gives f(γ+z) = f(z) for all z ∈ R, where γ = (β−1)x0

is a non-zero real number. In short, f is periodic. But then for any x, y ∈ R, we have

f(x+ γ + yf(x+ γ)) + f((x+ γ)y) = f(x+ γ) + f(Cy) = f(x) + f(Cy) = f(x+ yf(x)) + f(xy).

Using periodicity reduces this equality to f(xy + γy) = f(xy). Plugging (x, y) = (0, z/γ) yields
f(z) = f(0) for all z ∈ R, so f is constant; a contradiction. We are done.

Note. The above solution works if we replace R with an arbitrary field and we replace C = 69
with an arbitrary non-zero element of the field. If C = 0, then the only difference is that the third
family of solutions do not work anymore.


