Week 2: Mock Putnam 2

1: Let k be a positive integer and let S = {n € Z: k* < n < (k+1)*}. Prove that there does not exist
distinct integers a,b € S such that ab is a perfect square.

2: Evaluate L ol
i L[ n(l+z/n)
n—oo N Jg 1 +x

dx.

3: For any positive integer n, let d(n) denote the number of its positive divisors and let ¢(n) denote

the Euler-totient function of n (the number of integers 1,2, ..., n coprime with n). Prove that
d(¢(n)) o d(o(n))
sgp d(n) 00, in a0

4: Let f(x) be a polynomial with integer coefficients and let (a,) be a strictly increasing sequence of
positive integers such that a, < f(n) for all n. Prove that the set of primes dividing some a,, is
infinite.

5: Prove that there exists a positive integer N such that for any integer n > N, there exists a finite
set S of primes such that n = ZLn /p].

peES

6: Find all functions f : R — R such that f(z +yf(x)) + f(zy) = f(x) + f(69y) for all z,y € R.



Week 2: Sketch of proofs

: Let a,b € S such that ab is a perfect square and a # b. Let d = ged(a, b); then we can write a = dx
and b = dy for some positive integers x and y with ged(x,y) = 1. However, ab = d?zy is a square,
so xy is a square. Since ged(x,y) = 1, both z and y must be squares. Let z and w be positive
integers such that x = 2z? and y = w?. Since a # b, we have z # w. The goal a = b reduces to
showing that z = w.

Notice that for any n € S, we have k < v/n < k+1 = |\/n] = k. Since a = dzx = dz* € S and
b=dy = dw® € S, we get |2v/d| = |wvd| = k. The equality between floors yield |zv/d—w+d| < 1.

On the other hand,
|2Vd — wVd| = |(z —w)Vd| = |z — w|Vd.
We have v/d > 1, and since z # w, we also have |z —w| > 1. Thus |z — w|v/d > 1; a contradiction.

: Answer. 2In2 — 1.

By the substitution x = nt, we get

1 1
1 ntln(l +t) ndt = lim / In(1+1) it
0

lim — il

Since 1+ % — 1 as n — oo, one would expect

"In(1+¢ ! 2
lim %dt.:/ In(1+1¢) dt:/ Int dt = [tint —t]; =2In2 — 1.
0 1

n—00 —
0 nt

To prove the above equality, take the difference:

! "In(1 "In(1
A:/ (148 di— tim [ BEED gy [ BOED
0

n—oo Jq ]_—|—% n—oo J 1+ nt

1 1 1
In(1+t¢ t 1 1
og/Mdtg/ dt</—dt:—.
o l4+mnt o 1+4+nt o N n

By squeeze theorem, A = 0 and we are done.

For each n,

: For the supremum, take n to be prime with n = 1 (mod 2¥), and let k — oco. Note that by
Dirichlet’s theorem, such n exists for each k. Then

d(¢(n)) d(n—1) S E+1

d(n) 2 T 27

and thus sup M = 00.
no d(n)
For the infimum, denote by N# = HpS n P the primorial of N; here p ranges over all primes
less than or equal to N. We take n = (N#)M(2N)#, where M and N are arbitrary large positive
integers. Then

d(n) = 2N =MW (pf 4 2)mN),



Since N# divides (2N)#, we get

6(n) = (N#o(2N)#) = (VM TT -1 = vy T 2%

p<2N 2<p<2N

The terms in the product of the right hand side are pairwise distinct and less than N. Thus, ¢(n)
divides (N#)M27CNI N1 5o
A(6(n)) < d (N#)M27EINY)

For each prime p dividing (N#)M272N) N1 it is easy to see that p < N. Then v,(N#) = 1 and

by Legendre’s formula,
N — sp(N)

vp(N!) = P

< N.
Thus we get the bound

M +7m(2N)+ N, p=2,

Mom(2N)
(V12N < {MW o

Since m(2N) < N for N large enough, we get
d(¢(n)) < (M +7(2N) + N)(M + N)™™M~1 < 2(M + N)™™),

As a result,

d(¢(n) _ 1 M+ N\™™
d(n> — 9m(2N)-m(N)-1 M +2 ’

For fixed N, letting M — oo yields
d(d(n) _

H%f Ay = M1 VN € N.
By Prime Number Theorem,
N
T(2N) —7(N) ~ N J\}linm( T(2N) —7(N)) = 0.

aom)
Thus 12f d(n) 0.

: Let k = deg(f). Note that k > 0, since (ay),>1 is strictly increasing. There exists a positive integer
N such that all coefficients of (X + N)* — f(X) are non-negative, and thus f(n) < (n+ N)* for all
positive integers n.

Suppose for the sake of contradiction that the set S of primes dividing some a,, is finite. Let T
be the set of positive integers whose all its prime divisors belong in S. Then {a, : n > 1} C T.
Since a, < f(n) < (n+ N)¥, we get the inequality

o0

= 1
Zn+N_Z 1/k—zx1/k HZ z/k:HW'

n=1 zeT peS i=1

The leftmost side is infinite, while the rightmost side is finite since S is finite. Contradiction.



5: We prove an alternate statement first: for any 0 < m < n, there exists a finite set S,, of primes less
than or equal to n with the following properties:
e |S,,| < log,m;
e for each k > 0, there exists at most one prime p € S,, such that |n/p| = k;

o for each m < n, the integer A, :=m —>_ o [n/p] satisfies 0 < A, <logym + 1.

Proceed by induction on m. For the base case m = 1, just take S; = ().

Now we proceed for the induction step. Suppose that m > 1 and the above statement holds for
all lesser m. By Bertrand’s postulate, there exists a prime py such that

2
mLH<p0§m—Z1 e (m+1)/2<n/pp<m+1 = [(m+1)/2] < [n/po] < m.

Let mg = m—|n/po]. The above bound gives |n/py| > m/2. If mg = 0, then S,,, = {po} works.
If 0 < mg < m/2, then mg < |n/po/, so we claim that S,, = {po} U S,,, works. Indeed, we have
Am = Amm Ln/pOJ >mo > Ln/pJ for all peE Smoa and

S| =14 | S| < 1+ logy mg < 1+ logy(m/2) = log, m.

Otherwise, we take S,, = {po} U Sy,/o—1 instead. By the same argument as before, the first two
properties hold on S,,. For the third property, note that

Ay, =m— [n/po] — Z In/p| =m/2— Z In/p| = Apjo1 + 1.
PESm 21 PESm 21

The bound A, /51 < logy(m/2 — 1) + 1 < logy, m yields A, < logym + 1.

Now we go back to the main problem. For N large enough and n > N, the prime number
theorem yields that there exists at least log, n+ 2 primes in the interval (n/2,n). Then there exists
at least logyn+1 > A, such primes not in S,,. Let T" denote the set of these A, primes. Note that
|n/p|] =1 for each p € T. By choice of T, it is disjoint with S,,, so S :=S,, UT works.

0, x#0,
7 for any constant o € R.

6: Answer. Constant functions, x +— 69 — z, and x { 0
a, =0,

For convenience, write C' = 69. Clearly, constant functions work. On the other hand, if f(z) =
C —z for all x € R, then

fl@+yf(e) + fley) =20 — (x+y(C — ) + ay) = 2C — (z + Cy) = f(z) + f(Cy).
Thus, z — C — x works as well.

Meanwhile, suppose that f(z) = 0if x # 0 and f(0) # 0. If = # 0, then since C' # 0, no matter
whether y equals 0 or not,

@ +yf@) + flay) = f2) + flzy) = f(z) + f(Cy).
If x = 0, then instead

f@+yf(@) + fley) = f(yf0)) + f(0) = £(0) + f(f(0)y) = F(0) + f(Cy).



It remains to show that no other functions work. We may assume that f is non-constant and
flzo) # C —xy <= xo+ f(xy) # C for some x € R. Our goal is to show that f(x) = 0 for all
x € R such that x # 0.

Plugging x = C' into the original equality gives f(C'+yf(C)) = f(C) for all y € R. If f(C) # 0,
then plugging y = 2% into this equality gives f(z) = f(C) for every z € R, and so f is constant;

f(©)
contradiction. Thus, f(C) = 0.

Plugging y = 1 into the original equation gives f(x + f(z)) = f(C) = 0 for all x € R. Recall by
our assumption that xo+ f(x¢) # C for some xy € R. Thus, there exists a # C such that f(a) = 0.

Plugging = = « into the original equality yields f(ay) = f(Cy) for all y € R. Replacing y with
y/C yields f(By) = f(y) for all y € R, where § = a/C. Note that 5 # 1, since C # a.

Replacing x with Sz in the original equality and using the above equality gives us

fBz +yf(x) + flzy) = f(Br) + f(Cy) = f(x) + f(Cy) = [z +yf(2)) + f(zy).

Thus f(Bx+yf(z)) = f(x +yf(x)) for all z,y € R. Finally, we show that f(x) =0 for all x # 0.

Suppose that there exists xy € R such that xy # 0 and f(xg) # 0. Then substituting (x,y) =
(20, (z—0)/f(x0)) into the above equation gives f(v+z) = f(z) for all z € R, where v = (8—1)zo
is a non-zero real number. In short, f is periodic. But then for any x,y € R, we have

fle+y+yfz+7) + f((z+7)y) = flx+7)+ f(Cy) = f(x) + f(Cy) = fx +yf(z)) + flzy).

Using periodicity reduces this equality to f(xy + vy) = f(zy). Plugging (z,y) = (0, z/v) yields
f(z) = f(0) for all z € R, so f is constant; a contradiction. We are done.

Note. The above solution works if we replace R with an arbitrary field and we replace C' = 69
with an arbitrary non-zero element of the field. If C' = 0, then the only difference is that the third
family of solutions do not work anymore.



