
Week 3: Mock Putnam 3

1: What are the possible values for
∞∑
n=1

x69
n where {xn}∞n=1 is a sequence of positive real numbers such

that
∞∑
n=1

xn = 2024?

2: Let R be a ring with unity such that for every element a ∈ R, either a2 = 1 or an = 0 for some
positive integer n. Prove that R is a commutative ring.

3: Let (an) be a sequence of real numbers such that

lim
n→∞

an+1 − an = 0, lim
n→∞

a2n − 2an = 0.

Prove that lim
n→∞

an = 0.

4: Let G be a graph with vertices labeled 1, 2, . . . , n and degrees (the number of vertices with an
edge to it) d1, . . . , dn. For any permutation σ on {1, . . . , n}, we say i is a local minimum of σ if
σ(i) < σ(j) for any vertex j with an edge to i. Find the expected number of local minima over all
permutations σ. (Note: this gives a lower bound for the size of a maximal subset of vertices with
no edges between any two, also known as an independent set.)

5: Let n ≥ 1 be an integer. Let p(x) be a real polynomial of degree n and let a ≥ 3 be a real number.
Prove that

max
k=0,1,...,n+1

|ak − p(k)| ≥ 1.

6: Let A,B be 69× 69 singular matrices with coefficients in C. Suppose (AB)69 = 0 and (AB)68 ̸= 0.
Prove that (BA)68 = 0.



Week 3: Sketch of proofs

1: Answer. The set of such values is the open interval (0, 202469).

To minimize the sum value, we want all the xns to be small simultaneously. To maximize the
sum value, we want x1 to be very big, close to 2024. We now write down this idea formally.

First, it is clear that the given expression must be positive. Second, for any a, b ∈ R+, we have
(a+ b)69 > a69 + b69, so

∞∑
n=1

x69
n <

(
∞∑
n=1

xn

)69

= 202469.

It remains to show that all positive values less than 202469 are attainable.

For each positive integer N , define the function fN : [0, 2024] → R by

fN(x) =
N∑

n=1

(
2024− x

N

)69

+
∞∑

n=N+1

( x

2n−N

)69
=

(2024− x)69

N68
+

x69

269 − 1
.

For x ∈ (0, 2024), the numbers (2024− x)/N and x/2n−N are positive for all n ≥ N + 1, and

N∑
n=1

2024− x

N
+

∞∑
n=N+1

x

2n−N
= N · 2024− x

N
+

∞∑
n=1

x

2n
= (2024− x) + x = 2024.

Thus, for each x ∈ (0, 2024), fN(x) is a possible value taken by the given expression. We now find
values attained by each fN on (0, 2024).

Notice that fN(0) =
202469

N68
and fN(2024) = X, where X = 202469

269−1
. For N = 1, we have

fN(0) > fN(2024), so numbers in (X, 202469) are attainable. For N > 1, we have fN(0) < fN(2024),
so numbers in (202469/N68, X) are attainable. Letting N → ∞, all positive values less than X are
attainable. It remains to see if X is attainable. Indeed, we can take each xn = 2024/2n in this case.
By geometric series formula,

∞∑
n=1

xn = 2024,
∞∑
n=1

x69
n =

∞∑
n=1

202469

269n
=

202469

269 − 1
= X.

2: Assume that R is non-trivial; 1 ̸= 0 in R. We first claim that a2 = 1 if and only if a is a unit.
Clearly, if a2 = 1, then a is a unit (with itself as inverse). Conversely, suppose for the sake of
contradiction that a is a unit, say with inverse b, and an = 0 for some n > 0. By induction on k, it
is easy to see that bkak = 1. But then 1 = bnan = bn0 = 0; contradiction. This proves the claim.

Now, for any unit a and b, ab is also a unit. By the previous paragraph, a2 = b2 = (ab)2 = 1.
But then ab = a(ab)2b = a2bab2 = ba. Thus, every two unit in R commutes. Note that if a commute
with b, then both a and 1− a commute with both b and 1− b. It remains to show the following: if
a is not a unit, then 1− a is a unit.



Suppose for the sake of contradiction that both a and 1− a are not units for some a ∈ R. That
is, an = 0 and (1− a)m = 0 for some m,n > 0. The second equality yields

0 = (1− a)m(an−1 + an−2 + . . .+ 1)m = ((1− a)(an−1 + . . .+ 1))m = (1− an)m = 1.

Contradiction; thus a and 1− a are units. We are done.

3: We first show that
lim
n→∞

an
n

= 0.

Fix any ε > 0. The first limit condition implies that there exists N > 0 such that |an+1− an| < ε/2
for all n ≥ N . By triangle inequality and induction, we get

|an+N | ≤ |aN |+
ε

2
n ∀n ≥ 0.

For n > 2ε−1|aN |, we get |an+N | < εn. This shows the above limit equality.

Now we show that an → 0 as n → ∞. Fix an arbitrary ε > 0. Let N be a positive integer such
that |a2n − 2an| < ε for all n ≥ N . We claim that |an| ≤ ε for any n ≥ N . Indeed, by induction on
k, for any n ≥ N and k ≥ 0,

|a2kn| > 2k|an| − (2k − 1)ε > 2k(|an| − ε) =⇒ |a2kn|
2kn

>
|an| − ε

n
.

Taking limit as k → ∞ yields the claim.

4: Answer.
n∑

i=1

1

di + 1
.

For each i ≤ n, let Xi := Xi(σ) denote the random variable that is equal to 1 if i is a local
minimum of σ and 0 otherwise. Then by linearity of expectation, the expected number of local
minima is equal to

E[X1 +X2 + . . .+Xn] =
n∑

i=1

E[Xi].

Now fix some i ≤ n, and let v1, v2, . . . , vdi be the neighbours of i in G. Consider a fixed subset
S ⊆ {1, 2, . . . , n} of size di + 1, and restrict our attention to permutations σ such that

{σ(i)} ∪ {σ(vk) : k ≤ di} = S.

Then i is a local minimum iff σ(i) is the minimal element of S. As σ ranges over all permutations
satisfying the above equality, the probability that this happens is exactly 1/|S| = 1/(di+1). Letting
S ranges over all subsets of size di + 1, we get that E[Xi] = 1/(di + 1). We are done.

5: Suppose that the inequality is false. That is, assume for the sake of contradiction that |ak−p(k)| < 1
for all k = 0, 1, . . . , n+ 1. By the general theory of forward differencing, given a real polynomial p
of degree n, the polynomial

q(x) :=
m∑
k=0

(−1)k
(
m

k

)
p(x+ k)



has degree exactly n − m if m ≤ n, and is zero if m > n. To prove this statement, denote by
∆ : R[x] → R[x] the linear operator given by p(x) 7→ p(x) − p(x + 1). Then the polynomial q(x)
defined above is exactly ∆m(p). Now one can check that ∆(p) has degree exactly deg(p)− 1 if p is
non-constant and ∆(p) = 0 if p is constant. Induction on m then proves the statement.

Applying forward differencing, we get

n+1∑
k=0

(−1)k
(
n+ 1

k

)
p(k) = 0,

n+1∑
k=0

(−1)k
(
n+ 1

k

)
(ak − p(k)) =

n+1∑
k=0

(−1)k
(
n+ 1

k

)
ak = (1− a)k,

and taking absolute value, we get

2k =
n+1∑
k=0

(
n+ 1

k

)
>

n+1∑
k=0

(
n+ 1

k

)
|ak − p(k)| ≥ |(1− a)k| = |1− a|k ≥ 2k.

Contradiction.

6: Let n = 69, and let r be the rank of A. Note that r < n, since A is singular.

By Gaussian elimination, there exists P ∈ Mn(C) invertible such that P−1A is in reduced row
echelon form. By Gaussian elimination again, there exists Q ∈ Mn(C) invertible such that P−1AQ−1

is diagonal with first r entries 1 and all other entries zero. Thus, we can write

A = P

(
Ir 0
0 0

)
Q, B = Q−1

(
B1 B2

B3 B4

)
P−1,

where B1 ∈ Mr(C). Then

AB = P

(
B1 B2

0 0

)
P−1, BA = Q−1

(
B1 0
B3 0

)
Q.

By induction on k, we get

(AB)k = P

(
Bk

1 Bk−1
1 B2

0 0

)
P−1, (BA)k = Q−1

(
Bk

1 0
B3B

k−1
1 0

)
Q.

Since (AB)n = 0, we have Bn
1 = 0, so B1 is nilpotent. Since (AB)n−1 ̸= 0, we have Bn−2

1 B2 ̸= 0.
In particular, Bn−2

1 ̸= 0, so the minimal polynomial of B1 is Xk with k ∈ {n − 1, n}. Since B1

has dimension r < n, this necessarily implies r = k = n − 1. In particular, we have a Jordan
decomposition for B1 of form SJS−1 for some invertible matrix S, where J ∈ Mn−1(C) is defined
by

J =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 .



In particular, Jn−2 is the (n− 1)× (n− 1)-matrix with (1, n− 1)-entry 1 and all other entries zero.

Recall that Bn−2
1 B2 ̸= 0. The condition (BA)n−1 = 0 is equivalent to B3B

n−2
1 = 0 since we

know Bn−1
1 = 0. We now change basis again for B; we can write

B = Q−1

(
S 0
0 1

)(
J x
yT c

)(
S−1 0
0 1

)
P−1

for some x,y ∈ Cn−1 and c ∈ C. Here B2 = Sx and B3 = yTS−1. Thus we have

Bn−2
1 B2 ̸= 0 ⇐⇒ Jn−2x ̸= 0 ⇐⇒ xn−1 ̸= 0.

The condition that B is singular is equivalent to

(
J x
yT c

)
being singular. By the form J takes,

this matrix has determinant −xn−1y1. Since xn−1 ̸= 0, singularity of this matrix implies y1 = 0.

Finally, notice that the goal reduces to

B3B
n−2
1 = 0 ⇐⇒ yTJn−2 = 0 ⇐⇒ y1 = 0.

This shows that B3B
n−2
1 = 0, and thus (BA)n−1 = 0.


