
Week 4: Mock Putnam 4

1: Prove that the equation
x

1 + x2
+

y

1 + y2
+

z

1 + z2
=

1

69

has finitely many positive integer solutions.

2: Let S be the set of all n× n matrices with coefficients in Z/69Z. Prove that∑
A∈S

Tr(A2) =
∑
A∈S

(Tr(A))2.

3: (a) Let v1, . . . , vk ∈ Rn \ {0} such that ⟨vi, vj⟩ ≤ 0 for all i ̸= j, where ⟨ , ⟩ denotes the standard
inner product. Prove that k ≤ 2n.

(b) An m×n matrix is filled with 0 and 1 such that any two rows differ in at least n/2 positions.
Prove that m ≤ 2n.

4: Let A and B be two finite sets of positive real numbers such that{∑
x∈A

xn : n ∈ N

}
⊆

{∑
x∈B

xn : n ∈ N

}
.

Prove that there exists k ∈ Z such that A = {xk : x ∈ B}.

5: Let n, k be positive integers such that n ≥ 2k. Let S be a collection of pairwise non-disjoint

k-element subsets of {1, 2, . . . , n}. Prove that |S| ≤
(
n− 1

k − 1

)
.

6: Let a ≤ b be real numbers. Let f : [a, b] → [a, b] satisfy |f(x)− f(y)| ≤ |x− y| for any x, y ∈ [a, b].

Let x1 ∈ [a, b] and xn+1 =
xn + f(xn)

2
. Prove that lim

n→∞
xn exists.



Week 4: Sketch of proofs

1: Let α = 1/69 > 0. If a triple (x, y, z) work, any permutations of (x, y, z) also work. Thus the total
number of triples (x, y, z) satisfying the equality is at most 6 times the number of triples satisfying
the equality with an added condition: x ≥ y ≥ z. It suffices that the equation has finitely many
positive integer solutions with x ≥ y ≥ z.

Notice that the function f(x) = x
1+x2 = 1

x+1/x
is strictly decreasing on the positive integers.

Thus f(x) ≤ f(y) ≤ f(z), and f(x)+ f(y)+ f(z) ≤ α yields f(z) ≥ α/3. Since f is decreasing and
f(x) → 0 as x → ∞, there are only finitely many choices of z satisfying f(z) ≥ α/3.

Next, for fixed z = z0, we have f(x) + f(y) = α− f(z0) ≥ 2α/3 > 0. Since f(x) ≤ f(y), we get
f(y) ≥ (α− f(z0))/2 > 0. By the same argument as before, there are only finitely choices of y that
works.

Finally, since f is strictly decreasing, it is injective. Thus for any fixed z and y, there exists
at most one positive integer x such that f(x) = α − f(y) − f(z). Since we also only have finitely
many choices for y for a given z and also finitely many choices for z, we have finitely many triplets
(x, y, z) such that f(x) + f(y) + f(z) = α and x ≥ y ≥ z.

2: Write R = Z/69Z. The case n = 1 is straightforward, so we assume that n ≥ 2. Then we claim
that both sides are actually zero.

For each A ∈ S and i, j ≤ n, denote by Aij ∈ R the (i, j)-entry of A. Notice that

(A2)ii =
n∑

j=1

AijAji ∀i ≤ n =⇒ Tr(A2) =
n∑

i=1

n∑
j=1

AijAji.

The left hand side becomes∑
A∈S

Tr(A2) =
∑
A∈S

n∑
i=1

n∑
j=1

AijAji =
n∑

i=1

n∑
j=1

∑
A∈S

AijAji.

For fixed i and j, there are |R|n2−2 choices for entries of A other than Aij and Aji if i ̸= j, and
|R|n2−1 choices if i = j. There are n(n− 1) pairs (i, j) with i ̸= j and n pairs with i = j, so∑

A∈S

Tr(A2) = n(n− 1)|R|n2−2
∑
a,b∈R

ab+ n|R|n2−1
∑
a∈R

a2.

However, |R| = 0 in R and n2 − 1, n2 − 2 > 0, so the right hand side is zero.

On the other hand, since Tr(A) only depends on the diagonal entries of A and there are n(n−1)
non-diagonal entries, ∑

A∈S

(Tr(A))2 = |R|n(n−1)
∑

a1,...,an∈R

(a1 + a2 + . . .+ an)
2.

Since n(n− 1) > 0, this equals zero, as desired.



3: For part (a), we prove the contrapositive. It suffices to consider the case k = 2n + 1. That is, we
prove that for any v1, . . . , v2n+1 ∈ Rn \ {0}, there exists i ̸= j such that ⟨vi, vj⟩ > 0. Proceed by
induction on n.

For the base case n = 1, we have v1, v2, v3 ∈ R non-zero. Then two of v1, v2, v3 has the same
sign, and thus their product is positive.

Now we proceed for the induction step. Suppose that the induction hypothesis holds for some n.
Consider arbitrary vectors v1, v2, . . . , v2n+3 ∈ Rn+1 \ {0}. By rotation and scaling, we can assume
WLOG that v2n+3 = en+1 = (0, 0, . . . , 0,−1). For each i ≤ 2n + 2, write vi = (wi, ci) for some
wi ∈ Rn and ci ∈ R, with either wi ̸= 0 or ci ̸= 0. Then ⟨vi, v2n+3⟩ = −ci, so we are done if ci < 0
for some i ≤ 2n+ 2. We now assume that ci ≥ 0 for all i ≥ 2n+ 2.

If wi = wj = 0 for some i ̸= j, then ci, cj > 0. But then ⟨vi, vj⟩ = ⟨(0, ci), (0, cj)⟩ = cicj > 0.
The remaining case is where wi = 0 for at most one value of i ≤ 2n + 2. By rearranging, we may
assume that wi ̸= 0 for all i ≤ 2n + 1. By induction hypothesis, there exists i < j ≤ 2n + 1 such
that ⟨wi, wj⟩ > 0. Finally, this means

⟨vi, vj⟩ = ⟨wi, wj⟩+ cicj > 0 + 0 = 0.

Induction step is complete. Part (a) is proved.

For part (b), let v1, . . . , vm be the rows of the matrix, except that all occurrences of 0 are replaced
with occurrences of −1. Since all entries of each vi are ±1, we get

⟨vi, vj⟩ =
n∑

k=1

(vi)k(vj)k = 1 · |{k : (vi)k = (vj)k}|+ (−1) · |{k : (vi)k = −(vj)k}| ∀i, j ≤ n.

By the problem’s assumption, if i ̸= j, then (vi)k = (vj)k for at most n/2 indices k, and (vi)k =
−(vj)k for at least n/2 indices k. Thus ⟨vi, vj⟩ ≤ 0 for all i ̸= j. By part (a), we get m ≤ 2n.

4: For convenience, for any finite subset C ⊆ R+ and n ∈ N, denote σn(C) =
∑

x∈C xn. Note that
σn(C) = 0 if and only if C = ∅. We start by making some general observations.

• Let A ⊆ R+ be non-empty finite and let a0 be the largest element of A. Then for any n ∈ N,

σn(A)

an0
=

∑
a∈A

(
a

a0

)n
n→∞−−−→ 1,

since a/a0 ≤ 1, with equality iff a = a0. In particular, for any ε > 0, there exists a positive
integer N such that 1 ≤ σn(A)/a

n
0 < 1 + ε < eε for any n ≥ N . Taking logarithm yields

0 ≤ lnσn(A)− n ln a0 < ε ∀n ≥ N.

• Let A ⊆ R+ be non-empty finite and let a0 be the largest element of A. If a0 ≤ 1 and A ̸= {1},
then the sequence (σn(A))n≥1 is strictly decreasing. The sequence converges to 1 if a0 = 1
and 0 if a0 < 1. On the other hand, by the previous observation, this sequence is unbounded
and in fact diverges to +∞ if a0 > 1. In particular, for each M > 0, there exists only finitely
many n such that σn(A) ≤ M .



Now we go back to the main problem. If B = ∅, then σn(B) = 0 for all n ≥ 1. This would
imply σn(A) = 0 for all n ≥ 1, so A = ∅ and we are done. Thus, we now assume that B ̸= ∅, which
also means A ̸= ∅. If A = {1}, we are done since A = {x0 : x ∈ B}. We now assume A ̸= {1} and
prove a stronger statement: there exists m ∈ N such that A = {xm : x ∈ B}. Let a0 be the largest
element of A and b0 be the largest element of B.

If a0 > 1, then (σn(A))n≥1 is unbounded. Thus, (σn(B))n≥1 is also unbounded, yielding b0 > 1.
On the other hand, if a0 ≤ 1, then since A ̸= {1}, the sequence (σn(A))n≥1 is strictly decreasing.
Recall that for each n, there exists k such that σn(A) = σk(B). In particular, infinitely many terms
of the sequence (σn(B))n≥1 are less than or equal to σ1(A). This forces b0 ≤ 1, and B ̸= {1}
since (σn(B))n≥1 contains infinitely many distinct real numbers, namely, the terms of (σn(A))n≥1.
If a0 = 1, then (σn(B))n≥1 contains infinitely many terms greater than 1, so b0 = 1. If a0 < 1, then
(σn(B))n≥1 contains a term less than 1, forcing b0 < 1. In summary, we have either a0 = b0 = 1 or
a0, b0 > 1 or a0, b0 < 1. Note that the latter two implies that ln a0/ ln b0 is positive.

If a0 = b0 = 1, then for each n, there exists k such that

σn(A \ {1}) = σn(A)− 1 = σk(B)− 1 = σk(B \ {1}).

If A \ {1} = {xm : x ∈ B \ {1}} for some m ∈ Z, then A = {xm : x ∈ B}. Thus, it remains to solve
the case where a0, b0 ̸= 1.

For convenience, write m = ln a0/ ln b0 > 0. Let ε = | ln b0|/4. By the first observation, there
exists N such that for any n ≥ N ,

0 ≤ lnσn(A)− n ln a0 < ε and 0 ≤ lnσn(B)− n ln b0 < ε.

Recall that for each n, there exists k := k(n) such that σn(A) = σk(n)(B). If a0, b0 < 1, then
for n large enough, σn(A) ≤ σN(B), which forces k ≥ N . If a0, b0 > 1, then for n large enough,
σn(A) > supi≤N σi(B), which also forces k ≥ N . Thus, there exists N0 > N such that k(n) ≥ N
for all n ≥ N0. In particular, we get 0 ≤ lnσn(A)−n ln a0 < ε and 0 ≤ lnσn(A)− k(n) ln b0 < ε, so

|n ln a0 − k(n) ln b0| < ε = | ln b0|/4 =⇒ |nm− k(n)| < 1/4.

In summary, there exists a positive integer N0 such that nm is at distance at most 1/4 from an
integer for all n ≥ N0. If m = ln a0/ ln b0 is irrational, then Kronecker’s approximation theorem
yields a contradiction. Thus, m is rational.

We now prove that m is an integer. Write m = p/q, where p and q are coprime positive integers.
If q is even, then there exists n ≥ N0 such that np ≡ q/2 (mod q). Then the fractional part of
np/q is 1/2, which means |np/q − k| ≥ 1/2 for any integer k; contradiction. If q > 1 is odd, then
n ≥ N0 such that np ≡ (q − 1)/2. Then the fractional part of np/q is (q − 1)/(2q), which means
|np/q − k| ≥ (q − 1)/(2q) ≥ 1/3 for any integer k; contradiction. Thus q = 1, and so m is indeed
an integer.

Recall that for any n ≥ N0, we have |nm− k(n)| < 1/4. Since m and k(n) are integers, we get
k(n) = nm for each n ≥ N0. That is, for any n ≥ N0,

σn(A) = σnm(B) = σn({xm : x ∈ B}).



It remains to show the following claim: for any A1, A2 ⊆ R+ finite, if σn(A1) = σn(A2) for all n
large enough, say n ≥ N , then A1 = A2. By induction on say max{|A1|, |A2|}, the claim further
reduces to the following statement: given A1 and A2 as above, if both are non-empty, then the
largest element of the two sets are equal. Note that A1 and A2 are either both empty or both
non-empty.

Let a1 and a2 be the largest element of A1 and A2, respectively. WLOG assume that a1 ≤ a2,
and suppose for the sake of contradiction that a1 < a2. Then for n large enough, we have an2 > 2an1 .
But also for n large enough, we have σn(A1) < 2an1 . Then for any n large enough, we get

σn(A1) < 2an1 < an2 ≤ σn(A2),

contradiction. The claim is proved.

5: We do some sort of double-counting. Let Sn denote the symmetric group on {1, 2, . . . , n}. For each
σ ∈ Sn and 0 ≤ i < n, denote Tσ,i = {σ(i+ j) : 0 ≤ j < k}, where the indices are taken mod n (so
i+ j actually means i+ j − n if i+ j > n). Denote A(σ) = {i : Tσ,i ∈ S}.

First consider an arbitrary T ∈ S and an index i < n. Since |T | = k, there exists k! ways to
arrange the elements of T in an ordered k-tuple. For each ordered k-tuple (a0, a1, . . . , ak−1), there
exists (n− k)! permutations σ such that aj = σ(i+ j) for each j = 0, 1, . . . , k − 1. Thus for each i,
there exists k!(n− k)! permutations σ ∈ Sn such that Tσ,i = T . By double-counting, we get∑

σ∈Sn

|A(σ)| = #{(σ, i) : Tσ,i ∈ S} = k!(n− k)! · n · |S|.

On the other hand, we show that |A(σ)| ≤ k for any σ ∈ Sn. Fix σ and i0 ∈ A(σ), if any. For
any i ∈ A(σ), note that Tσ,i ∩ Tσ,i0 ̸= ∅. Thus there exists 0 ≤ j1, j2 < k such that

σ(i+ j1) = σ(i0 + j2) ⇐⇒ i+ j1 = i0 + j2 ⇐⇒ i− i0 = j1 − j2 ∈ {0,±1,±2, . . . ,±(k − 1)}.

That is,
A(σ) ⊆ {i0, i0 ± 1, . . . , i0 ± (k − 1)}.

Now suppose for the sake of contradiction that |A(σ)| ≥ k + 1. Then A(σ) contains at least
k elements aside from i0. By the above argument and pigeonhole principle, there exists j ∈
{1, 2, . . . , k − 1} such that i0 + j, i0 − (k − j) ∈ A(σ). But (i0 + j) − (i0 − (k − j)) = k, not
congruent to any of 0,±1, . . . ,±(k − 1) mod n since n ≥ 2k; contradiction. This proves that
|A(σ)| ≤ k for any σ ∈ Sn.

As a result, we get

k!(n− k)! · n · |S| =
∑
σ∈Sn

|A(σ)| ≤ |Sn|k = n! · k =⇒ |S| ≤ k

n

(
n

k

)
=

(
n− 1

k − 1

)
.

6: Define the function g(x) =
x+ f(x)

2
. Note that for any x ∈ [a, b], since f(x) ∈ [a, b], we also have

g(x) ∈ [a, b]. We claim that g is non-decreasing. Indeed, fix x, y ∈ [a, b] such that x ≤ y. Then

g(y)− g(x) =
y − x+ f(y)− f(x)

2
≥ |y − x| − |f(y)− f(x)|

2
≥ 0.



This proves the claim.

Now we go back to the main problem. Recall that xn+1 = g(xn) for each n ≥ 1. By induction,
we get xn+1 = gn(x1) for each n ≥ 0. If x1 ≤ x2 = g(x1), then we get

x1 ≤ g(x1) ≤ g2(x1) ≤ . . . .

That is, by induction on n, we get xn+1 ≥ xn for all n ≥ 1. The sequence (xn)n≥1 is non-decreasing,
but bounded above by b, so it converges by monotone convergence theorem.

On the other hand, if x1 ≥ x2 = g(x1), then

x1 ≥ g(x1) ≥ g2(x1) ≥ . . . .

That is, by induction on n, we get xn+1 ≤ xn for all n ≥ 1. The sequence (xn)n≥1 is non-increasing,
but bounded below by a, so it converges by monotone convergence theorem.


