
Week 5: Mock Putnam 5

1: Find all functions f : R → R satisfying f(x) ≤ x and f(x+ y) ≤ f(x) + f(y) for all x, y ∈ R.

2: Let m ∈ N. We say a pair (i, j) with 1 ≤ i < j ≤ 4m+ 2 is m-admissible if the set {1, 2, . . . , 4m+
2}\{i, j} can be partitioned into m 4-term arithmetic progressions. For example, (2, 9) is 2-
admissible using the partition {1, 3, 5, 7} and {4, 6, 8, 10}. Prove that the number of m-admissible
pairs is at least m2 +m+ 1. (Extra: Is it exactly m2 +m+ 1?)

3: Let f : (0,∞) → (0,∞) be a function such that
f(x)− 1

x
is bounded below. Let a1 = 69 and

an+1 = anf(an) for n ≥ 1. Prove that
∞∑
n=1

an is divergent.

4: For which primes p does there exist a group with an element a of order 11 and an element b of order
p such that ba = ab2?

5: Let m,n be relative prime integers. Let α > 1 be a real number such that αm + α−m and αn + α−n

are integers. Prove that α + α−1 is also an integer.

6: Let n be a positive integer. A collection of (n+ 1)2 points are placed inside a square of side length
n. Prove that there exists three points such that the triangle determined by them has area at most
1/2. (If the three points are collinear, the triangle has area 0.)



Week 5: Sketch of proofs

1: First notice that the two inequalities yield f(0) ≤ 0 and f(0) ≤ f(0) + f(0). The latter yields
0 ≤ f(0), and so we get f(0) = 0.

Now plug y = −x into the second inequality, and get

0 = f(0) ≤ f(x) + f(−x) ≤ x+ (−x) ≤ 0.

This means equality must occur in all the inequalities, which forces f(x) = x for all x ∈ R. Finally,
it is clear that f(x) = x works. Thus, the answer is f(x) = x.

2: Working with the cases m = 0, 1, 2, 3 help finding m-admissible pairs.

We exhibit some m-admissible pairs and count their number. First, consider the pairs (4a +
1, 4b + 2) for each 0 ≤ a < b ≤ m. From the set {1, 2, . . . , 4m + 2} \ {4a + 1, 4b + 2}, we take out
the sets {4i+1, 4i+2, 4i+3, 4i+4} for each 0 ≤ i < a and {4k+3, 4k+4, 4k+5, 4k+6} for each
b ≤ k < m. The remaining set is are m-admissible since

{4a+ 2, 4a+ 3, . . . , 4b+ 1} =
b−1⋃
j=a

{4j + 2, 4j + 3, 4j + 4, 4j + 5}.

The b − a sets are pairwise disjoint, say by order, the elements of each of them form a 4-term
arithmetic progression of difference 1. The number of pairs counted here is(

m+ 2

2

)
=

(m+ 1)(m+ 2)

2
.

Next, as the example may suggest, we may also consider partitions into 4-term arithmetic
progression of difference greater than 1. This time, consider the pairs (4a+2, 4(a+ c)+1) for some
c ≥ 2 and 0 ≤ a ≤ m− c. Take out the sets {4i + 1, 1i + 2, 4i + 3, 4i + 4} for each 0 ≤ i < a, and
also take out the sets {4k + 3, 4k + 4, 4k + 5, 4k + 6} for each a+ c ≤ k < m. The remaining set is

{4a+1, 4a+3, 4a+4, . . . , 4(a+c)+4, 4(a+c)+6} =
⋃

i∈{1,3,4,...,c,c+2}

{4a+i, 4a+c+i, 4a+2c+i, 4a+3c+i}.

The c sets are pairwise disjoint by mod c reason, and the elements of each of them form a 4-term
arithmetic progression of difference c. Since the case c = 1 does not count, the number of pairs
counted here is (

m

2

)
=

m(m− 1)

2
.

In total, we already get
(m+ 1)(m+ 2)

2
+

m(m− 1)

2
= m2 +m+ 1 pairs.

Solution for the extra problem. For m large enough, these aren’t the only m-admissible
pairs. We show that (2, 5) is 11-admissible. For each n ∈ N, let Sn,k = {n, n + 1, . . . , n + k − 1}.
Then

{1, 3, 4} ∪ S6,41 = {1, 6, 11, 16} ∪ {3, 17, 31, 45} ∪ {4, 18, 32, 46} ∪ S7,4 ∪ S12,4 ∪ S19,12 ∪ S33,12.



Alternatively, one can show that (2, 5) is 12-admissible via

{1, 3, 4}∪S6,45 = {1, 4, 7, 10}∪{3, 6, 9, 12}∪{8, 13, 18, 23}∪{11, 24, 37, 50}∪S14,4∪S19,4∪S25,12∪S38,12.

Extra Notes. By considering the numbers in the set mod 4, one can show that any m-
admissible pair is congruent to (1, 2) or (2, 1) (mod 4). More precisely, for any set S ⊆ Z and for
each i = 0, 1, 2, 3, let ci(S) denote the number of elements of S that are congruent to i (mod 4).
One can show that if S can be partitioned into 4-term arithmetic progressions, then c0(S) ≡ c2(S)
(mod 4) and c1(S) ≡ c3(S) (mod 4). As {1, 2, . . . , 4m + 2} contains m + 1 integers congruent
to 1 (mod 4) and m + 1 integers congruent to 2 (mod 4), this gives an upper bound of at most
(m+ 1)2 = m2 + 2m+ 1 m-admissible pairs.

On the other hand, for any m-admissible pair (i, j), both (i, j) and (i+4, j+4) are also (m+1)-
admissible. Thus, if (2, 5) ism0-admissible for somem0, then there are exactly (m+1)2 m-admissible
pairs for m ≥ 2m0 − 1. In particular, this holds for all m ≥ 2 · 11 − 1 = 21. This can be pushed
further to m ≥ 11 by checking that (6, 9) is 7-admissible via

S1,5 ∪ {7, 8} ∪ S10,21 = {1, 4, 7, 10} ∪ {2, 5, 8, 11} ∪ {3, 12, 21, 30} ∪ S13,8 ∪ S22,8.

3: By boundedness, there exists a real number C such that f(x) ≥ 1−Cx for all x > 0. By replacing
C with max{C, 1}, we may assume that C > 0. Before we start with the main steps, note that by
small induction, an > 0 for all n ≥ 1.

Suppose for the sake of contradiction that
∑∞

n=1 an converges. Then there exists N ≥ 1 such
that an < (2C)−1 for all n ≥ N . Notice that for any x < (2C)−1,

xf(x) ≥ x(1− Cx) =⇒ 1

xf(x)
≤ 1

x(1− Cx)
=

1

x
+

C

1− Cx
≥ 1

x
+ 2C.

Thus, we get a−1
n+1 ≤ a−1

n + 2C for all n ≥ N . By induction, we have a−1
N+k ≤ a−1

N + 2Ck for all
k ≥ 0. As a result,

∞∑
n=1

an ≥
∞∑
k=1

aN+k ≥
∞∑
k=1

1

a−1
N + 2Ck

,

which is a harmonic-type series and thus diverges. Contradiction!

4: Conjugation is often a powerful function in (non-abelian) group theory.

The equality ba = ab2 can be rewritten as a−1ba = b2. By induction, one gets a−nban = b2
n
for

any integer n ≥ 0. Since a11 = 1, this gives us b = b2
11, or b2

11−1 = 0. Since p is the order of b, p
divides 211 − 1.

For the converse, let p be a prime divisor of 211 − 1. In particular, p is odd. Consider the set
Sym(Z/pZ) of permutations on Z/pZ, which is a group. Let G ≤ Sym(Z/pZ) be the subgroup
generated by the function f(x) = 2x and g(x) = x+ 1; both are bijections. Since 211 ≡ 1 (mod p),
f has order 11. Clearly g has order p, since p = 0 in Z/pZ. Notice that g ◦ f = f ◦ g ◦ g. Thus G
is the desired group.

Finally, the prime divisors of 211 − 1 are 23 and 89.



Note. A more general construction in the second part is known as the semidirect product of
a group acting on another group. Then the case where the group being acted on is abelian, we can
make the construction very concrete just like the one given above.

5: (The following solution assumes some knowledge of algebraic number theory. Is there a more
elementary method?)

Since αn + α−n is an integer, α is an algebraic integer. Furthermore, since α > 1, αn cannot be
an integer. We claim that the only algebraic conjugates of α in Q ⊆ C are α itself and α−1. Note
that α ̸= α−1. Since α is an algebraic integer, the claim would then yield α + α−1 ∈ Z. It remains
to prove the claim.

Indeed, let β be an algebraic conjugate of α. Then βn is an algebraic conjugate of αn. Note
that αn + α−n and αnα−n = 1 are integers, so the only algebraic conjugates of αn are αn and α−n.
Thus, βn ∈ {αn, α−n}. Similarly, βm ∈ {αm, α−m}.

If βn = αn and βm = αm, then by Euclidean algorithm and gcd(m,n) = 1, it follows that β = α.
Similarly, if βn = α−n and βm = α−m, then we get β = α−1. If βn = αn and βm = α−m, then

1 = (βn)m(βm)−n = (αn)m(α−m)−n = α2mn.

But α is a real number greater than 1; contradiction. Similarly, βn = α−n with βm = αm yields a
contradiction. This proves the claim, as desired.

6: WLOG no three points are collinear. Consider the convex hull of the (n+1)2 points. It is a convex
k-gon with (n+ 1)2 − k interior points.

First assume that k ≤ 4n. Then the convex k-gon is made up with (k − 2) + 2((n+ 1)2 − k) =
2n2 + 4n− k triangles. Thus, there is one with area at most

n2

2n2 + 4n− k
≤ n2

2n2
=

1

2
.

Suppose now k > 4n. The perimeter of the convex k-gon is at most 4n, since the k-gon lies in
the interior of a square of side length n. So we can find two consecutive edges with lengths a, b
satisfying a+b

2
≤ 4n

k
< 1. The area of this triangle with sides a, b is at most

ab

2
≤ 1

2

(
a+ b

2

)2

<
1

2
.


