Week 5: Mock Putnam 5

: Find all functions f: R — R satisfying f(z) < x and f(z +vy) < f(z) + f(y) for all z,y € R.

: Let m € N. We say a pair (4,7) with 1 <i < j < 4m + 2 is m-admissible if the set {1,2,...,4m +
2}\{i,j} can be partitioned into m 4-term arithmetic progressions. For example, (2,9) is 2-
admissible using the partition {1,3,5,7} and {4,6,8,10}. Prove that the number of m-admissible
pairs is at least m? +m + 1. (Extra: Is it exactly m? +m + 17)
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: Let f: (0,00) = (0,00) be a function such that is bounded below. Let a; = 69 and
ap+1 = anf(a,) for n > 1. Prove that Z a, is divergent.

n=1

: For which primes p does there exist a group with an element a of order 11 and an element b of order
p such that ba = ab??

: Let m,n be relative prime integers. Let a > 1 be a real number such that o™ +a™™ and o™ +a™"

are integers. Prove that o + a~! is also an integer.

: Let n be a positive integer. A collection of (n + 1)? points are placed inside a square of side length
n. Prove that there exists three points such that the triangle determined by them has area at most
1/2. (If the three points are collinear, the triangle has area 0.)



Week 5: Sketch of proofs

: First notice that the two inequalities yield f(0) < 0 and f(0) < f(0) + f(0). The latter yields
0 < £(0), and so we get f(0) = 0.

Now plug y = —x into the second inequality, and get
0=7(0) < f(z)+ f(=2) <+ (-z) 0.

This means equality must occur in all the inequalities, which forces f(x) = z for all x € R. Finally,

it is clear that f(z) = x works. Thus, the answer is | f(z) = x.

: Working with the cases m = 0, 1, 2, 3 help finding m-admissible pairs.

We exhibit some m-admissible pairs and count their number. First, consider the pairs (4a +
1,4b+ 2) for each 0 < a < b < m. From the set {1,2,...,4m + 2} \ {4a + 1,4b + 2}, we take out
the sets {4i+ 1,41+ 2,4i + 3,41+ 4} for each 0 < i < a and {4k + 3,4k + 4,4k + 5, 4k + 6} for each
b < k < m. The remaining set is are m-admissible since

b—1
{4a+2,4a+3,... 40+ 1} = | J{4j +2,4j + 3,45 +4,4j + 5}.
j=a
The b — a sets are pairwise disjoint, say by order, the elements of each of them form a 4-term
arithmetic progression of difference 1. The number of pairs counted here is

(m+2> _ (m+1)(m+2)
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Next, as the example may suggest, we may also consider partitions into 4-term arithmetic
progression of difference greater than 1. This time, consider the pairs (4a+ 2,4(a+ c) + 1) for some
c>2and 0 <a<m—c. Take out the sets {4i + 1,1 + 2,4i + 3,4i + 4} for each 0 < i < a, and
also take out the sets {4k + 3,4k + 4,4k + 5,4k + 6} for each a + ¢ < k < m. The remaining set is

{4a+1,4a+3, 4a+4, . .., 4(a+c)+4, 4(a+c)+6} = U {4a+i datcti, da+2c+i, dat3c+i}.
i€{1,3,4,...,c,c+2}

The ¢ sets are pairwise disjoint by mod ¢ reason, and the elements of each of them form a 4-term
arithmetic progression of difference c. Since the case ¢ = 1 does not count, the number of pairs

counted here is
m\  m(m—1)
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(m+1)(m+2) m(m-—1)
+
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Solution for the extra problem. For m large enough, these aren’t the only m-admissible
pairs. We show that (2,5) is 11-admissible. For each n € N, let S, , = {n,n+1,...,n+k — 1}.
Then

{1,3,4} U Sea1 = {1,6,11,16} U {3,17,31,45} U {4,18,32,46} U S7.4 U S12.4 U S1912 U S33.12.

In total, we already get =m? + m + 1 pairs.




Alternatively, one can show that (2,5) is 12-admissible via

{1,3,4}USs.45 = {1,4,7,10}U{3,6,9, 12}U{8, 13,18, 23}U{11, 24, 37, 50 }US14 4US19 4US55.15U S35 13-

Extra Notes. By considering the numbers in the set mod 4, one can show that any m-
admissible pair is congruent to (1,2) or (2,1) (mod 4). More precisely, for any set S C Z and for
each i = 0,1,2,3, let ¢;(S) denote the number of elements of S that are congruent to ¢ (mod 4).
One can show that if S can be partitioned into 4-term arithmetic progressions, then ¢o(S) = ¢2(95)
(mod 4) and ¢;(S) = ¢3(5) (mod 4). As {1,2,...,4m + 2} contains m + 1 integers congruent
to 1 (mod 4) and m + 1 integers congruent to 2 (mod 4), this gives an upper bound of at most
(m +1)*> = m? + 2m + 1 m-admissible pairs.

On the other hand, for any m-admissible pair (i, 7), both (¢, j) and (i+4, j+4) are also (m+1)-
admissible. Thus, if (2, 5) is mg-admissible for some my, then there are exactly (m+1)? m-admissible
pairs for m > 2mgy — 1. In particular, this holds for all m > 2-11 — 1 = 21. This can be pushed
further to m > 11 by checking that (6,9) is 7-admissible via

S15U{7,8} U Sigo1 = {1,4,7,10} U {2,5,8,11} U {3,12,21,30} U Sy5.5 U Sao 5.

: By boundedness, there exists a real number C' such that f(x) > 1 — Cz for all > 0. By replacing
C' with max{C, 1}, we may assume that C' > 0. Before we start with the main steps, note that by
small induction, a,, > 0 for all n > 1.

Suppose for the sake of contradiction that >~ a, converges. Then there exists N > 1 such
that a,, < (2C)~! for all n > N. Notice that for any z < (2C)7!,

1 1 1 C 1
> z(1 — — < — 4 >z ,
vf(z) 2 (1 = Ca) zf(z) — 21 —-Cz) «x N 1-Cr ~ x 20

Thus, we get a,1; < a;* + 2C for all n > N. By induction, we have az_VlJrk < ay' + 2Ck for all
k> 0. As a result,

o0 o0 oo 1
;anZ;aN+k2;m,

which is a harmonic-type series and thus diverges. Contradiction!

: Conjugation is often a powerful function in (non-abelian) group theory.

The equality ba = ab?® can be rewritten as a~'ba = b*. By induction, one gets a~"ba™ = b*" for
any integer n > 0. Since a'! = 1, this gives us b = b1, or b2 ! = 0. Since p is the order of b, p
divides 21 — 1.

For the converse, let p be a prime divisor of 2! — 1. In particular, p is odd. Consider the set
Sym(Z/pZ) of permutations on Z/pZ, which is a group. Let G < Sym(Z/pZ) be the subgroup
generated by the function f(x) = 2z and g(z) = x + 1; both are bijections. Since 2! =1 (mod p),
f has order 11. Clearly g has order p, since p = 0 in Z/pZ. Notice that go f = fogog. Thus G
is the desired group.

Finally, the prime divisors of 2!* — 1 are |23 and 89.



Note. A more general construction in the second part is known as the semidirect product of
a group acting on another group. Then the case where the group being acted on is abelian, we can
make the construction very concrete just like the one given above.

(The following solution assumes some knowledge of algebraic number theory. Is there a more
elementary method?)

Since " + ™" is an integer, « is an algebraic integer. Furthermore, since a > 1, o™ cannot be
an integer. We claim that the only algebraic conjugates of o in Q C C are « itself and a~!. Note
that o # a~!. Since « is an algebraic integer, the claim would then yield o + a~! € Z. It remains
to prove the claim.

Indeed, let 5 be an algebraic conjugate of . Then g™ is an algebraic conjugate of a™. Note

n

that o™ + o™ and a"a~™ = 1 are integers, so the only algebraic conjugates of o™ are o™ and a™".
Thus, 8" € {a™,a"}. Similarly, 5™ € {a™, a~™}.

If p" = a™ and ™ = o™, then by Euclidean algorithm and ged(m,n) = 1, it follows that § = a.
Similarly, if 8" = o™ and 8™ = o™, then we get 3 = o~ L. If " = o™ and ™ = o™, then

L= (B (A" " = (@) o) = o

But « is a real number greater than 1; contradiction. Similarly, /" = o™ with g™ = o™ yields a
contradiction. This proves the claim, as desired.

: WLOG no three points are collinear. Consider the convex hull of the (n + 1)? points. It is a convex
k-gon with (n + 1) — k interior points.

First assume that & < 4n. Then the convex k-gon is made up with (k —2) +2((n +1)? — k) =
2n? + 4n — k triangles. Thus, there is one with area at most

n? n? 1

2n2+4n—k — 2n2 2

Suppose now k > 4n. The perimeter of the convex k-gon is at most 4n, since the k-gon lies in
the interior of a square of side length n. So we can find two consecutive edges with lengths a,b
satisfying 4t < 4?” < 1. The area of this triangle with sides a, b is at most

2
a+b 2<1
2 2




