Week 6: Mock Putnam 6

: Prove that there exists infinitely many primes ¢ that divide p? — 2 for some prime p.

69 1
: Evaluate Z z H _—
k=1

e |
=1 1<j<69,j#k

: Let P be a real orthogonal matrix without eigenvalue 1. Let ) be obtained from P by replacing
one of its rows or one of its columns by its negative. Show that () has 1 as an eigenvalue.

: Let vq,...,v, € R™ be unit vectors. Prove that there exist €1,...,€,,01,...,0, € {—1,1} such that
lervr + -+ - 4 envnl| < V/n < |11 + - + Gpunl,

where || - || denotes the Euclidean norm.

: Evaluate
/1 In(cos(mz/2)) dr /2 In(sin(rz/2)) .

T i

: Let ¢ : N — N be a multiplicative function such that for any prime p and any m > 1, we have
g(p™) = mp™~1. (Multiplicative means that g(ab) = g(a)g(b) if ged(a,b) = 1.) Prove that there
are infinitely many integers n such that g(n) + 1 = g(n + 1).



Week 6: Sketch of proofs

1: We will use Dirichlet’s theorem on arithmetic progressions.

Consider an arbitrary odd prime ¢ that divide n? —2 for some integer n. Note that ged(n,q) = 1
since ¢ 1 2. By Dirichlet’s theorem on arithmetic progressions, there exists a prime p such that
p=mn (mod q). Thus p? —2 =n? -2 =0 (mod q), yielding ¢ | p?> — 2. It remains to show that
there exists infinitely many odd primes ¢ that divides n? — 2 for some integer n.

Indeed, suppose for the sake of contradiction that only finitely many such ¢ exists, say ¢, ..., qx.
Then (q1qz ... qx)? — 2 is a large odd number that is not divisible by ¢; for each ¢ < k; contradiction.

Extra. Quadratic reciprocity tells us something stronger: for any ¢ = +1 (mod 8), there exists
an integer n such that ¢ divides n? — 2.
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Solution 1. For any positive integer IV,
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Solution 2. Let L be the expression to be evaluated. Notice the polynomial equality

69 .
X —k X —
LX-1D)(X =2). (X =69) =) —— I —
k=1 1<j<60 2k J
69 . 69 R
B X X - X —
SO | I Sl |
k=1 1<5<69,5#k k=1 1<5j<69,5#k

By Lagrange interpolation, the second summation term on the right hand side is 1. Thus plugging

1
X =0 yields L-(—1)%69! = —1 and thus L = ol & desired.



3: We start by proving a more general statement. Let P is a real orthogonal matrix. Suppose that 1
has multiplicity b as an eigenvalue of P, with b = 0 if 1 is not an eigenvalue of P. Then we claim
that det(P) = (—1)"*?,

Let P is an n x n real orthogonal matrix. Let fp(X) be the characteristic polynomial of P.
Since fp has real coefficients, the complex roots come in complex conjugate pairs. Since P is
orthogonal, the complex roots have absolute value 1. For A € C with |[A\| = 1 and A # %1, note
that A+ A~ € (=2,2). Thus we can write

fr(X) = (X +1)"X - 1)’ J[(X* = e:X +1)

i=1
for some ¢y, ¢y, ...,cx € (—2,2) and a,b € Ny. In particular, fp(0) = (=1)°. On the other hand,
fp(0) = (—=1)"det(P), so we get det(P) = (—1)"*" as desired.

We now go back to the main problem. Since P is orthogonal without eigenvalue 1, we have
det(P) = (—1)". By construction, @ is equal to either PD or DP for some diagonal matrix D
with one entry equal to —1 and all other diagonal entries equal to 1. In particular, () is orthogonal
and det(Q) = — det(P) # (—1)". The inequality, with the above claim, implies that @ has 1 as an
eigenvalue.

4: We present two solutions. Both of them rely on the parallelogram law: for any v, w € R™,

lv +wll* + o — w]|* = 2||v]|* + 2||w]]*.

Solution 1. We proceed by induction on n. The base case n = 1 is obvious, so we skip to the
induction step.

Fix some unit vectors vy, ve,...,v,01 € R™. By induction hypothesis, there exists €,..., €,
d1,y...,0n € {—1,1} such that

lervr + -+ + €uunl| < vV < 0101 + -+ 4 S0

For convenience, write wy = €101 + - - - + €,0, and wy = dv1 + - -+ + 0,V,.

Since ||w1]| < v/n, parallelogram law yields
lwr + vasa | + lwr = vasa|* = 2[wi | + 2[vpga|* < 20 +2-1=2(n +1).

Thus either ||w; + v,1]|? < n+1or ||wy — vu1]*> < n+ 1. In the former case, we take €,,1 = 1,
and in the latter case, we take €,,7 = —1.

Similarly, since ||ws|| < v/n, parallelogram law yields
lwa + vngal|* + lws — vasa | = 2lwal* + 2l vnsa | = 20+ 2+ 1 =2(n + 1).

Thus either ||w; + v,11]]* > n+ 1 or ||wy — vpe1]|> > n+ 1. In the former case, we take 6,41 = 1,
and in the latter case, we take 6,1 = —1.



Solution 2. This time, we just consider the averages of ||e;v1+. .. +€,0,||* across all €1, . .., €, €
{—1,1}. Tt suffices to show that for any vy, vs,...,v, € R™,
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The right hand side is n if the v;’s are unit vectors. In that case, we are done.

Proceed by induction on n. The base case n = 1 is trivial, and the induction step follows from

1
on+1 Z leror + . .. + €nt1vnsa?
€1,eeey 6n+1€{71,1}
1
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1
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1
= — Z Helvl—l—...—i—envnHQ—l— an—HHQ'

: Answer. (In2)> —InwIn2.
For each n > 0, let

Ln:/l/Qn In(cos(mz)/2) dx—/2 In(sin(rx/2")) .

T T

The goal is to evaluate Ly. First by the double angle formula, for any n > 0,

L — /01/2"M e /12m_2 e /12 In(cos(mx/272)) e /12 In(sin(mraz/272)) "

x x x x
1/2™ 1 9 1/2™ 1 ) 2 1 : 2n+2
:/ n(cos(mx)/2) a5 — (In2)? _/ n(cos(mx/2)) daj—/ n(sin(mz/2"*2)) s

0 x 1/2n+1 x 1 x

V2" In(cos(rx) /2) p ) % In(sin(mz/272))
:/ —_— x—(ln2)—/ dx

xZ T
= Lpy1 — (In2)2.

Thus, by induction on n, we get L, = Lo+ n(In2)? for all n > 0. This implies

1/2™ 1 2 2 ] . 2n+1
Lo = lim L, —n(In2)? = lim M dr — n(ln2)? — / n(sin(mz/ )

n—oo n—oo Jq xT 1 x

dzx.

We first approximate the first integral. The function In(cos(rz/2))/x is defined for z € (0,1)
since cos(mx/2) > 0. Furthermore, In(cos0) = 0, so we can apply L’Hopital’s rule and get

1 2 —m/2 - si 2
lim In(cos(rz)/2) = lim ™/2- sin(rz/2) = —Z lim tan(rz/2) = 0.
o0+ x =0+t cos(mx/2) 2 a0+




Thus, we have

1/2™ 1
lim n(cos(mx)/2) dp —
n—oo Jg €T

We now approximate the second integral. Notice that for any = € [1, 2], we have

In(sin(rz/2")) — In(mx/2") = In (511175;7:2/3”)) T Inl = 0.

Since [1, 2] is compact, the above convergence is also uniform, and thus

2 1 : on+1y) _ ] on+1 oo
/ n(sin(mrz/2"*)) — In(rz /271 e 0
1
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Finally, for any n,

n+1
/ ln(mu/Z /hl_ﬂ'dx / ln_xdx_/ (n+1)In2 i
. x

In2
:lnw1n2—i—/ ydy — (n+1)(In2)?
0
1
=In7ln2— 5(1r12)2 —n(In2)%
Thus Ly = —(In7In2 — (In2)?) = {(In2)? — In7In2.

6: We start with two important observations. First, note that g(p) = 1 for all primes p. Since g is
multiplicative, we have g(pips2...pm) = 1 for all m distinct primes pq, pa, ..., pn. That is, we have
g(xz) = 1 whenever z is a squarefree positive integer. Second, notice that ¢(27) = ¢g(169) + 1 = 27.

The main idea of this solution is that we want to find infinitely many pairs of squarefree positive
integers (a, b) such that ged(a,27) = ged(b, 169) = 1 and 27a = 169b+ 1. Indeed, the first condition
and squarefree-ness yield ¢(27a) = ¢(27)g(a) = 27 and ¢(169b) = ¢(169)g(b) = 26. Then the last
equality yields g(169b+ 1) = 27 = g(169b) + 1. It remains to show that there exists infinitely many
pairs of squarefree positive integers (a, b) such that ged(a,3) = ged(b, 13) = 1 and 27a = 169b + 1.

By extended Euclidean algorithm (or guessing), one finds 27 - 25 = 169 - 4 — 1. Thus we can
parametrize the pairs (a, b) such that 27a = 169641 by (a,b) = (169n—25,27n—4) for some positive
integer n. To remove some technicalities, we consider pairs (a,b) of form (3 -13%n — 25,3113 — 4)
instead, so that ged(a,3) = ged(b,13) = 1 is automatic. Let S be the set of n € N such that
3-13%n — 25 and 3* - 13n — 4 are squarefree. Note that ged(3 - 13%n — 25,3* - 13n — 4) = 1, so this
is equivalent to saying that P(n) is squarefree, where P € Z[X] is the polynomial

P(X) = (3-13°X —25)(3* - 13X —4).
The goal now reduces to prove that S is infinite. In fact, we will prove more:

1,X
liminf—|5ﬂ[ , Xl >0
X—o0 X



For each n € (NN [1, X])\ S, by definition, there exists a prime p such that p* | P(n). However,
since P(n) = (3-13%n — 25)(3* - 13n — 4) with ged(3 - 13%n — 25,3% - 13n — 4) = 1, this means that
p? divides either 3 - 13*n — 25 or 3* - 13n — 4. That is, we have

25
3-133

(mod p*) orn=

n (mod p?).

3413

The number of such n in the interval [1, X] is at most 2(| X/p*| +1) = 2X/p*+ O(1). Furthermore,
it is zero if p? > max{3- 133X —25,3*. 13X —4}. In particular, this is true if say p > Cv/X, where
C = 100. The number is also zero if p equals 3 or 13. As a result, by union bound,

(NA[LXD\S < Y <§X+0(1)> < ) %XjLO(\/Y).

Ay hE
On the other hand,
1 1 &K1 2 1 1 7% 169
2 FSit ETite o %6 14
p prime p=>
p#3,13
This implies that
8N X ™ 169 241 w2 10 — 72
liminf =" > 9 - -2 ) =2 T > >0
b X - 6 144 723 3

Extra. Just with a slightly more careful bound, we can get

. SN[ X 1 < 1 1 7 1 1

liminf ——— 20 > 1 -2 = | >1-2(-F+—=——1-=)>-.

Yo X < 4+;(2n—|—1)2 = 178 9) 14
Note that this proof also shows that

hmmf#{n6N:n<X,g(n—i—1) =g(n)+1} -

X—o00 X 0




