
Week 6: Mock Putnam 6

1: Prove that there exists infinitely many primes q that divide p2 − 2 for some prime p.

2: Evaluate
69∑
k=1

1

k

∏
1≤j≤69,j ̸=k

1

k − j
.

3: Let P be a real orthogonal matrix without eigenvalue 1. Let Q be obtained from P by replacing
one of its rows or one of its columns by its negative. Show that Q has 1 as an eigenvalue.

4: Let v1, . . . , vn ∈ Rm be unit vectors. Prove that there exist ϵ1, . . . , ϵn, δ1, . . . , δn ∈ {−1, 1} such that

∥ϵ1v1 + · · ·+ ϵnvn|| ≤
√
n ≤ ∥δ1v1 + · · ·+ δnvn∥,

where ∥ · ∥ denotes the Euclidean norm.

5: Evaluate ∫ 1

0

ln(cos(πx/2))

x
dx−

∫ 2

1

ln(sin(πx/2))

x
dx.

6: Let g : N → N be a multiplicative function such that for any prime p and any m ≥ 1, we have
g(pm) = mpm−1. (Multiplicative means that g(ab) = g(a)g(b) if gcd(a, b) = 1.) Prove that there
are infinitely many integers n such that g(n) + 1 = g(n+ 1).



Week 6: Sketch of proofs

1: We will use Dirichlet’s theorem on arithmetic progressions.

Consider an arbitrary odd prime q that divide n2−2 for some integer n. Note that gcd(n, q) = 1
since q ∤ 2. By Dirichlet’s theorem on arithmetic progressions, there exists a prime p such that
p ≡ n (mod q). Thus p2 − 2 ≡ n2 − 2 ≡ 0 (mod q), yielding q | p2 − 2. It remains to show that
there exists infinitely many odd primes q that divides n2 − 2 for some integer n.

Indeed, suppose for the sake of contradiction that only finitely many such q exists, say q1, . . . , qk.
Then (q1q2 . . . qk)

2−2 is a large odd number that is not divisible by qi for each i ≤ k; contradiction.

Extra. Quadratic reciprocity tells us something stronger: for any q ≡ ±1 (mod 8), there exists
an integer n such that q divides n2 − 2.

2: Answer.
1

69!
.

Solution 1. For any positive integer N ,

N∑
k=1

1

k

∏
1≤j≤N,j ̸=k

1

k − j
=

N∑
k=1

1

k

∏
1≤j<k

1

k − j

∏
k<j≤N

1

k − j

=
N∑
k=1

∏
0≤j<k

1

k − j

∏
k<j≤N

−1

j − k

=
N∑
k=1

(−1)N−k

k!(N − k)!

=
1

N !

N∑
k=1

(−1)N−k

(
N

k

)
=

1

N !

(
(1 + (−1))N − (−1)N−0

(
N

0

))
=

(−1)N+1

N !
.

Solution 2. Let L be the expression to be evaluated. Notice the polynomial equality

L(X − 1)(X − 2) . . . (X − 69) =
69∑
k=1

X − k

k

∏
1≤j≤69,j ̸=k

X − j

k − j

=
69∑
k=1

X

k

∏
1≤j≤69,j ̸=k

X − j

k − j
−

69∑
k=1

∏
1≤j≤69,j ̸=k

X − j

k − j
.

By Lagrange interpolation, the second summation term on the right hand side is 1. Thus plugging

X = 0 yields L · (−1)6969! = −1 and thus L =
1

69!
, as desired.



3: We start by proving a more general statement. Let P is a real orthogonal matrix. Suppose that 1
has multiplicity b as an eigenvalue of P , with b = 0 if 1 is not an eigenvalue of P . Then we claim
that det(P ) = (−1)n+b.

Let P is an n × n real orthogonal matrix. Let fP (X) be the characteristic polynomial of P .
Since fP has real coefficients, the complex roots come in complex conjugate pairs. Since P is
orthogonal, the complex roots have absolute value 1. For λ ∈ C with |λ| = 1 and λ ̸= ±1, note
that λ+ λ−1 ∈ (−2, 2). Thus we can write

fP (X) = (X + 1)a(X − 1)b
k∏

i=1

(X2 − ciX + 1)

for some c1, c2, . . . , ck ∈ (−2, 2) and a, b ∈ N0. In particular, fP (0) = (−1)b. On the other hand,
fP (0) = (−1)n det(P ), so we get det(P ) = (−1)n+b, as desired.

We now go back to the main problem. Since P is orthogonal without eigenvalue 1, we have
det(P ) = (−1)n. By construction, Q is equal to either PD or DP for some diagonal matrix D
with one entry equal to −1 and all other diagonal entries equal to 1. In particular, Q is orthogonal
and det(Q) = − det(P ) ̸= (−1)n. The inequality, with the above claim, implies that Q has 1 as an
eigenvalue.

4: We present two solutions. Both of them rely on the parallelogram law: for any v, w ∈ Rm,

∥v + w∥2 + ∥v − w∥2 = 2∥v∥2 + 2∥w∥2.

Solution 1. We proceed by induction on n. The base case n = 1 is obvious, so we skip to the
induction step.

Fix some unit vectors v1, v2, . . . , vn+1 ∈ Rm. By induction hypothesis, there exists ϵ1, . . . , ϵn,
δ1, . . . , δn ∈ {−1, 1} such that

∥ϵ1v1 + · · ·+ ϵnvn|| ≤
√
n ≤ ∥δ1v1 + · · ·+ δnvn∥.

For convenience, write w1 = ϵ1v1 + · · ·+ ϵnvn and w2 = δ1v1 + · · ·+ δnvn.

Since ∥w1∥ ≤
√
n, parallelogram law yields

∥w1 + vn+1∥2 + ∥w1 − vn+1∥2 = 2∥w1∥2 + 2∥vn+1∥2 ≤ 2n+ 2 · 1 = 2(n+ 1).

Thus either ∥w1 + vn+1∥2 ≤ n + 1 or ∥w1 − vn+1∥2 ≤ n + 1. In the former case, we take ϵn+1 = 1,
and in the latter case, we take ϵn+1 = −1.

Similarly, since ∥w2∥ ≤
√
n, parallelogram law yields

∥w2 + vn+1∥2 + ∥w2 − vn+1∥2 = 2∥w2∥2 + 2∥vn+1∥2 ≥ 2n+ 2 · 1 = 2(n+ 1).

Thus either ∥w1 + vn+1∥2 ≥ n + 1 or ∥w1 − vn+1∥2 ≥ n + 1. In the former case, we take δn+1 = 1,
and in the latter case, we take δn+1 = −1.



Solution 2. This time, we just consider the averages of ∥ϵ1v1+. . .+ϵnvn∥2 across all ϵ1, . . . , ϵn ∈
{−1, 1}. It suffices to show that for any v1, v2, . . . , vn ∈ Rm,

1

2n

∑
ϵ1,...,ϵn∈{−1,1}

∥ϵ1v1 + . . .+ ϵnvn∥2 =
n∑

k=1

∥vk∥2.

The right hand side is n if the vi’s are unit vectors. In that case, we are done.

Proceed by induction on n. The base case n = 1 is trivial, and the induction step follows from

1

2n+1

∑
ϵ1,...,ϵn+1∈{−1,1}

∥ϵ1v1 + . . .+ ϵn+1vn+1∥2

=
1

2n+1

∑
ϵ1,...,ϵn∈{−1,1}

(
∥ϵ1v1 + . . .+ ϵnvn + vn+1∥2 + ∥ϵ1v1 + . . .+ ϵnvn − vn+1∥2

)
=

1

2n+1

∑
ϵ1,...,ϵn∈{−1,1}

2
(
∥ϵ1v1 + . . .+ ϵnvn∥2 + ∥vn+1∥2

)
=

1

2n

∑
ϵ1,...,ϵn∈{−1,1}

∥ϵ1v1 + . . .+ ϵnvn∥2 + ∥vn+1∥2.

5: Answer. 1
2
(ln 2)2 − lnπ ln 2.

For each n ≥ 0, let

Ln =

∫ 1/2n

0

ln(cos(πx)/2)

x
dx−

∫ 2

1

ln(sin(πx/2n+1))

x
dx.

The goal is to evaluate L0. First by the double angle formula, for any n ≥ 0,

Ln =

∫ 1/2n

0

ln(cos(πx)/2)

x
dx−

∫ 2

1

ln 2

x
dx−

∫ 2

1

ln(cos(πx/2n+2))

x
dx−

∫ 2

1

ln(sin(πx/2n+2))

x
dx

=

∫ 1/2n

0

ln(cos(πx)/2)

x
dx− (ln 2)2 −

∫ 1/2n

1/2n+1

ln(cos(πx/2))

x
dx−

∫ 2

1

ln(sin(πx/2n+2))

x
dx

=

∫ 1/2n+1

0

ln(cos(πx)/2)

x
dx− (ln 2)2 −

∫ 2

1

ln(sin(πx/2n+2))

x
dx

= Ln+1 − (ln 2)2.

Thus, by induction on n, we get Ln = L0 + n(ln 2)2 for all n ≥ 0. This implies

L0 = lim
n→∞

Ln − n(ln 2)2 = lim
n→∞

∫ 1/2n

0

ln(cos(πx/2))

x
dx− n(ln 2)2 −

∫ 2

1

ln(sin(πx/2n+1))

x
dx.

We first approximate the first integral. The function ln(cos(πx/2))/x is defined for x ∈ (0, 1)
since cos(πx/2) > 0. Furthermore, ln(cos 0) = 0, so we can apply L’Hopital’s rule and get

lim
x→0+

ln(cos(πx)/2)

x
= lim

x→0+

−π/2 · sin(πx/2)
cos(πx/2)

= −π

2
lim
x→0+

tan(πx/2) = 0.



Thus, we have

lim
n→∞

∫ 1/2n

0

ln(cos(πx)/2)

x
dx = 0.

We now approximate the second integral. Notice that for any x ∈ [1, 2], we have

ln(sin(πx/2n))− ln(πx/2n) = ln

(
sin(πx/2n)

πx/2n

)
n→∞−−−→ ln 1 = 0.

Since [1, 2] is compact, the above convergence is also uniform, and thus∫ 2

1

ln(sin(πx/2n+1))− ln(πx/2n+1)

x
dx

n→∞−−−→ 0.

Finally, for any n,∫ 2

1

ln(πx/2n+1)

x
dx =

∫ 2

1

lnπ

x
dx+

∫ 2

1

lnx

x
dx−

∫ 2

1

(n+ 1) ln 2

x
dx

= lnπ ln 2 +

∫ ln 2

0

y dy − (n+ 1)(ln 2)2

= lnπ ln 2− 1

2
(ln 2)2 − n(ln 2)2.

Thus L0 = −(ln π ln 2− 1
2
(ln 2)2) = 1

2
(ln 2)2 − ln π ln 2.

6: We start with two important observations. First, note that g(p) = 1 for all primes p. Since g is
multiplicative, we have g(p1p2 . . . pm) = 1 for all m distinct primes p1, p2, . . . , pm. That is, we have
g(x) = 1 whenever x is a squarefree positive integer. Second, notice that g(27) = g(169) + 1 = 27.

The main idea of this solution is that we want to find infinitely many pairs of squarefree positive
integers (a, b) such that gcd(a, 27) = gcd(b, 169) = 1 and 27a = 169b+1. Indeed, the first condition
and squarefree-ness yield g(27a) = g(27)g(a) = 27 and g(169b) = g(169)g(b) = 26. Then the last
equality yields g(169b+1) = 27 = g(169b) + 1. It remains to show that there exists infinitely many
pairs of squarefree positive integers (a, b) such that gcd(a, 3) = gcd(b, 13) = 1 and 27a = 169b+ 1.

By extended Euclidean algorithm (or guessing), one finds 27 · 25 = 169 · 4 − 1. Thus we can
parametrize the pairs (a, b) such that 27a = 169b+1 by (a, b) = (169n−25, 27n−4) for some positive
integer n. To remove some technicalities, we consider pairs (a, b) of form (3 · 133n− 25, 34 · 13− 4)
instead, so that gcd(a, 3) = gcd(b, 13) = 1 is automatic. Let S be the set of n ∈ N such that
3 · 133n− 25 and 34 · 13n− 4 are squarefree. Note that gcd(3 · 133n− 25, 34 · 13n− 4) = 1, so this
is equivalent to saying that P (n) is squarefree, where P ∈ Z[X] is the polynomial

P (X) = (3 · 133X − 25)(34 · 13X − 4).

The goal now reduces to prove that S is infinite. In fact, we will prove more:

lim inf
X→∞

|S ∩ [1, X]|
X

> 0.



For each n ∈ (N∩ [1, X]) \S, by definition, there exists a prime p such that p2 | P (n). However,
since P (n) = (3 · 133n− 25)(34 · 13n− 4) with gcd(3 · 133n− 25, 34 · 13n− 4) = 1, this means that
p2 divides either 3 · 133n− 25 or 34 · 13n− 4. That is, we have

n ≡ 25

3 · 133
(mod p2) or n ≡ 4

34 · 13
(mod p2).

The number of such n in the interval [1, X] is at most 2(⌊X/p2⌋+1) = 2X/p2+O(1). Furthermore,
it is zero if p2 > max{3 · 133X − 25, 34 · 13X − 4}. In particular, this is true if say p > C

√
X, where

C = 100. The number is also zero if p equals 3 or 13. As a result, by union bound,

|(N ∩ [1, X]) \ S| ≤
∑

p<C
√
X

p ̸=3,13

(
2

p2
X +O(1)

)
≤
∑

p prime
p ̸=3,13

2

p2
X +O(

√
X).

On the other hand,

∑
p prime
p ̸=3,13

1

p2
≤ 1

4
+

∞∑
p=5

1

p2
=

1

4
+

π2

6
− 1− 1

9
− 1

16
=

π2

6
− 169

144
.

This implies that

lim inf
X→∞

|S ∩ [1, X]|
X

≥ 1− 2

(
π2

6
− 169

144

)
=

241

72
− π2

3
>

10− π2

3
> 0.

Extra. Just with a slightly more careful bound, we can get

lim inf
X→∞

|S ∩ [1, X]|
X

≥ 1− 2

(
1

4
+

∞∑
n=2

1

(2n+ 1)2

)
≥ 1− 2

(
1

4
+

π2

8
− 1− 1

9

)
>

1

4
.

Note that this proof also shows that

lim inf
X→∞

#{n ∈ N : n < X, g(n+ 1) = g(n) + 1}
X

> 0.


