
Solutions to the Combinatorics Problems

1: Find the number of words of length n on the alphabet {0, 1} with exactly m blocks of the form 01.

Solution: There are n − 1 locations between the digits in such a word. Let us call a location at which the
digits switch (either from 0 to 1 or from 1 to 0) a switch-location. For a word of the required form which
starts and ends with a 1, there must be 2m switch-locations (with every second switch-location giving a 01-

block) so there are
(

n−1
2m

)
such words. For a word of the required form which starts with a 1 and ends

with a 0, there must be 2m + 1 switch-locations, so there are
(

n−1
2m+1

)
such words. A word that starts with

0 and ends with 1 must have 2m − 1 switch-locations, so there are
(

n−1
2m−1

)
such words, and a word that

starts and ends with 0 must have 2m swith-locations, so there are
(

n−1
2m

)
such words. Altogether there are(

n−1
2m

)
+
(

n−1
2m+1

)
+
(

n−1
2m−1

)
+
(

n−1
2m

)
=
(

n
2m+1

)
+
(

n
2m

)
=
(

n+1
2m+1

)
such words.

Alternatively, a nice trick is to note that if we append a 1 to the beginning and a 0 to the end of a word
of the required form, then the new word will be of length n + 2 and will still have m 01-blocks; there will be
n+ 1 locations between the digits in the word, and 2m+ 1 of these locations will be switch-locations, so there

are
(

n+1
2m+1

)
such words.

2: Find the number of words of length n on the alphabet {0, 1, 2, 3} with an even number of zeros.

Solution: Let an be the number of words of length n with an even number of 0’s, and let bn be the number of
words of length n with an odd number of 0’s. Note that any word of length n + 1 with an even number of 0’s
can be obtained either by appending a 1, 2 or 3 to the end of a word of length n with an even number of 0’s, or
by appending a 0 to the end of a sequence of length n with an odd number of 0’s, and so we have the recurrence
relation an+1 = 3an + bn. Similarly, we have and bn+1 = an + 3bn. The first few values of an and bn are listed
below.

n 1 2 3 4 · · ·
an 3 10 36 136 · · ·
bn 1 6 28 120 · · ·

We can combine the recurrence formulas for {an} and {bn} to get a single recurrence formula for {an} as follows.

an+2 = 3an+1 + bn+1 = 3an+1 + (an + 3bn) = 3an+1 − 8an + (9an + 3bn) = 3an+1 − 8an + 3an+1 = 6an+1 − 8an

To solve this, we solve its characteristic equation λ2 − 6λ+ 8 = 0 to get λ = 2, 4, so the formula for an is of the
form an = A · 2n +B · 4n. Put in n = 1 and n = 2 to get 2A+ 4B = 3 and 4A+ 16B = 10. Solve these to get
A = B = 1

2 , and so we have an = 1
2

(
2n + 4n

)
.

3: Find the number of words of length n on the alphabet {0, 1, 2} such that neighbours differ by at most 1.

Solution: Let an be the number of such words that end with 0, let bn be the number of such words that end
with 1, let cn be the number of such words that end with 2, and let xn be the total number of such words, so
xn = an + bn + cn. By interchanging 0’s and 2’s we obtain a bijection between the set of words of the required
form that end with 0 with the set of such words that end with 2, and so we have an = cn and xn = 2an + bn.
Note that a1 = b1 = 1, and we have the recursion an+1 = an + bn and bn+1 = an + bn + cn = 2an = xn. The
first few values are listed below.

n 1 2 3 4 5 · · ·
an 1 2 5 12 29 · · ·
bn 1 3 7 17 41 · · ·
xn 3 7 17 41 99 · · ·

We can combine these paired recurrence formulas for {an} and {bn} to get a single one for {bn} as follows.

bn+2 = 2an+1 + bn+1 = 2(an + bn) + bn+1 = (2an + bn) + bn + bn+1 = bn+1 + bn + bn+1 = 2bn+1 + bn .

To solve this, we solve its characteristic equation λ2−2λ−1 = 0 to get λ = 1±
√

2, so the formula for bn is of the
form bn = A(1+

√
2)n+B(1−

√
2)n (∗). Extend the sequence {bn} to include b0 = 1 (so the recurrence relation is

still satisfied), then put n = 0 and n = 1 into equation (∗) to getA+B = 1 (1) andA(1+
√

2)+B(1−
√

2) = 1 (2).



Solve equations (1) and (2) to get A = B = 1
2 , and so bn = 1

2

(
(1 +

√
2)n + (1 −

√
2)n
)
. Thus the number of

words of the required form is xn = bn+1 = 1
2

(
(1 +

√
2)n+1 + (1−

√
2)n+1

)
.

4: Find the number of words on the alphabet {0, 1, 2} with no neighbouring zeros.

Solution: This is similar to problem 3. The answer is

1
6

(
(3 + 2

√
3)(1 +

√
3)n + (3− 2

√
3)(1−

√
3)n
)
.

5: Find the number of subsets of {1, 2, · · · , n} which do not contain two successive numbers.

Solution: Given a subset A ⊂ {1, 2, · · · , n} we associate the word e1e2 · · · e3 on {0, 1} given by ek =

{
1 if k ∈ A
0 if k /∈ A

.

Note that A contains two successive numbers if and only if the word has a block of the form 11. Thus the required
number of subsets is equal to the number of words of length n on {0, 1} with no 11-blocks. Let an be the number
of such words that end with 0, let bn be the number of such words that end with 1, and let xn be the total
number of such words so xn = an + bn. Then a1 = b1 = 1 and we have the recurrence formulas an+1 = an + bn
and bn+1 = an, so xn = an+1. We combine these to get an+2 = an+1 + bn+1 = an+1 + an, so we see that
an = fn+1 and so xn = fn+2, where fn denotes the nth Fibonacci number. Solving the recursion formula for

the Fibonacci numbers gives fn = 1√
5

((
1+
√
5

2

)n
−
(

1−
√
5

2

)n)
, so xn = 1√

5

((
1+
√
5

2

)n+2

−
(

1−
√
5

2

)n+2
)

.

Alternatively, if A contain n, then it does not contain n− 1 and the rest of A is a subset of {1, 2, . . . , n− 2}
with no successive numbers. If A does not contain n, then A is a subset of {1, 2, . . . , n− 1} with no successive
numbers. Hence an = an−1 + an−2.

6: Find the number of ways to choose two disjoint nonempty subsets from the set {1, 2, · · · , n}.
Solution: To a given ordered pair (A,B) of disjoint subsets A,B ⊂ {1, 2, · · · , n}, we associate the word e1e2 · · · en
on {0, 1, 2} given by

ek =


0 if k /∈ A ∩B
1 if k ∈ A
2 if k ∈ B

.

We have A = ∅ if and only if the associated word is a word on {0, 1}, and B = ∅ if and only if the associated
word is a word on {0, 2}. Of the 3n words of length n, there are 2n which are words on {0, 1} and 2n which are
words on {0, 2}, and only 1 which is a word on {0}. Thus the number of ordered pairs of disjoint subsets of
{1, 2, · · · , n} is equal to 3n−2 ·2n +1, and so the number of unordered pairs of disjoint subsets is 1

2 (3n +1)−2n.
Alternatively, for each k = 1, . . . , n−1, there are

(
n
k

)
ways to choose the first subset to have size k and then

2n−k − 1 ways to choose the second subset to be disjoint. Summing over k and dividing by 2 for overcounting
gives the desired result.

7: Find the number of surjective maps from the set {1, 2, 3, 4, 5, 6} to the set {1, 2, 3, 4}.
Solution: Note first that there are nk maps from any set of k elements to any set of n elements, (since there are
n choices for the image of each of the k elements), but some of these maps are not surjective. Let A be a set
with k elements and let B = {b1, b2, · · · , bn} be a set with n elements. For each i = 1, · · · , n, let Bi = B \ {bi}.
Note that a map from A to B is not surjective when its image lies in one of the subsets Bi. Let Si be the set
of maps from A to Bi. Note that for i < j, Si ∩ Sj is the set of maps from A to Bi ∩ Bj = B \ {i, j}, and for
i < j < k, Si ∩ Sj ∩ Sk is the set of maps from A to B \ {i, j, k}, and so on. By the remark made in our first
sentence, we have |Si| = (n− 1)k, |Si ∩ Sj | = (n− 2)k, |Si ∩ Sj ∩ Sk| = (n− 3)k and so on. By the Principle of
Inclusion and Exclusion, the total number of non-surjective maps from A to B is

|S1 ∪ · · · ∪ Sn| =
∑
i

|Si| −
∑
i<j

|Si ∩ Sj |+
∑

i<j<k

|Si ∩ Sj ∩ Sk| − · · ·

=
(
n
1

)
(n− 1)k −

(
n
2

)
(n− 2)k +

(
n
3

)
(n− 3)k − · · · ±

(
n

n−1

)
(1)k

Thus the number of surjective maps from A to B is

nk −
(
n
1

)
(n− 1)k +

(
n
2

)
(n− 2)k −

(
n
3

)
(n− 3)k + · · · ±

(
n

n−1

)
(1)k



In particular, when k = 6 and n = 4, there are 46 − 4 · 36 + 6 · 26 − 4 · 16 = 4096− 2916 + 384− 4 = 1560.

8: Find the number of permutations of order 6 in the group of all permutations of {1, 2, · · · , 8}.
Solution: Given distinct elements a1, a2, · · · , al ∈ {1, 2, · · · , n}, we write (a1, a2, · · · , al) for the permutation σ of
{1, 2, · · · , n} defined by σ(a1) = a2, σ(a2) = a3, · · · , σ(al−1) = al and σ(al) = a1 and σ(k) = k if k 6= ai for any
i. Such a permutation is called a cycle of length l. Two cycles (a1, · · · , ak) and (b1, · · · , bl) are called disjoint
when ai 6= bj for any i, j. The following facts are well known and not difficult to prove.

1. Every permutation of {1, 2, · · · , n} is a product of disjoint cycles, and the product is unique up to the
order of the cycles and the cyclic ordering of the elements in each cycle.

2. The order of a product of disjoint cycles is the least common multiples of their lengths.
We illustrate how to count the number of permutations of {1, 2, · · · , n} which are equal to a product of disjoint
cycles of specified lengths, by finding the number of permutations of {1, 2, · · · , 26} of the form

(abcdef)(ghij)(klmn)(opq)(rst)(uvw) .

There are
(
26
6

)
ways to choose the 6 unordered elements a, b, c, d, e, f . We can take a to be the smallest of

these, then there are 5! ways to choose the remaining 5 ordered elements b, c, d, e, f . Next there are
(
20
8

)
ways

to choose the next 8 unordered elements g, h, i, j, k, l,m, n. We take g to be the smallest of these 8, then there
are 7 · 6 · 5 ways to choose the ordered elements h, i, j, then we take k to be the smallest of the 4 elements
k, l,m, n, and then there are 3 · 2 · 1 ways to choose the ordered elements l,m, n. Finally, there are

(
12
9

)
ways to

choose the unordered elements o, p, q, r, s, t, u, v, w, we take o to be the smallest, there are 8 · 7 choices for p, q,
we take r to be the smallest of the 6 elements r, s, t, u, v, w, there are 5 · 4 choices for s, t, then we take u to be
the smallest of u, v, w and there are 2 · 1 choices for v, w. Thus the total number of permutations of the above
form is equal to (

26

6

)
5 · 4 · 3 · 2 · 1

(
20

8

)
7 · 6 · 5 · 3 · 2 · 1

(
12

9

)
8 · 7 · 5 · 4 · 2 · 1 .

Using this counting method, we now count the total number of permutations of {1, 2, · · · , 8} of order 6. We
make a table showing all possible forms for such permutations, and the number of permutations of each form.

form no. of elements

(abc)(de)
(
8
3

)
· 2 ·

(
5
2

)
= 1120

(abc)(de)(fg)
(
8
3

)
· 2 ·

(
5
4

)
· 3 = 1680

(abc)(def)(gh)
(
8
6

)
· 5 · 4 · 2 = 1120

(abcdef)
(
8
6

)
· 5! = 3360

(abcdef)(gh)
(
8
6

)
· 5! = 3360

Thus the total number is 1120 + 1680 + 1120 + 3360 + 3360 = 10640.



9: (a) Into how many regions do n great circles divide the surface of a sphere, given that no three of the great
circles intersect at a point?

Solution: Each of the
(

n
2

)
pairs of great circles intersect in two points, so the total number of points (or vertices)

is V = 2
(

n
2

)
= n(n− 1). Each of the n great circles meets each of the other (n− 1) great circles at two points,

so there are 2(n− 1) points along each great circle, so each great circle is divided into 2(n− 1) arcs (or edges),
and the total number of edges is E = 2n(n−1) = 2V . The Euler characteristic of the sphere is χ = 2 so we have
V −E+F = 2 where F is the required number of regions (or faces). Thus F = E−V + 2 = V + 2 = n2−n+ 2.

(b) Into how many regions do n spheres divide space, given that any two of the spheres intersect along a circle,
no three intersect along a circle, and no four intersect at a point?

Solution: Let an denote the required number of regions. Note that a1 = 2 and a2 = 4. When we add an (n+1)st

sphere, it intersects the other n spheres along n circles, each pair of which intersect at two points and no 3 of
which intersect at a point. By the proof of part (a) (with every occurrence of the word “great” removed) these
n circles divide the (n+ 1)st sphere into n2 − n+ 2 regions. Each of the regions corresponds to a subdivision of
a region in space into two parts, so we obtain the following recursion formula:

an+1 = an + (n2 − n+ 2) .

Thus we have

an = 2 + 2 + 4 + · · ·+ ((n− 1)2 − (n− 1) + 2) =

n−1∑
k=0

k2 − k + 2 .

Evaluate this sum to get an =
n(n2 − 3n+ 8)

3
.

10: Find the number of paths in the set
{

(x, y) ∈ Z2
∣∣0 ≤ y ≤ x

}
which move always to the right or upwards from

the point (0, 0) to the point (n, n).

Solution: First we solve the easier problem of finding the number of paths in Z2 which move always to the right
and upwards from the point (a, b) to the point (a + k, b + l). Such a path consists of k + l steps with k of the
steps to the right and l of the steps upwards, so it corresponds in a natural way to a word of length k + l on
{r, u} with k r’s and l u’s (with each r indicating a step to the right and each u indicating a step upwards).

There are
(

k+l
k

)
such words, and hence the same number of such paths.

Now we return to the given problem. From the previous paragraph we know that there are
(
2n
n

)
paths

from (0, 0) to (n, n) (moving upwards and to the right). Let us call such a path good if it remains below or
touches the line y = x, and let us call such a path bad if it crosses the line y = x, that is if it touches the line
y = x+ 1. We must count the number of good paths.

There is a lovely trick which helps us to count the number of bad paths. Given a bad path from (0, 0) to
(n, n) we associate a path from (−1, 1) to (n, n) as follows: find the first point p where the bad path touches the
line y = x+ 1 and reflect the initial portion of the bad path (the portion from (0, 0) to p) in the line y = x+ 1
to obtain a path from (−1, 1) to (n, n). Notice that we can recover the given bad path from the resulting path
by performing the same operation, and so this gives a bijective correspondence between the set of bad paths
from (0, 0) to (n, n) and the set of all paths from (−1, 1) to (n, n). By the result of the first paragraph there are(

2n
n+1

)
such paths. Thus the total number of good paths from (0, 0) to (n, n) is

(
2n
n

)
−
(

2n
n+1

)
= 1

n+1

(
2n
n

)
.

11: 2n distinct points lie on a circle. In how many ways can the points be paired so that when all pairs are joined
by line segments, then resulting n line segments are disjoint.

Solution: Let cn denote the number of ways that 2n points on a circle can be paired so that the various line
segments joining the pairs do not cross. Let a1 be one of the 2n points, and let a2, a3, · · · , a2n be the rest of the
points in order around the circle (say clockwise). Note that a1 cannot be paired with ak for k odd, since if it were
then we would have an odd number of points a2, a3, · · · , ak−1 between a1 and ak, one of which would have to be
paired with a point on the other side of the line segment a1ak. Thus a1 can only be paired with a2, a4, · · · , a2n.
When a1 is paired with a2k, the 2(k−1) points a2, a3, · · · , a2k−1 points must be paired amongst themselves and



there are ck−1 ways to do this, and the 2(n − k) points ak+1, ak+2, · · · a2n must be paired amongst themselves
and there are cn−k ways to do this. Thus, setting c0 = 1, we have the following recurrence relation for {cn}:

cn = c0cn−1 + c1cn−2 + c2cn−3 + · · ·+ cn−1c0 .

The first few values are as follows
n 0 1 2 3 4 · · ·
cn 1 1 2 5 14 · · ·

To solve this recurrence relation, let f(x) = c0 + c1x+ c2x
2 + · · ·. Then

f(x)2 = (c0c0) + (c0c1 + c1c0)x+ (c0c2 + c1c1 + c2c0)x2 + · · · = c1 + c2x+ c3x
2 + · · ·

and so we have x f(x)2 = f(x) − 1. By the quadratic formula, we have f(x) =
1±
√

1− 4x

2x
. In order to

have lim
x→0

f(x) = c0, we must use the negative sign, so f(x) =
1−
√

1− 4x

2x
. Using the binomial expansion

(1− x)1/2 = 1−
∞∑

n=1

2
n

(2n−2)!(
2n(n−1)!

)2 we obtain

f(x) =
1

2x

(
1−
√

1− 4x
)

=
1

2x

∞∑
n=1

2

n

(
2n− 2

n− 1

)
xn =

∞∑
n=1

1

n

(
2n− 2

n− 1

)
xn−1 =

∞∑
n=0

1

n+ 1

(
2n

n

)
xn .

Thus we obtain cn = 1
n+1

(
2n
n

)
. These numbers cn are called the Catalan numbers.

It seems a most remarkable coincidence that this problem has the same answer as the previous problem.
There is a wonderful way to see why this relationship holds. Given a pairing of the 2n points a1, a2, · · · , a2n
on the circle, connect them by nonintersecting line segments then form a word e1e2 · · · e2n on {r, u} as follows.
Begin at a1 and set e1 = r, then move clockwise around the circle visiting the vertices a2, a3, · · ·. When we
arrive at the vertex ak, which is an end point of some line segment, set ek = r if it is the first time that we have
visited this line segment, and set ek = u if it is the second time we have visited the line segment. Convince
yourself that this word corresponds to a good path from (0, 0) to (n, n) and that the correspondence is bijective.

12: In how many ways can you triangulate a convex n-gon?

Solution: Let tn denote the number of such triangulations. Note that t3 = 1. Label the vertices of a given
convex n-gon by a1, a2, · · · , an in order around the edge (say clockwise). Consider the edge a1a2. It must be
an edge of a triangle in any triangulation. If a1a2a3 is a triangle in some triangulation, then the (n − 1)-gon
a1a3a4 · · · an will be triangulated (by that same triangulation); if a1a2an is a triangle in some triangulation then
the (n − 1)-gon a2a3 · · · an will also be triangulated; and if a1a2ak is a triangle in some triangulation where
3 < k < n, then both the (k− 1)-gon a2a3 · · · ak and also the (n− k+ 2)-gon akak+1 · · · an will be triangulated.
Thus, setting t2 = 1, we obtain the following recurrence formula for {tn}:

tn = t2tn−1 + t3tn−2 + t4tn−3 + · · ·+ tn−1t2 .

This is the same recursion formula satisfied by the Catalan numbers, but with the indices shifted by 2, so we

have tn = cn−2 = 1
n−1

(
2n−4
n−2

)
.


