2013 IEEE Congress on Evolutionary Computation
June 20-23, Cancun, México

A Parallel Genetic Algorithm with Edge Assembly
Crossover for 100,000-City Scale TSPs

Kazuma Honda
Interdisciplinary Graduate School of
Science and Engineering,
Tokyo Institute of Technology,
Yokohama, Japan

Email: khonda@ic.dis.titech.ac.jp

Abstract—In this paper, we propose a new parallel genetic
algorithm (GA) with edge assembly crossover (EAX) for the
traveling salesman problem (TSP). GA with EAX (GA-EAX)
is one of the promising meta-heuristics for TSP and found
best-known tours for several well-known 100,000-city scale TSP
instances. However, it takes about ten days to execute this GA
just one time using the default configuration on the 120,000-city
instance [1]. Therefore, it is crucial to reduce the running time
of GA-EAX for 100,000-city scale instances in order to make
it possible to improve the algorithm through trial and error.
The proposed parallel GA achieves about twenty-times speed up
without deteriorating the quality of solutions compared to the
original GA-EAX. We also demonstrate that the proposed parallel
GA successfully finds new best-known tours for the 120,000-city
and 180,000-city instances called vangogh120K and courbet180K,
respectively.

I. INTRODUCTION

The traveling salesman problem (TSP) is one of the typical
combinatorial optimization problems. The objective of TSP is
to find the shortest Hamilton cycle in a weighted complete
graph. Since TSP is not only intuitive but also NP-hard,
this problem is often used as an ideal platform for testing
new meta-heuristics approaches. There are various benchmark
instances of TSP. For example, Art TSPs (http://www.tsp.
gatech.edu/data/art/index.html) consists of instances with sizes
ranging from 100,000 to 200,000.

As far as we know, there are two promising approaches
that have been applied to 100,000-city scale instances like Art
TSPs. The first approach is based on the Lin-Kernighan (LK)
algorithm [2] and the Iterated Local Search [3]. The Chained
LK [4] and LKH-2 [5] are well-known implementations of
this approach. LKH-2 is known as one of the most effective
heuristic algorithms for finding very high-quality tours. The
second approach is based on genetic algorithms (GAs). Hybrid
GAs called memetic algorithms (MAs) that combine GAs
with the LK algorithm have been studied [6]-[9]. [7] and [8]
parallelize MA with QBX crossover and the LK algorithm
and the hybrid GA based on the coarse-grained model [10],
respectively. The GA with edge assembly crossover (GA-EAX)
has shown good performance for up to 200,000-city instances
[1]. It has been reported that GA-EAX finds better solutions
than LKH-2 with shorter running time for almost instances [1].

GA-EAX consists of two stages called GA-EAX/Stagel
and GA-EAX/Stage2. GA-EAX/Stagel employs a crossover

978-1-4799-0454-9/13/$31.00 ©2013 IEEE

Yuichi Nagata
Education Academy of
Computational Life Science,
Tokyo Institute of Technology,
Yokohama, Japan
Email: nagata@acls.titech.ac.jp

1278

Isao Ono
Interdisciplinary Graduate School of
Science and Engineering,
Tokyo Institute of Technology,
Yokohama, Japan

Email: isao@dis.titech.ac.jp

operator called EAX-Single in order to improve population
members (tours) while maintaining the population diversity
as high as possible. EAX-Single exchanges edges locally
between two parent tours. On the other hand, GA-EAX/Stage?2
employs a crossover operator called EAX-Block2 in order to
improve the population members obtained after invoking GA-
EAX/Stagel. EAX-Block2 exchanges edges globally between
two parent tours. GA-EAX was applied to Art TSPs and
improved the best-known tours for all the instances. However,
it takes about ten days to execute this GA just one time using
the default configuration on the 120,000-city instance [1]. This
means that it is almost impossible to develop an algorithm of
GA-EAX suitable for 100,000-city scale instances through trial
and error and to apply GA-EAX to more large-scale instances.
Therefore, it is crucial to reduce the running time of GA-EAX
for 100,000-city scale instances in order to make it possible
to improve the algorithm through trial and error. We believe
that the running time should be less than one day if we wish
to develop an algorithm through trial and error. Since GA-
EAX/Stagel consumes 90% of the running time of GA-EAX,
GA-EAX/Stagel should be speeded up more than ten-times
faster.

The master/worker model is a promising parallel model
for speeding up an optimization method without performance
degradation because it is not necessary to modify its search
algorithm. The master/worker model can be applied to an
optimization method if the optimization method includes pro-
cedures that are performed independently to each other and
whose running time is much longer than that of the rest proce-
dures [11]. For example, evaluation procedures are parallelized
based on the master/worker model in existing parallel GAs
[10], [12].

Most of the running time of GA-EAX/Stagel is spent
in the procedure for generating offspring solutions. In fact,
this procedure can be easily parallelized because a number
of parents’ pairs generate offspring solutions independently.
However, if we parallelize this procedure by the master/worker
model, the total communication time between the master node
and the worker nodes becomes longer than the running time
required for generating offspring solutions because the data
size of individuals that must be transferred is too large in
100,000-city scale instances. This means that the running
time after parallelization becomes longer than that before
parallelization. Therefore, it is difficult to speed up GA-

EAX/Stagel by parallelization without modifying the original
search algorithm.

In this paper, we propose a new parallel GA with EAX-
Single in order to reduce the running time to less than one day
without deteriorating the quality of solutions in 100,000-city
scale TSP instances. We demonstrate that the proposed parallel
GA achieves about twenty-times speed up without deteriorat-
ing the solution quality of the original GA-EAX/Stagel in all
Art TSPs instances [1]. We also demonstrate that the proposed
parallel GA successfully finds new best-known tours for the
120,000-city and 180,000-city instances called vangogh120K
and courbet180K, respectively.

This paper is organized as follows. Section II introduces
the algorithm of GA-EAX/Stagel. In section III, we consider
parallelizing GA-EAX/Stagel by the master/worker model
without modifying the original algorithm and point out that the
running time of the parallelized GA-EAX/Stagel will become
longer than that of the original implementation. In section IV,
we propose a new parallel GA with EAX-Single. Section V
compares the performance of the proposed parallel GA with
that of the original GA-EAX/Stagel. Section VI is discussion
in which we try to find new best-known tours of Art TSPs
instances. Section VII concludes this paper.

II. ALGORITHM OF GA-EAX/STAGE1

GA-EAX consists of two phases: GA-EAX/Stagel and
GA-EAX/Stage?2. In this paper, we consider to parallelize GA-
EAX/Stagel because its running time is about 90% of the total
running time of GA-EAX. In this section, we briefly explain
the crossover operator called EAX-Single and the generation
alternation model used in GA-EAX/Stagel. We refer to the
reader to the original paper [1] for more details.

A. EAX-Single

EAX generates more than one offspring solutions from a
single pair of parents and EAX-Single is a variant of EAX.

Algorithm 1 shows the algorithm of EAX-Single, which
generates an offspring solution y from a single pair of parents,
pa and pp. Then, py and pp play a role of an acceptor
and a donor, respectively. EAX-Single replaces some edges
of pa with those of pg. Let Es, Eg and E, be sets of the
edges of pa, pp and y, respectively. After step 5, an obtained
intermediate solution y often consists of several subtours and
it is modified into a tour in step 6. In order to generate more
than one offspring solutions from the same pair of parents,
steps 3—6 are repeated, choosing a different AB-cycle in step
4.

B. Generation Alternation Model of GA-EAX/Stagel

Algorithm 2 shows the generation alternation model of GA-
EAX/Stagel. Let Ny, and Nyiqs be the population size and
the number of offspring solutions generated from a single pair
of parents, pa and pg, respectively. The values of Ny, and
Niiqgs are 300 and 30, respectively, in the default configuration
of GA-EAX/Stagel [1]. The edge frequency table F'(e) is a
table that records the frequencies of each edge e € E included
in the population, where E is the edge set of the complete
graph of a given TSP instance. The values of F'(e) (e € E) are

1279

Algorithm 1 EAX-Single

1: Generate an undirected multigraph defined as Gap =
(V,Ex U EpR).

2: Extract AB-cycles from Gap by repeating a procedure of
traversing edges of E/o and ones of Ep alternatively in
G ap until an AB-cycle is obtained. Here, an AB-cycle is
defined as a cycle in Gap, such that edges of Fs and
ones of Ep are alternately linked.

3: Copy parent pa to intermediate solution y: y < pa.

4: Choose an AB-cycle from the set of AB-cycles randomly.

5: Generate an intermediate solution by removing the edges
of E4 in the chosen AB-cycle from the intermediate
solution y and adding those of E in the AB-cycle to
Y.

6: Connect all the subtours in the intermediate solution y to
generate an offspring solution y (a single tour) by using a
local search heuristic.

Algorithm 2 The generation alternation model of GA-
EAX/Stagel

1: (Initialization of Population) Generate an initial popu-
lation that consists of N, individuals by using a local
search heuristics with the 2-opt operator. Then, initialize
the number of generation, g < 0, and the edge frequency
table F'(e) so as to record the frequencies of each edge
included in the initial population. Let the population P9
be the initial population.
2: (Mating Selection) Re-label the indices of the population
members randomly. Let x; be the ith individual in the
population P9 (i € {1,..., Npop})-
3: for i <— 1 to Ny, do
. (pa,pB) ¢ (w4, 2441), where xn, 11 = 1.
5. (Offspring Generation) Generate offspring solutions
{yla B ayNkids} by EAX_Single(pAapB)~

6: (Survival Selection) Select the best individual y* from
{Y1, - YNia.s PA } in terms of the evaluation function.
Then, replace x; (= pa) in P9 with the selected
individual y*. Update the edge frequency table F'(e)
using x; and y*.

7: end for

8: (Termination Condition Check) If the termination con-
dition described in section II-B is not satisfied, then
g < g+ 1 and go to step 2.

initialized in step 1 and are used in the evaluation function for
selecting offspring solutions in step 6. This evaluation function
is based on the edge entropy measure computed from F'(e) and
is used for maintaining the population diversity in a positive
manner. Let y* be the selected individual in step 5, which
replaces the population member chosen as parent ps. The
values of F'(e) are updated in step 6 as follows:

F(e) + F(e) —1 Ve € Eremoves
F(e) <—F(€)+1 Ve € Eadd7
where Elomove 15 a set of the edges that are included in ps but

not included in y*, E,qq is a set of the edges that are included
in y* but not included in pa.

In step 6 of Algorithm 2, the offspring y* is selected, taking
account of the balance between the amount of the improvement

and loss of the population diversity. Let L be the average
tour length of the population and H the edge entropy of the
population defined as follows:

H == F(e)/Noop(log(F(¢)/Npop))- M
ecl
AL(y) and AH(y) denote the differences in L and H,
respectively, when x; (pa) is replaced with y* in step 6 of
Algorithm 2. The offspring y* is selected so that the following
evaluation function is maximized.

AL(y)
AT () (AL < 0,AH <0)

2
_AL) (AL < 0,AH > 0), @

“ALl) (AL >0)

where y is an offspring solution and e is a sufficiently small
positive number.

Evalgn(y) :=

GA-EAX/Stagel is terminated when the best solution in
the population does not improved for a predefined period of
generations Ngiag.

III. DIFFICULTY IN PARALLELIZATION OF
GA-EAX/STAGE1

In this section, we consider to parallelize GA-EAX/Stagel
by the master/worker model [11] in order to reduce its run-
ning time without deteriorating the original performance. The
master/worker model enables us to parallelize GA-EAX/Stagel
without changing the original search algorithm, but this paral-
lelization has a drawback as described later.

In section III-A, we measure the running time of each
procedure of GA-EAX/Stagel to identify which procedure
occupies the largest portion of the total running time. In section
III-B, we design a master/worker model of GA-EAX/Stagel in
which the procedures identified in section III-A are executed in
parallel on worker nodes to speed up GA-EAX/Stagel without
modifying the original search algorithm. Then, we point out
that the running time of GA-EAX/Stagel parallelized by this
master/worker model becomes longer than that of the original
GA-EAX/Stagel running on only a single node.

A. Measuring Running Time

We measure the running time of each procedure in GA-
EAX/Stagel to identify procedures that have large portion of
the total running time. Since our objective is to parallelize GA
procedures, we do not measure the running time of step 1 of
Algorithm 2.

We use the 120,000-city instance named vangoghl20K
from the Art TSPs for benchmarking. We use the default
configuration for setting the parameters of GA-EAX/Stagel:
Npop = 300 and Nyigqs = 30. According to this configuration,
300 x 30 offspring solutions are generated in each generation
where one generation refers to one iteration of steps 2-8 of
Algorithm 2. We execute GA-EAX/Stagel on the environment
shown in Appendix A.

The measured running time of each procedure is as follows:

e The running time of mating selection (Step 2):
less than 1 [msec]

1280

(2) Sending Parent Pair
(4) Receiving Offspring

- - N S (- N
((1) Mating Selection and) FEEER BT B EAX
Making Parent Pairs Asing\e
04| E00EO)

(e @ -5-{~ @) e
H =, Single

[0 o)
| COEOD)

H A)\Smgle
ooz} R(casz0))

Worker Threads

(3) Offspring Generation

Population P°
(Current Generation)

(5) Survival Selection

>|:| Update
v~ 00D

Selection

~N

Population qu
(Next Generation) _

Main Thread

YT

Master Node

Communication Threads

-

Worker Nodes

Fig. 1. Diagram of parallelized GA-EAX/Stagel based on the master/worker
model. The blue and yellow circles are the population members of the current
and next generations, respectively. The red circles are offspring solutions
generated by EAX-Single. The green square is the edge frequency table F'.
Ny corresponds to Nyiqs in Algorithm 2.

e The running time of offspring generation (Step 5):
10,596 [msec]

e The running time of survival selection (Step 6):
88 [msec]

e The total running time of one generation:
10,684 [msec]

In the next section, we discuss the effect of the parallelization
by the master/worker model based on the obtained results.

B. Parallelizing GA-EAX/Stagel by Master/Worker Model

As shown in steps 4 and 5 of Algorithm 2, the procedure of
offspring generation can be executed independently for each
pair of parents (pa,pp) = (¥, Tit1), ¢ € {1,..., Npop}-
On the other hand, the procedure of survival selection in step
6 cannot be executed independently for each pair of parents
because the edge frequency table F' has to be updated every
time individual x; (selected as parent pa) in the population is
replaced with the selected individual y*. Therefore, we con-
sider a master/worker model in which multiple worker nodes
execute the procedure of offspring generation in parallel and
the master node executes the procedures of mating selection
and survival selection as shown in Fig. 1. The main thread
and multiple communication threads work cooperatively on
the master node. Each communication thread communicates
with the corresponding worker node.

The master node sends a pair of parents to each worker
node and each worker node returns all the generated offspring
solutions to the master node. It takes 1.25 [msec] to send an
individual between two nodes in the environment described
in the previous section. Hence, in the default configuration
of GA-EAX/Stagel, the total communication time from the
master node to the worker nodes per generation is

1.25 x 300 x 2 = 750 [msec]

since the master node must send Ny, (= 300) pairs of parents
(two individuals) to the worker nodes. On the other hand, the

total communication time from the worker nodes to the master
node is

1.25 x 300 x 30 = 11,250 [msec]

because the master node must receive Ny;qs (= 30) offspring
solutions from each worker node. Thus, the total communi-
cation time is 12,000 [msec] per generation. Note that the
total communication time does not depend on the number of
worker nodes. Therefore, it is difficult to reduce the running
time by parallelizing the procedure of GA-EAX/Stagel using
this master/worker model because the communication time per
one generation (12, 000 [msec]) is longer than the total running
time of one generation before parallelization (10, 684 [msec]).

IV. PROPOSED PARALLEL GA WITH EAX-SINGLE

Generally, parallelization based on the master/worker
model can reduce the total running time if the running time on
each worker node is sufficiently longer than the communication
time between the master node and worker nodes. As described
in the previous section, however, the total running time of GA-
EAX/Stagel will increase by the parallelization based on the
straightforward master/worker model because the communica-
tion time between the master node and worker nodes dominates
the overall running time on 100,000-city scale instances.

In this section, we propose a new parallel GA based on
a more suitable master/worker model in order to reduce the
total running time of GA-EAX/Stagel. The proposed parallel
GA employs a new generation alternation model, which is
slightly different from the original one, in order to make it
possible to reduce the total running time by the parallelization
based on the master/worker model. In section IV-A, we first
discuss requirements for a new parallel GA. Next, we propose
a new parallel GA to achieve the requirements in section I'V-B.
Finally, we describe the detailed algorithms of the proposed
parallel GA in section I'V-C.

A. Requirements for Proposed Parallel GA

In order to reduce the total running time by parallelization
based on the master/worker model, the running time on each
worker node should be sufficiently longer than the communica-
tion time between the master node and worker nodes. However,
the total running time after parallelization will increase if the
running time on each worker node is just increased. Thus, we
have to reduce the number of generations (one generation is
defined as the replacement of all individuals on the master
node) required for convergence simultaneously in order to
reduce the total running time. In order to reduce the total
running time by parallelization, we believe that the proposed
parallel GA should meet the following four requirements.

Requirement 1: The running time on each worker node should
be sufficiently longer than that on the master node and the
communication time between the master node and worker
nodes.

Requirement 2: The number of generations required for
convergence in a new parallel GA should be smaller than that
in GA-EAX/Stagel.

Requirement 3: Tour length obtained by the proposed parallel
GA should be equal to or shorter than that by GA-EAX/Stagel.

1281

Requirement 4: Tour length obtained by the combination of
the proposed parallel GA and GA-EAX/Stage2 should be equal
to or shorter than that by the combination of GA-EAX/Stagel
and GA-EAX/Stage2.

B. Proposed Parallel GA with EAX-Single

In this section, we propose a new parallel GA with EAX-
Single that meets the four requirements discussed in the
previous section.

Fig. 2 shows a diagram of the proposed parallel GA with
EAX-Single based on the master/worker model. As shown
in Fig. 2, the master node executes mating selection and
update of the master edge frequency table F™25%* On the
other hand, each worker node does both offspring generation,
survival selection and update of the worker edge frequency
table F}"°rker which is a copy of F™as%T at the beginning of
each generation, where i is the index of each worker.

For Requirement 1, each individual in the chunk generates
offspring solutions with multiple other individuals on a worker
thread as shown in Fig. 2 (3). In the master/worker model of
GA-EAX/Stagel described in section III-B, each individual in
the population generates offspring solutions with only a single
other individual in the population on each worker thread as
shown in Fig. 1. This is a reason that the running time per
generation on a worker node is short. On the other hand, in
the proposed parallel GA, each individual generates offspring
solutions with multiple individuals in one generation. Thus,
the running time per generation on each worker node in
the proposed parallel GA becomes longer than that in the
master/worker model of GA-EAX/Stagel.

The proposed parallel GA is expected to meet Require-
ment 2 because each individual generates offspring solutions
with multiple other individuals as shown in Fig. 2 (3). In
the master/worker model of GA-EAX/Stagel, the number of
replaced edges per generation in each individual tends to
be very small, which means that improvement of the tour
length per generation is likely to be small. This is caused by
two reasons. First, GA-EAX/Stagel replaces edges of each
individual chosen as an acceptor (pa in Algorithm 1) in
the population with ones from only a single other individual
chosen as a donor (pp in Algorithm 1) by EAX-Single in
one generation. Second, EAX-Single replaces edges in the
acceptor with ones of only a single AB-cycle generated with
the acceptor and the donor. On the other hand, the proposed
parallel GA replaces edges of each individual chosen as an
acceptor in the chunk with ones from all the other individuals
chosen as donors in the chunk. This means that the number
of replaced edges per generation in each individual becomes
large. Thus, improvement of the tour length per generation in
the proposed parallel GA is expected to be larger than that in
the master/worker model of GA-EAX/Stagel. By this property
of the proposed parallel GA, we expect the proposed parallel
GA to achieve Requirement 3 and 4.

In order to achieve Requirement 3 and 4, we also redesign
a termination condition. We cannot use the same termination
condition as that of GA-EAX/Stagel because the convergence
speed of the population should depend on how many times
survival selection is applied to each individual in the popu-
lation. The number of survival selection to an individual per

(2) Sending F and Chunk

(3) Offspring Generation,
Survival Selection and Updating Worker F

((1) Mating Selection

Divides the population
into multiple sub-populations(chunks)

Chunk 1 1.2 3
A A
Chunk 2 1723 Mse
Population P° Chunk 3 1,23 lsc
(Current Generation) .
Chunk Nc - 1
Chunk Nc

o)

(5) Updating @
Population P%*"' Master F
(Next Generation)

(4) Receiving Chunk
o [2)
3> EAX | copy \
g Single D
;| (000-0) I
o Selectiony i > D Update
=
3

B:

oiunwiuo) uop

)
e

uony

uoneounwiuo)y

uog)r%munwhloo

Main Thread

Communication Threads

Worker Threads

V

Master Node

~

Worker Nodes

Fig. 2. Diagram of the proposed parallel GA based on the master/worker model. Blue and yellow circles are the population members of the current and next
generations, respectively. Red circles are offspring solutions generated by EAX-Single. Green and purple squares are the master and each worker edge frequency
tables, respectively. Ny, N¢ and Sc correspond to Nyids, Nehunk and Schunk, respectively, in Algorithm 3 and 4.

generation in the proposed parallel GA is Scpynix — 1 times
more than that in GA-EAX/Stagel. As shown in Fig. 2 (3), the
proposed parallel GA applies survival selection to Individual
1 Schunk — 1 times per generation on each worker thread. On
the other hand, as shown in Fig. 1, GA-EAX/Stagel applies
survival selection to Parent A only one time per generation
on each worker. Note that Parent A in Fig. 1 corresponds to
Individual 1 in Fig. 2. Thus, in the proposed parallel GA,
we employ Ngtag/(Schunk — 1) as the predefined period of
generations of the termination condition while Ngi,e is used
in GA-EAX/Stagel.

The flow of procedures executed in one generation in the
proposed parallel GA with EAX-Single is as follows:

(1) Mating selection on the master node: The main thread on
the master node shuffles the population randomly and divides
the population members of the current generation into multiple
equal sub-populations called “chunks” as shown in Fig. 2 (1).

(2) Sending chunks and master edge frequency table on
the master node: Each communication thread on the master
node sends a chunk and a copy of the master edge frequency
table F™3ster (o the corresponding worker thread as shown in
Fig. 2 (2).

(3) Offspring generation, survival selection and updating
worker edge frequency table on each worker node: The
worker thread on each worker node receives a chunk and
Fmaster from the corresponding communication thread on the

1282

master node and copies F™35%r to a worker edge frequency
table FV°™ker Then, the worker thread repeats offspring gen-
eration, survival selection and update of Fi""o’rker as follows.
As shown in Fig. 2 (3), the worker thread chooses Individual
1, the blue circled 1, as an acceptor and Individual 2, the blue
circled 2, as a donor from the chunk, respectively, and applies
EAX-Single to them to make Ny;q4s offspring solutions, the red
circles, and selects the best individual in terms of the evaluation
function described in section II-B, the yellow circle. Note that
Fyorker jg used as an edge frequency table in the evaluation
function. Then, it replaces the acceptor in the chunk with the
selected individual and updates F}"°*%°*. Note that the selected
individual becomes Individual 1, i.e. the next acceptor. After
finishing the combination of Individual 1 as an acceptor and
Individual 2 as a donor, the worker thread applies offspring
generation, survival selection and update of F}'°™ to the
acceptor, i.e. Individual 1, changing the donor from Individual
3 to Individual S, as shown in Fig. 2 (3).

(4) Receiving chunks on the master node: Each communi-
cation thread on the master node receives only a chunk from
the corresponding worker thread and adds the individuals in
the chunk to the population of the next generation.

(5) Updating master edge frequency table on the master
node: After the population of the next generation is com-
pleted, the main thread on the master node updates the master
edge frequency table F™3'%T based on the population of the
next generation. Note that each worker thread holds its own

Algorithm 3 The proposed parallel GA running on the master
node

Algorithm 4 The proposed parallel GA running on each
worker node

1: (Initialization of Population) Generate an initial popu-
lation that consists of Ny, individuals by using a local
search heuristics with the 2-opt operator. Then, initialize
the number of generation, g < 0, and the master edge
frequency table F™25%" g0 as to record the frequencies
of each edge included in the initial population. Let the
population P9 be the initial population.

2: (Mating Selection) Shuffle the population P9 randomly
and divide the population PY into N¢punk sub-populations
called “chunks”. Let x; ; be the jth individual of the ith
chunk (¢ € {1,..., Nehunk}s 7 € {1,..., Schunk})- Note
that Npop = INchunk X Schunk~

3: for i < 1 to Ncpyunk in parallel do

4: Send the ith chunk {z;1,...,%; 5,5 and a copy

of the master edge frequency table F™25'" to the ith
worker node

5: Receive the ith chunk from the ith worker node and add

the chunk to the next population P9+1,

6: end for

7: Update the master edge frequency table F™35'T based on
the next population PI*1,

8: (Termination Condition Check) If the termination con-
dition described in section IV-B is not satisfied, then
g < g+ 1 and go to step 2.

edge frequency table F*°r and, thus, can execute survival
selection independently to each other simultaneously.

C. Details of Algorithms Running on Master Node and Each
Worker Node

Algorithm 3 shows the algorithm of the proposed parallel
GA running on the master node. In Algorithm 3, steps 1, 2,
7 and 8 are executed by the master thread and steps 3-6 are
done by the communication threads in Fig. 2. Algorithm 4
describes the algorithm of the proposed parallel GA running
on each worker node.

V. EXPERIMENTS

In this section, we confirm the following two points through
numerical experiments using 100,000-city scale benchmark
instances.

1) The running time of the proposed parallel GA is more
than ten-times faster than that of GA-EAX/Stagel
and the tour length obtained by the proposed par-
allel GA is equal to or shorter than that by GA-
EAX/Stagel.

2) Tour length obtained by the combination of the
proposed parallel GA and GA-EAX/Stage2 is equal
to or shorter than that by the combination of GA-
EAX/Stagel and GA-EAX/Stage?2.

A. Benchmark Instances

We use all Art TSPs instances called mona-Lisal00K,
vangogh120K, venus140K, parejal 60K, courbet180K and ear-
ring200K. Note that the suffix number of each instance name
represents the number of cities of the instance.

1283

1: Assume that this worker node is the ith one. Receive
the ith chunk {z;1,...,2;s,,..} and the master edge
frequency table F™3s*T from the master node. Then, copy
it to the worker edge frequency table: Fvorker ¢ prmaster,

2: for j < 1 to Scpunk do

3: for k <+ 1to Schunk — 1 do

4: (pA,pB) — (l‘i’j, xi,j+k) foralll € {1, ey Schunk}~

5: (Offspring Generation) Generate offspring solutions
{y17 s 7yNk;ds} by EAX—Single(pAJDB)’

6: (Survival Selection) Select the best individual from
{Y1,- -+, YNya., P} in terms of the evaluation func-
tion. Then, replace z;; (= pa) with the selected
individual y*. Update the worker edge frequency
table F}*°™°r using z; and y*.

7. end for

8: end for

9: Send the th chunk to the master node.

10: If the program on the master node is not terminated, then

go to step 1.

B. Performance Indices

The performance indices used in the experiments are the
average running time [hours], the average speed up rate over
three trials and the relative error in tour length [%]. The
speed up rate is given by the running time of GA-EAX/Stagel
divided by that of the proposed parallel GA. The relative error
in tour length is defined as follows:

l est — lo
Relative Error = 2% "°Pt » 100 [%], A3)
opt

where et is tour length of the best individual in the popula-
tion and [y is that of the best-known tour of each instance.

C. Experimental Configurations

The proposed parallel GA and GA-EAX/Stagel are run
three-times on all benchmark instances. All the programs
are executed on the supercomputer TSUBAME 2.0 installed
at Tokyo Institute of Technology. Please see Appendix A
for more details of the environment. Configurations for each
algorithm are follows.

GA-EAX/Stagel: We set the population size, Npo, = 300
and the number of offspring solutions generated from a single
pair of parents, Nyjqs = 30, which are the default configura-
tions of GA-EAX/Stagel [1]. GA-EAX/Stagel is executed on
only a single node of the environment.

Proposed parallel GA: We set Vo, = 300 and Nyigqs = 30,
which are the same configuration of GA-EAX/Stagel. We also
set the number of individuals in a chunk, Schuc = 10 and
the number of the total chunks, Ncpunk = 30. The proposed
parallel GA is executed on total 31 nodes so that each of the
master node and worker nodes is assigned to one node. Note
that a single core is used in each worker node, which means
that 30 cores in total are used for the worker nodes.

GA-EAX/Stage2: We use the default configuration of GA-
EAX/Stage2. Please see original paper [1] for details.

TABLE 1.

THE AVERAGE RUNNING TIME OF GA-EAX/STAGE1 AND THE PROPOSED PARALLEL GA AND THE AVERAGE SPEED UP RATE WHEN THE

RELATIVE ERROR REACHES 1.0, 0.1 AND 0.01% AND EACH ALGORITHM IS TERMINATED. “INSTANCE” INDICATES THE INSTANCE NAME. “GA-EAX” AND
“PROPOSED” INDICATE THE AVERAGE RUNNING TIME [HOURS] OF GA-EAX/STAGE1 AND THE PROPOSED PARALLEL GA, RESPECTIVELY. “S-UP”
INDICATES THE AVERAGE SPEED UP RATE.

Relative Error = 1 [%] Relative Error = 0.1 [%] Relative Error = 0.01 [%] Terminate

Instance GA-EAX Proposed S-UP | GA-EAX Proposed S-UP | GA-EAX Proposed S-UP | GA-EAX Proposed S-UP
mona-lisal 00K 12.8 0.6 x20.2 28.3 1.4 x20.1 65.6 3.0 %222 1144 48 x238
vangogh120K 20.7 1.1 x19.2 444 23 x19.8 104.2 54 x193 179.1 84 x214
venus 140K 28.1 14 x19.6 63.1 3.1 x20.1 1325 6.8 x19.4 254.1 122 x20.8
parejal 60K 41.9 2.1 x19.8 88.3 44 %202 216.4 10.6 %204 409.4 173 x23.6
courbet180K 58.3 2.8 x20.6 120.6 57 x21.1 302.8 141 x21.4 486.8 225 X216
earring200K 75.6 3.6 x20.8 147.2 7.1 %208 4222 19.8 x21.4 676.0 29.8 x22.7
TABLE II. THE QUALITY OF THE FINAL SOLUTIONS OBTAINED BY TABLE III. THE QUALITY OF THE FINAL SOLUTIONS OBTAINED BY

GA-EAX/STAGEl AND THE PROPOSED PARALLEL GA. “INSTANCE”
INDICATES THE INSTANCE NAME. “GA-EAX/STAGE1” AND “PROPOSED
GA” MEAN THE RESULTS OF GA-EAX/STAGE] AND THE PROPOSED
PARALLEL GA, RESPECTIVELY. “BEST [%]” AND “AVG [%]” ARE THE
BEST RELATIVE ERROR IN THE THREE TRIALS AND THE AVERAGE
RELATIVE ERROR OVER THE THREE TRIALS, RESPECTIVELY, WHEN EACH
ALGORITHM IS TERMINATED.

GA-EAX/Stagel Proposed GA

Instance Best [%] Avg [%] | Best [%] Avg [%]
mona-lisal00K | 0.00610 0.00661 0.00629 0.00673
vangogh120K 0.00645 0.00690 0.00737 0.00760
venus140K 0.00621 0.00662 0.00617 0.00692
parejal 60K 0.00676 0.00700 0.00730 0.00772
courbet1 80K 0.00726 0.00743 0.00762 0.00778
earring200K 0.00797 0.00811 0.00749 0.00821

D. Results

TABLE I shows the average running time of GA-
EAX/Stagel and the proposed parallel GA and the speed
up rate when the relative error reaches 1.0, 0.1 and 0.01%
and each algorithm is terminated. As shown in TABLE I,
the proposed parallel GA achieves about twenty-times speed
up over GA-EAX/Stagel at any relative error on all the
benchmark instances. Parallel efficiency (the rate of the speed
up to the number of cores used in all worker nodes) is about
20/30 = 67%. On 100,000 to 180,000-city scale instances,
the running time of the proposed parallel GA is less than one
day. TABLE II shows the best relative error in the three trials
and the average relative error over the three trials when each
algorithm is terminated. Comparing results of both algorithms
in TABLE II, the quality of solutions obtained by the proposed
parallel GA is almost equal to that by GA-EAX/Stagel on all
the benchmark instances.

TABLE III shows results of the best relative error in
the three trials and the average relative error over the three
trials obtained by combining the proposed parallel GA with
GA-EAX/Stage2 and those by combining GA-EAX/Stagel
with GA-EAX/Stage2. In TABLE III, we can see that the
combination of the proposed parallel GA and GA-EAX/Stage2
succeeded in finding as good tours as the combination of GA-
EAX/Stagel and GA-EAX/Stage2 while the proposed parallel
GA is twenty-times faster than GA-EAX/Stagel as shown in
TABLE 1.

1284

COMBINING GA-EAX/STAGE]1 WITH GA-EAX/STAGE2 AND THOSE BY
COMBINING THE PROPOSED PARALLEL GA WITH GA-EAX/STAGE2.
“INSTANCE” INDICATES THE INSTANCE NAME. “GA-EAX/STAGE1” AND
“PROPOSED GA” MEAN THE RESULTS OF THE COMBINATION OF
GA-EAX/STAGE] AND GA-EAX/STAGE2 AND THE COMBINATION OF
THE PROPOSED PARALLEL GA AND GA-EAX/STAGE2, RESPECTIVELY.
“BEST [%]” AND “AVG [%]” ARE THE BEST RELATIVE ERROR IN THE
THREE TRIALS AND THE AVERAGE RELATIVE ERROR OVER THE THREE
TRIALS, RESPECTIVELY, WHEN EACH ALGORITHM IS TERMINATED.

GA-EAX/Stagel Proposed GA

Instance Best [%] Avg [%] | Best [%] Avg [%]
mona-lisal00K | 0.00000 0.00008 0.00002 0.00006
vangogh120K 0.00017 0.00019 0.00011 0.00016
venus140K 0.00010 0.00017 0.00007 0.00015
parejal 60K 0.00008 0.00011 0.00008 0.00010
courbet1 80K 0.00010 0.00013 0.00005 0.00008
earring200K 0.00011 0.00020 | 0.00021 0.00022

VI. DISCUSSIONS

A. Comparison of Search Performance in terms of the Number
of Evaluations

In this section, we compare the search performance of
the proposed parallel GA with that of GA-EAX/Stagel in
terms of the number of evaluations, i.e. the accumulated
number of generated offspring solutions. Fig. 3 shows graphs
of the number of evaluations versus the relative error of both
algorithms. In each graph, the red and blue curves are the
results of the three trials of the proposed parallel GA and GA-
EAX/Stagel, respectively. This result suggests that the search
performance of the proposed parallel GA is almost the same as
that of GA-EAX/Stagel in terms of the number of evaluations.

B. Finding New Best-Known Tours

In this section, we try to find new best-known tours of Art
TSPs instances.

The original paper [1] reportedly improved best-known
tours of Art TSPs instances by the following procedure:

1) Execute GA-EAX/Stagel and GA-EAX/Stage2 ten
times.

2) Construct an initial population by assembling top 30
tours from each of the ten populations obtained in
step 1.

3) Execute GA-EAX/Stage2 starting from the initial
population constructed in step 2.

In the above procedure, GA-EAX/Stagel and GA-EAX/Stage2
are executed with the default configuration where the initial
population has 30 x 10 = 300 tours.

We tried to find new best-known tours of Art TSPs in-
stances with the same procedure except that GA-EAX/Stagel
is replaced with the proposed parallel GA. TABLE IV shows
tour lengths of the current best-known tours and those found
by the above procedure with the proposed parallel GA. As
shown in TABLE IV, we succeeded in finding new improved
best-known tours of vangogh120K and courbet180K. We also
found the current best-known tours of all other instances.

VII. CONCLUSION

In this paper, we proposed a new parallel GA with
EAX-Single. We demonstrated that the proposed parallel GA
achieves about twenty-times speed up without deteriorating
the quality of solutions compared to GA-EAX/Stagel through
numerical experiments on 100,000-city scale instances. Fur-
thermore, we successfully found new best-known tours of
120,000-city and 180,000-city instances by combining the
proposed parallel GA with GA-EAX/Stage?2.

As future work, we will try to improve best-known tours of
other 100,000-city scale instances and to apply the proposed
parallel GA to more large scale instances like the World TSP
(http://www.tsp.gatech.edu/world).

REFERENCES

[11 Y. Nagata and S. Kobayashi, “A Powerful Genetic Algorithm Using
Edge Assembly Crossover for the Traveling Salesman Problem,” IN-
FORMS Journal on Computing (in press), 2012, published as an article
in advance.

[2] S.Lin and B. W. Kernighan, “An Effective Heuristic Algorithm for the
Traveling-Salesman Problem,” Operations Research, vol. 21, no. 2, pp.
498-516, 1973.

[3] D. S. Johnson and L. A. McGeoch, “The Traveling Salesman Problem:
A Case Study in Local Optimization,” in Local Search in Combinatorial
Optimization. John Wiley and Sons, Ltd, 1997, pp. 215-310.

[4] D. Applegate, W. Cook, and A. Rohe, “Chained Lin-Kernighan for
Large Traveling Salesman Problems,” INFORMS Journal on Comput-
ing, vol. 15, no. 1, pp. 82-92, 2003.

[5] K. Helsgaun, “General k-opt submoves for the Lin-Kernighan TSP
heuristic,” Mathematical Programming Computation, vol. 1, no. 2, pp.
119-163, 20009.

[6] P. Merz and B. Freisleben, “Memetic Algorithms for the Traveling
Salesman Problem,” Complex System, vol. 13, no. 4, pp. 297-345, 2001.

[71 P. Merz and T. Fischer, “A Memetic Algorithm for Large Traveling
Salesman Problem Instances,” in 7th Metaheuristics International Con-
ference, 2007.

[8] H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga, “Imple-
mentation of an Effective Hybrid GA for Large-Scale Traveling Sales-
man Problems,” IEEE Transactions on Systems, Man, and Cybernetics
- Part B: Cybernetics, vol. 37, no. 1, pp. 92-99, 2007.

[91 M. Kuroda, K. Yamamori, M. Munetomo, M. Yasunaga, and I. Yoshi-
hara, “A Proposal for Zoning Crossover of Hybrid Genetic Algorithms
for Large-scale Traveling Salesman Problems,” in IEEE Congress on
Evolutionary Computation, 2010, pp. 1-6.

[10] E. Canti-Paz, “A Survey of Parallel Genetic Algorithms,” IlIliGAL
Report No. 97007, 1997.

[11] T. G. Sanders, B. A. Massingill, and B. L. Mattson, Patterns for Parallel
Programming. Addison-Wesley Professional, 2004.

[12] H. Imade, R. Morishita, I. Ono, N. Ono, and M. Okamoto, “A
Grid-Oriented Genetic Algorithm Framework for Bioinformatics,” New

Generation Computing - Grid Systems for Life Sciences, vol. 22, no. 2,
pp. 177-186, 2004.

1285

I ; Pro‘posed ‘Paralle‘\ GA
1 —— GA-EAX/Stage1
0.1
0.01
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 800
(a) mona-lisa100K (b) vangogh120K
S
=
o
£
in]
(3
=
=1
©
[0}
4
0 200 400 600 800 1000 0 200 400 600 800 1000 1200 1400
(c) venus140K (d) pareja160K
1
0.1
0.01
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 1400 1600
(e) courbet180K (f) earring200K
The number of evaluations [x10]
Fig. 3. The number of evaluations (the accumulated number of generated

offspring) versus the relative error of GA-EAX/Stagel and the proposed
parallel GA.

TABLE IV. RESULTS OF TRYING TO FIND NEW BEST-KNOWN TOURS.
“INSTANCE”, “BEST-KNOWN” AND “PROPOSED GA” INDICATE THE
INSTANCE NAME, TOUR LENGTH OF THE CURRENT BEST-KNOWN TOUR
AND THAT OBTAINED BY THE PROCEDURE OF SECTION VI-B WITH THE
PROPOSED PARALLEL GA. THE PROPOSED PARALLEL GA SUCCEEDED IN
FINDING NEW BEST KNOWN TOURS OF VANGOGH120K AND

COURBET180K.

Instance Best-Known Proposed GA
mona-lisal 00K 5757191 5757191
vangogh120K 6543610 6543609
venus 140K 6810665 6810665
parejal 60K 7619953 7619953
courbet1 80K 7888733 7888731
earring200K 8171677 8171677

APPENDIX A

COMPUTATIONAL ENVIRONMENT

In this paper, we conducted all the numerical experiments
on the supercomputer TSUBAME 2.0 installed at Tokyo Insti-
tute of Technology. The details of the environment are follows:

CPU Intel Westmere-EP 2.93GHz x 2,
Cores 6 x 2,

Memory DDR3-1333 54GB,

Network QDR Infiniband (40Gbps),

OS SUSE Linux Enterprise Server 11 SP1,
Java Oracle JDK 1.7.0_07.

We implemented all the programs in Java and employed NIO-2
library for communication. Furthermore, in order to speed up
data transfer, we used Socket Direct Protocol that enables us
to utilize Remote Direct Memory Access over the Infiniband
network as a communication protocol.

