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1.
a) 1
b) 1

2

c) In Newton notation, (f(g(x)))
′

= f ′(g(x))g′(x), and in Leibniz notation d(f◦g)
dx = d(f◦g)

dg
dg
dx = df

dg
dg
dx .

d) We should do linear approximation here:

arctan
(
e0.1
)
≈ arctan

(
e0
)

+ 0.1 · d
dx

arctan(ex)
∣∣∣
x=0

To compute the derivative, we use the chain rule. Using part c) of this problem, we have (in Leibniz notation)

d

dx
arctan(ex)

∣∣∣
x=0

=

[
d

d(ex)
arctan(ex)

∣∣∣
x=0

]
·
[
d

dx
ex
∣∣∣
x=0

]
We know that d

du arctanu = 1
1+u2 and d

dv e
v = ev, so we get

d

dx
arctan(ex)

∣∣∣
x=0

=

[
1

1 + (ex)2

∣∣∣
x=0

]
·
[
ex
∣∣∣
x=0

]
=

[
1

2

]
· [1]

=
1

2

We did the calculations for each of the individual factors in parts a) and b) and we determined how they’re put
together in part c). Now using linear approximation, we have

arctan
(
e0.1
)
≈ arctan

(
e0
)

+ 0.1 · d
dx

arctan(ex)
∣∣∣
x=0

≈ π

4
+

1

20

2.
2.1. Here we can do linear approximation with f(x) =

√
x. To pick our a to expand around, we can choose 2500,

because
√

2500 = 50, and if we do this we’ll get a pretty good result (like we did in class for
√

26, where we took
a = 25), but we can do significantly better by noticing that 512 = (50 + 1)2 = 2500 + 100 + 1 = 2601 and taking
a = 2601. Doing this, we get

√
2600 ≈

√
2601 +

1

2
√

2601
(2600− 2601) = 51− 1

102

We can approximate the error term here with the new term we get if we do a second order approximation instead
of a first order approximation. If we were to do a second order approximation, the term we’d add would be

f ′′(a)

2
(x− a)2
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We compute that d2

dx2

√
x = −1

4x
3
2
, so the new term would be

1

2

−1

4 · 2601
3
2

(2600− 2601)2 =
−1

8 · 513

To get a sense of how big this is, we can guess that 513 ≈ 503 = 103 · 125, so overall our error term is something
like −10−6. If you used a = 2500 you instead get an error term of about −10−2, which is still very good, but of
course this one is much better. Finally, we see that the estimate 51− 1

102 is an overestimate, because our error
term is negative. We could also have reasoned geometrically: the tangent line of

√
x at x = 2601 lies above the

curve y =
√
x. Linear approximation is the practice of replacing our function with the tangent line, so we see

that if we were to take points on the line instead of on the curve, we’d be guessing y values that are too large.

2.2. Let’s take f(x) = 1
x2 and a = 10−2. Then f ′(x) = −2

x3 . Using linear approximation,

1

0.00992
≈ 1

(10−2)2
+

−2

(10−2)3
· (−10−4) = 104 + 2 · 102

To get an error term we again use the new term we’d have in a second order approximation, f ′′(a)
2 (x− a)2. Here

we have f ′′(a) = 6
x4 , so our guess for the error term is

1

2

6

(10−2)4
(−10−4)2 = 3

This is positive so our initial guess was very likely to have been an underestimate. If you ask a calculator
you find that 0.0099−2 = 10203.04050607080910111213..., so you can see the contributions from each order of
approximation very clearly!

2.3. Using linear approximation we have sinx = x when x is near 0. Hence we should guess that sin(0.01) ≈ 0.01.
To estimate an error term, we first try to once again use f ′′(a)

2 (x− a)2. Doing this (with f(x) = sinx and a = 0)
gives 0, however, because sin′′(0) = − sin(0) = 0. We can’t possibly justify estimating our error as 0, so we
should press on and instead use the new term in a third order approximation, which is the most significant
term after the ones appearing in the linear approximation. The third order term is of the form f ′′′(a)

6 (x − a)3,
and in our situation, that’s − cos(0)

6 · 0.013 = − 1
610−6. This number is negative, so our original guess was likely

an overestimate. We could once again also have reasoned geometrically. Checking with a calculator, we have
sin(0.01) = 0.009999833334..., so, as expected, this is 0.01 to 6 digits. Moreover note that up until the 4, this is
identical to 0.01− 1

610−6.

2.4. If we use linear approximation with f(x) = cosx− 1 and a = 0, we find that f(x) ≈ f(0) + f ′(0)x = 0 + 0x.
In this case, our second order term will be our main term, not our error term. The second order term is
− cos(0)

2 x2 = −x2

2 , so we should estimate that cos(0.01)− 1 ≈ − 1
210−4. To get an error term, we should first try

f ′′′(a)
6 (x−a)3, but here we find f ′′′(0) = 0, so, similarly to problem 2.3, we need to do more work. The next most

significant term is f ′′′′(a)
4! (x − a)4, which in this case is 1

2410−8. This number is positive, so our original guess
was an underestimate. Unlike the previous three problems, it’s pretty hard to tell if − 1

210−4 is an overestimate
or an underestimate just by imagining the graph.

3.
a) When u is near 0, we have

eu = 1 + u+O(u2)

and
sinu = u+O(u2)
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from the linear approximation theorem. For the numerator, we can set u = −x2 to get

e−x
2

= 1− x2 +O(x4)

For the denominator we have

sin2 x = (x+O(x2))2 = x2 + 2xO(x2) +O(x4) = x2 +O(x3)

Thus

lim
x→0

e−x
2 − 1

sin2 x
= lim

x→0

1− x2 +O(x4)− 1

x2 +O(x3)

= lim
x→0

−1 +O(x2)

1 +O(x)

= −1

b) Using the same approach, we have

ln(1− x) = −x+O(x2),

sin(x) = x+O(x2), and

1− cos2 x = x2 +O(x3).

The last of these can be done more quickly by writing 1 − cos2 x = sin2 x, but you don’t have to do this. All
together, we have

lim
x→0

ln(1− x)− sinx

1− cos2 x
= lim

x→0

−x+O(x2)− x+O(x2)

x2 +O(x3)
= lim

x→0

−1 +O(x)− 1 +O(x)

x+O(x2)
.

This is basically the limit as x goes to 0 of −2x , so the limit does not exist. This is the limit from the movie Mean
Girls.

c) elog x = x, so the limit is just 1. However this problem is great for practicing with L’Hôpital’s rule.

d) The hint is leading you instead consider log
(

lim
x→0

xx
)
. Because log is continuous, this is equal to

lim
x→0

log(xx) = lim
x→0

x log x.

We can rewrite this as
lim
x→0

log x

x−1

Now we can apply L’Hôpital’s rule to deduce that

lim
x→0

log x

x−1
= lim

x→0

x−1

−x−2
= lim

x→0
−x = 0.

This tells us that log
(

lim
x→0

xx
)

= 0. Hence the limit in the question is equal to e0 = 1. There are ways to solve
this problem without using L’Hôpital’s rule as well.

4.
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a) The slope of the tangent line is dy
dx , so we need a way to figure out what dy

dx is equal to. We can do this by
differentiating the equation x2 + y2 = 1 with respect to x:

d

dx

(
x2 + y2

)
=

d

dx
1.

We have d
dxx

2 = 2x, d
dx1 = 0, and d

dxy
2 = dy

dx
d
dyy

2 = 2y dy
dx using the chain rule. Hence

2x+ 2y
dy

dx
= 0.

We can then solve for dy
dx , obtaining

dy

dx
= −x

y
.

Any line through the point
(
3
5 ,−

4
5

)
will be of the form y = m

(
x− 3

5

)
− 4

5 , since the given point satisfies this
equation. There are other totally fine ways to come to this conclusion if you don’t like this kind of reasoning.
We found that the slope in this situation should be −

3
5

− 4
5

= 3
4 , so the equation of the tangent line is

y =
3

4

(
x− 3

5

)
− 4

5
.

b) Again, we first need to find the slope of the tangent line, which will be dy
dx at (0, 0). Differentiating the

equation y2 + y = x3 − x with respect to x, we obtain

2y
dy

dx
+
dy

dx
= 3x2 − 1.

The simplest way to proceed is to substitute (x, y) = (0, 0) immediately, which turns the equation above into
dy
dx = −1. We could have solved for dy

dx for general x and y first, and then put in (x, y) = (0, 0) if we wanted to,
but this is more work than we need to do.

The tangent line goes through the point (0, 0), so it’s necessarily of the form y = mx. We found that the
slope should be −1, so the equation of the tangent line is y = −x.

c) I would look at the curves near where the designated points are and check that the slope of the tangent
line on the picture looks like it’s similar to what I calculated. It’s sort of hard to tell, but you can at least check
that it has the right sign and whether or not it’s bigger than 1 in absolute value. You can also plot the tangent
line on top of the curve, and then it’s really clear if you’re right or not.

5.
a) The coordinate x is a function of t, and the question is asking us to estimate x(77.0001). We’re given that
x(77) = 1 and x′(77) = 1 from the question, where here x′ = dx

dt is the rate of change of x with respect to t. We
can then use linear approximation to get that x(77.0001) ≈ 1 + 1 · 0.0001 = 1.0001. The linear approximation
theorem tells us that as ∆t→ 0 we have x(77 + ∆t) = x(77) + ∆t+O

(
(∆t)2

)
, and 0.0001 is a pretty small ∆t.

If we guess that the implied constant in the big-O notation is not too big or too small then we could guess that
the estimate x(77.0001) ≈ 1.0001 is off by about 0.00012 = 10−8. Here “about” means maybe to within an order
of magnitude or two. This is sort of like plugging in h = 0.0001 in a limit where h is going to 0; sometimes it
gets you pretty close, but you can’t actually be sure. In fact, if x′(77) = 5 then the error ends up being about
10−6, not 10−8, so while this often works, it often doesn’t as well. Still, this is something people do and it’s useful.

We’d like to do the same for y, i.e. approximate y(77.0001) ≈ y(77) + y′(77) · 0.0001, and while we know
from the statement that y(77) = 2, we don’t know y′(77). Here again y′ represents the derivative of y with
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respect to t, and not x. To find y′ we can use the fact that at all times t, the coordinates x and y satisfy the
equation x3 + y3 − 6xy + 3 = 0. Differentiating both sides of this equation with respect to t gives

3x2
dx

dt
+ 3y2

dy

dt
− 6x

dy

dt
− 6y

dx

dt
= 0.

Then we can substitute x = 1, y = 2, and dx
dt = 1 to find that at t = 77 we have

3 + 12
dy

dt
− 6

dy

dt
− 12 = 0.

From this we obtain y′(77) = 1.5. We could also have differentiated the equation of the curve with respect to x
instead of t to find dy

dx and then used dy
dt = dy

dx
dx
dt . However do note that we are looking specifically for dy

dt and
not dy

dx here.

Once we have y′(77) = 1.5 we can do linear approximation to get y(77.0001) ≈ 2.00015, and the error term
will once again be about 10−8, probably.

b) If we pretend that x′(77) = 1.5 and y′(77) = 1, then “linear approximation” would give x(77.0001) ≈ 1.00015
and y(77.0001) ≈ 2.0001. From a) we know that x = 1.0001 and y = 2.00015 is correct to about 8 digits, so we
expect these to start being wrong around the 4th or 5th digit. This means that this “linear approximation” really
doesn’t help at all. What going on is that you took your 0th order approximation, which was x = 1, y = 2, and
you added 0.0001 times some random number, so you expect to be off by about 0.0001. The linear approximation
theorem doesn’t apply here, because the slope of your line is wrong.

c) We know that x(77.0001) ≈ 1.0001± 10−8 and y(77.0001) ≈ 2.00015± 10−8. Therefore

1.0001 ≈ x(77.0001)± 10−8 and 2.00015 ≈ y(77.0001)± 10−8.

Here and henceforth when I write 10−8 I just mean some quantity about that big. Plugging in 1.0001 and 2.00015
into the equation of the curve then gives

1.00013 + 2.000153 − 6 · 1.0001 · 2.00015 + 3

= (x(77.0001)± 10−8)3 + (y(77.0001)± 10−8)3 − 6(x(77.0001)± 10−8)(y(77.0001)± 10−8) + 3

= x(77.0001)3 ± 3x(77.0001)210−8 + y(77.0001)3 ± 3y(77.0001)210−8

− 6x(77.0001)y(77.0001)± 6(x(77.0001) + y(77.0001))10−8 + 3

= x(77.0001)3 + y(77.0001)3 − 6x(77.0001)y(77.0001) + 3± 10−8

= ±10−8.

In the third line we dropped all the terms that were a product of two terms of size 10−8, because those terms
will be of size 10−16 and can just be absorbed into the errors of size 10−8. In the fourth line we combined a sum
of a bunch of terms of size 10−8 into a single term of size about 10−8.

Similarly using the estimate in b) we expect to not get 0 from the equation of the curve, but something about
the size of 10−4. The steps are the same, but just with 10−4 everywhere instead of 10−8.
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