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1.
a) We can split the interval [0, 1] into 4 equal parts:
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. For each of these parts,

we can estimate the area under the curve y = x2 with a rectangle with base equal to the length of the interval,
and height equal to the value of the function f(x) = x2 evaluated at the right endpoint. The areas of these four
rectanges are 1
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b) Using the same idea as above, but with n rectangles instead of 4, we’ll obtain the sum

1

n3

n∑
k=1

k2.

A quick google search tells us that this expression is equal to 1
n3

n(n+1)(2n+1)
6 . To obtain the area exactly, we

should then take the limit as n goes to infinity of this approximate area. This limit is equal to 1
3 .

2.
a) We can split the interval [0, 1] into four intervals, like we did in problem 1a). For each of these intervals
[x`, xr], we can use the same idea for approximation as given in the problem statement, which is to approximate
the length of the curve as the distance between the “starting point” (x`, x

2
`) and the “ending point” (xr, x

2
r).

This distance is equal to
√

(xr − x`)2 + (x2
r − x2

`)2. We should then approximate the total length of our curve
as being the sum of these four distances. If our intervals are
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b) Using the same reasoning as above, but with n intervals instead of 4, gives the estimate
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for the length of the curve. Taking the limit as n goes to infinity then gives the length of the curve exactly.



If we think of the individual terms as being of the form
√

(∆x)2 + (∆y)2, then maybe we’ll have the idea

of factoring out a ∆x to get
√
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(
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∆x. Then as we take the limit, it can be verified that ∆y
∆x becomes the

derivative dy
dx , so people usually instead write that the length of the curve is
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where here f(x) = x2.

3. The choice doesn’t matter in the limit. We split the interval of time [0, 3h] into n intervals of equal length.
When we take the right endpoints of those intervals to sample our velocity function v(t), we get that our estimate
for the total distance travelled is
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n−1∑
k=0

3h
n
v

(
k

3h
n

)
.

The difference between these two estimates is
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(all the middle terms appear in both sums and thus disappear when taking the difference). This quantity goes to
0 as n goes to infinity. This phenomenon can also be observed by drawing rectangles. If you draw n rectangles,
the difference between their areas is given by n small rectangles on the diagonal of area O(n−2). Thus the
difference in area is O(n−1).
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