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1.
a) We can split the interval [0, 1] into 4 equal parts: [%, ﬂ , [%, %] , [%, %], and [%, %]. For each of these parts,
we can estimate the area under the curve y = 2% with a rectangle with base equal to the length of the interval,

and height equal to the value of the function f(z) = 22 evaluated at the right endpoint. The areas of these four

rectanges are % . (%)2 , % . (%)2 , % . (%)2, and % . (%)2. Our estimate of the total area is then
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b) Using the same idea as above, but with n rectangles instead of 4, we’ll obtain the sum
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A quick google search tells us that this expression is equal to To obtain the area exactly, we
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should then take the limit as n goes to infinity of this approximate area. This limit is equal to 3

2.
a) We can split the interval [0, 1] into four intervals, like we did in problem 1la). For each of these intervals
[, 2], we can use the same idea for approximation as given in the problem statement, which is to approximate
the length of the curve as the distance between the “starting point” (z,,2%) and the “ending point” (z,,z2).

:
This distance is equal to \/(z, — 2¢)2 + (#2 — 22)2. We should then approximate the total length of our curve

as being the sum of these four distances. If our intervals are [%, i] , [i, %] , [%, %], and [%, %], then this comes
out to
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b) Using the same reasoning as above, but with n intervals instead of 4, gives the estimate
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for the length of the curve. Taking the limit as n goes to infinity then gives the length of the curve exactly.
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If we think of the individual terms as being of the form /(Az)? 4 (Ay)2, then maybe we’ll have the idea
2
of factoring out a Az to get 4/1 + (%) Ax. Then as we take the limit, it can be verified that ﬁ—z becomes the

derivative %, so people usually instead write that the length of the curve is
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where here f(x) = 22

3. The choice doesn’t matter in the limit. We split the interval of time [0, 3h] into n intervals of equal length.
When we take the right endpoints of those intervals to sample our velocity function v(t), we get that our estimate

for the total distance travelled is
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and if we use left endpoints instead, then our estimate is
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The difference between these two estimates is
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(all the middle terms appear in both sums and thus disappear when taking the difference). This quantity goes to
0 as n goes to infinity. This phenomenon can also be observed by drawing rectangles. If you draw n rectangles,

the difference between their areas is given by n small rectangles on the diagonal of area O(n~2). Thus the
difference in area is O(n=1).



