
Math 218 — Assignment 1 — Solutions

Alex Cowan and Leonard Korreshi

1. Find all functions f(x) such that

x0.2024 df

dx
+

1

cos(f(x))
= 0

for 0 < x < π
2 .

Solution. We want to treat f as an independent variable and then use separation of variables.

x0.2024 df

dx
= − 1

cos(f)

cos(f) df = − dx

x0.2024∫
cos(f) df = −

∫
1

x0.2024
dx

sin(f) + C1 = −x0.7976

0.7976
+ C2

sin(f) = −x0.7976

0.7976
+ C (1)

f(x) = arcsin

(
−x0.7976

0.7976
+ C

)
. (2)

Giving (2) with no further comment was sufficient for full credit for this problem. However, it is not the case
that (2) is valid for all C ∈ R; the circumstances of the problem impose further restrictions on the admissible
values of C, and it does not denote an arbitrary real number in this problem. It’s not too important to
understand these details so early into the semester. We expound below for students up for doing everything
properly.

Recall that arcsin(x) defined1 only for −1 ≤ x ≤ 1. This means that for (2) to be valid (if all quantities are
required to be real), we must have

−1 ≤ −x0.7976

0.7976
+ C ≤ 1. (3)

Alternatively, we could reason that it must be possible to satisfy (1) with x, f ∈ R; this also leads to the
requirement (3).

The problem statement requires that (2) work for all 0 < x < π
2 . This means that the free parameter C

must be such that (3) holds for all 0 < x < π
2 . As the function −x0.7976

0.7976 is monotonic2 we need only consider
the endpoints x = 0 and x = π

2 :

−1 ≤ C ≤ 1 and − 1 +
(π2 )

0.7976

0.7976
≤ C ≤ 1 +

(π2 )
0.7976

0.7976
. (4)

As C must satisfy both the left and right conditions of (4) simultaneously, we end up requiring

−1 +
(π2 )

0.7976

0.7976
≤ C ≤ 1. (5)

1Alternatively, arcsin(x) ∈ R iff (“if and only if”) −1 ≤ x ≤ 1.
2The function f is monotonic if the function f is increasing (everywhere in its domain), or the function f is decreasing (everywhere

in its domain).
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All in all, the complete and fully precise solution to this problem would not be only (2), but

f(x) = arcsin

(
−x0.7976

0.7976
+ C

)
for any C such that − 1 +

(π2 )
0.7976

0.7976
≤ C ≤ 1.

In general, when giving general solutions with free parameters, the proper way to do it is to specify exactly
what values the free parameters may take.

2. Solve
x
dy

dx
− y = x3

for x > 0. (This problem is in the course notes, which you can check if you want to. Your solution should be
more detailed than what’s written there.)

Solution. This problem requires the integrating factor technique. First, divide the left and right hand sides of
the ODE xy′ − y = x3 by x to get it into a form where the coefficient of y′ is 1. The ODE becomes

dy

dx
− 1

x
y = x2.

Then
p(x) = − 1

x
=⇒ I(x) = e

∫
− 1

x dx = e− log(x)+C̃ =
k0
x
,

where k0 := eC̃ . Recall that throughout the course log will denote the natural logarithm, a.k.a. ln. Feel free to
write ln if you prefer.

With our integrating factor I(x) = exp(
∫
p(x) dx) in hand, we calculate:

dy

dx
− 1

x
y = x2

k0
x

dy

dx
− k0

x2
y = k0x (multiplying both sides by I(x))

1

x

dy

dx
− y

x2
= x (dividing by k0; we see that our choice of antiderivative of p(x) didn’t matter)

d

dx

(
1

x
y

)
= x (recognizing the product rule; multiplying by I(x) earlier always sets this up)∫

d

dx

(y
x

)
dx =

∫
x dx

y

x
=

x2

2
+ C (using the fundamental theorem of calculus:

∫
df
dx dx = f(x) + C)

=⇒ y =
x3

2
+ Cx.

3. Let y = y(t) be a function of time t, and let ẏ := dy
dt denote its derivative. Draw a direction field for the

differential equation
ẏ = (y + 1)(4− y)

and describe y’s behaviour as t → ∞ in terms of the initial value y(0). (The convention of denoting derivatives
with respect to time with a dot is common in physics.)

Solution. One example of a direction field is as follows, though the axes have been scaled for readability.
Slopes start at the point and move to the cross.
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Figure 1: Slope field of ẏ = (y+1)(4− y). The axes have been scaled for readability, and each slope starts at a
dot and moves to the corresponding cross.

There are two asymptotes visible in the direction field, at y = 4 and y = −1. The first asymptote has slopes
converging towards it, while the second has slopes diverging from it. We can describe the behaviour of the
family of solutions to the ODE by describing the behaviour along these asymptotes, and the behaviour in each
regin delimited by the asymptotes. Here this constitutes five regions/cases:

• y < −1

• y = −1

• y > −1 and y < 4

• y = 4

• y > 4.

Using Fig. 1 we observe the following behavior for y based on y(0):

• When y(0) < −1, the function y is decreasing more and more quickly as y gets more and more negative.
The rate of decrease ẏ gets arbitrarily close to 0 as y nears −1, leading to a horizontal asymptote to the
left of −1. The long term behaviour of a solution y, i.e. the limit of y as t → ∞, is −∞ for all solutions y
in this region.

• When y(0) = −1, the function y is constant, i.e. the constant function y = −1 is a stable solution of the
ODE. The limit of y as t → ∞ is −1.

• When y(0) > −1 and y(0) < 4, the function y is increasing. It increases slowly for y near −1 or 4, and
increases more quickly when y is farther from the two asymptotes, i.e. roughly half way between them.
The limit of y as t → ∞ is 4.

3



• When y(0) = 4, the function y is constant, i.e. the constant function y = 4 is a stable solution of the ODE.
The limit of y as t → ∞ is 4.

• When y(0) > 4, the function y is decreasing more and more quickly as y gets more and more positive.
The rate of decrease ẏ gets arbitrarily close to 0 as y nears 4, producing a horizontal asymptote to the
right at y = 4. The limit of each solution y in this region as t → ∞ is 4.


