
Math 218 — Assignment 2 solutions

Alex Cowan and Alex Maierean

1. a) Give the general solution to the differential equation

y′′ + 6y′ + 13y = 0 (1)

in terms of sin, cos, and exp with all coefficients real.
b) Give the general solution to (1) in terms of exp only and complex coefficients.
c) Express the free parameters of problem a) in terms of the free parameters of problem b).
d) Express the free parameters of problem b) in terms of the free parameters of problem a).

Solution. b) Pursuing the ansatz y(x) = erx,

(erx)′′ + 6(erx)′ + 13erx = (r2 + 6r + 13)erx.

Because et ̸= 0 for all t ∈ C, if the above is to be 0 we must have

r2 + 6r + 13 = 0 ⇐⇒ r = −3± 2i

(using e.g. the quadratic formula to solve for r). In other words, the functions

y1(x) := e(−3+2i)x and y2(x) := e(−3−2i)x

both solve (1). They are linearly independent (meaning there are no (η1, η2) ̸= (0, 0) such that η1y1 + η2y2 = 0
for all x), and we expect 2 linearly independent solutions for an unconstrained second order ODE, so the general
solution is

yh(x) := C1e
(−3+2i)x + C2e

(−3−2i)x (2)

for any C1, C2 ∈ C.

a) Let u : R→ R and v : R→ R be twice-differentiable, and set z(x) := u(x) + iv(x). Then

d

dx
z(x) =

d

dx
(u(x) + iv(x)) =

du

dx
+ i

dv

dx
.

Thus, for z(x) of the form u(x) + iv(x) with u, v as above, we see that

d

dx
(ℜ(z(x)) + iℑ(z(x))) = ℜ

(
dz

dx

)
+ iℑ

(
dz

dx

)
.

Because the coefficients of (1) are real, if z is of the form we’re assuming and is a solution to (1), i.e.

d2z

dx2
+ 6

dz

dx
+ 13z = 0,

then both ℜ(z(x)) and ℑ(z(x)) also solve (1). Let

zh(x) := e(−3+2i)x = e−3x(cos(2x) + i sin(2x)).

We see that zh is of the form u(x) + iv(x) for u, v : R → R and twice differentiable. Thus, because zh is a
solution to (1), as shown in b) above,

y1(x) := ℜ(zh(x)) = e−3x cos(2x) and y2(x) := ℑ(zh(x)) = e−3x sin(2x) (3)
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are solutions to (1) as well. Noting that y1 and y2 are linearly independent, a general solution to (1) with all
coefficients real is

yh(x) = D1e
−3x cos(2x) +D2e

−3x sin(2x) (4)

for D1, D2 ∈ R arbitrary.
If these complex number manipulations are confusing, you can also just guess that y1, y2 as defined in (3)

are solutions, and then plug them into (1) and verify that they are.

c) This question and d) are about expressing D1, D2 from (4) in terms of the C1, C2 from (2) and vice-versa.
The reason to expect in the first place that this should be possible is because generically the number of free
parameters in the general solution of an unconstrained 2nd order ODE will be 2, so the four we have from (2)
and (4) combined should be redundant.

We will need the following facts:

eiθ = cos θ + i sin θ (5)
cos(−θ) = cos θ (6)
sin(−θ) = − sin θ. (7)

Substituting (5) into (2) yields

yh(x) = e−3x
(
C1(cos 2x+ i sin 2x) + C2(cos(−2x) + i sin(−2x))

)
= e−3x

(
C1(cos 2x+ i sin 2x) + C2(cos 2x− i sin 2x)

)
(using (6) and (7))

= e−3x
(
(C1 + C2) cos 2x+ (C1 − C2)i sin 2x

)
= (C1 + C2)e

−3x cos 2x+ i(C1 − C2)e
−3x sin 2x. (8)

If we want (8) to be equal to (4), then the coefficients of the e−3x cos 2x and e−3x sin 2x terms must match, i.e.{
D1 = C1 + C2

D2 = i(C1 − C2).
(9)

This completes c).

d) We can solve for C1 and C2 in the linear system (9) with two equations and two unknowns. I’ll show
three ways to do this, and there are many other ways you could go about it. Feel free to do it however you like.

For the first way, write (9) as {
D1 = C1 + C2

−iD2 = C1 − C2.

Adding up the two equations above and dividing by 2 gives 1
2 (D1 − iD2) = C1, and taking their difference and

dividing by 2 gives 1
2 (D1 + iD2) = C2.

The second way I’ll present uses the fact that

ℜ(z) = z + z̄

2
and ℑ(z) = z − z̄

2i
.

We also need to know that eiθ = e−iθ̄, and if θ ∈ R, then this is equal to e−iθ. From these observations we have
that

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
.

The two equalities above can be substituted into (4), and collecting terms then gives the result. This is very
similar to how c) was solved above.
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The third way, which you may consider much more complicated and which you are definitely completely free
to ignore, starts by writing (5) as (

eiθ

e−iθ

)
=

(
1 i
1 −i

)(
cos θ
sin θ

)
where the second row is using (6) and (7). Taking θ = 2x and multiplying both sides by the scalar e−3x,

e−3x

(
e2ix

e−2ix

)
= e−3x

(
1 i
1 −i

)(
cos 2x
sin 2x

)
(
e(−3+2i)x

e(−3−2i)x

)
=

(
1 i
1 −i

)(
e−3x cos 2x
e−3x sin 2x

)
.

We can now solve for the vector on the right by inverting the 2× 2 matrix:(
1 i
1 −i

)−1 (
e(−3+2i)x

e(−3−2i)x

)
=

(
e−3x cos 2x
e−3x sin 2x

)
.

To obtain (4) from the right hand side above, we can take the dot product with (D1, D2):

(D1, D2)

(
1 i
1 −i

)−1 (
e(−3+2i)x

e(−3−2i)x

)
= (D1, D2)

(
e−3x cos 2x
e−3x sin 2x

)
= D1e

−3x cos 2x+D2e
−3x sin 2x.

You can invert the matrix however you like (and some ways amount to basically solving this problem in the
first way presented above), but maybe you happen to know, or can guess/interpolate1

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

Hence

(D1, D2)

(
1 i
1 −i

)−1 (
e(−3+2i)x

e(−3−2i)x

)
= (D1, D2) ·

−1
2i

(
−i −i
−1 1

)(
e(−3+2i)x

e(−3−2i)x

)
= (D1, D2)

(
1
2

1
2

1
2i

−1
2i

)(
e(−3+2i)x

e(−3−2i)x

)
= (D1, D2)

(
1
2e

(−3+2i)x + 1
2e

(−3−2i)x

1
2ie

(−3+2i)x − 1
2ie

(−3−2i)x

)
= 1

2D1(e
(−3+2i)x + e(−3−2i)x) + 1

2iD2(e
(−3+2i)x − e(−3−2i)x)

=
D1 − iD2

2
e(−3+2i)x +

D1 + iD2

2
e(−3−2i)x.

1This is very much off the beaten path, but e.g. for the diagonal entries you could be led to a guess by thinking of diagonal

matrices, which you can invert by inspection. For the top right entry you could think of the map n 7→
(
1 n
0 1

)
which is a

“homomorphism” from the integers under addition to 2 × 2 matrices, i.e. it preserves structure, turning addition into matrix

multiplication:
(
1 m
0 1

)(
1 n
0 1

)
=

(
1 m+ n
0 1

)
. From this fact it’s automatic that negating the top right entry in this case gives

the matrix inverse, from which you can extrapolate. Alternatively, you could think of the linear transformation
(
cos θ − sin θ
sin θ cos θ

)
which has the effect of rotating vectors by an angle θ; the inverse is then clearly the same matrix but with θ 7→ −θ, and the
top right/bottom left negations follow from (6) and (7). The scale (ad − bc)−1 comes from det(A−1) = (detA)−1, i.e. det is a
homomorphism. Anyway...
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2. Give the general solution to

y′′ + by′ + cy = 0

with the initial condition y(0) = y0.

Solution.

Step 1
Similarly to question 1 above, we start by implementing a trial function:

y = emx

=⇒ y′ = memx and y′′ = m2emx.

Step 2
Next, we plug y, y′, and y′′ into the ODE and solve the characteristic equation:

(m2 + bm+ c) emx = 0.

=⇒ m1,2 =
1

2

[
− b±

√
b2 − 4c

]
.

The nature of the solution y depends on the values of b and c. We consider 3 cases.

Case 1: b2 > 4c (distinct roots ∈ R)

. =⇒ y = c1e
m1x + c2e

m2x.

Case 2: b2 < 4c (distinct roots ∈ C \ R)

. =⇒ y = (c1 cosβx+ c2 sinβx) e
αx , where m1,2 = α± iβ.

Case 3: b2 = 4c (equal roots ∈ R)

. =⇒ y = (c1 + c2x) e
mx , and m = m1 = m2.

(Alternatively, cases 1 and 2 can be combined by allowing m1 and m2 in case 1 to be distinct complex
numbers. The following manipulations do not assume that m1,2 ∈ R; if you approached the problem using
complex exponentials instead of trig functions, you can follow along with cases 1 and 3 only.

Moreover, the problem statement didn’t specify b, c ∈ R, though it would be reasonable to assume that. If
you took b, c ∈ C arbitrary (good for you!), then do case 1 with m1,2 ∈ C and allow m to be complex in case 3.)

Step 3
Next, we implement the initial conditions (ICs):

y(0) = y0.

Case 1: y(0) = c1���: 1
em1·0 + c2���: 1

em2·0 = y0,

. =⇒ c1 + c2 = y0 =⇒ y(x) = c1e
m1x + (y0 − c1)e

m2x constitutes a general solution.

Case 2: y(0) = (c1�����: 1
cos(β · 0) + c2�����: 0

sin(β · 0) ) ���*
1

eα·0 = y0 , where m1,2 = α± iβ.

. =⇒ c1 = y0 =⇒ y(x) = eαx[y0 cos(βx) + c2 sin(βx)] constitutes a general solution.

Case 3: y = (c1 +�
��*

0

c2(0) ) ���*
1

em·0 = y0 , and m = m1 = m2.

. =⇒ c1 = y0 =⇒ y(x) = y0e
mx + c2xe

mx constitutes a general solution.
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3. a) Give the general solution to

y′′ + 6y′ + 13y = eαx

for α ∈ C such that α2 + 6α+ 13 ̸= 0.

Solution.

Recall that a general solution for a non-homogeneous ODE is a combination of the solution to the corresponding
homogeneous equation, and a particular solution to the non-homogeneous case, as follows

y(x) = yh(x) + yp(x).

Step 1 - Finding yh.

y′′ + 6y′ + 13y = 0 ← homogeneous ODE

Recalling the steps in question 1. a)....

1. Trial function: y = emx =⇒ y′ = memx and y′′ = m2emx.

2. Characteristic: (m2 + 6m+ 13) emx = 0 =⇒ m1,2 = −3± 2i

3. Homogeneous ODE solution: yh(x) = e−3x[c1 cos (2x) + c2 sin (2x)].

Step 2 - Finding yp.

y′′ + 6y′ + 13y = eαx ← inhomogeneous ODE

1. Trial function: y = Aeαx =⇒ y′ = αAeαx and y′′ = α2Aeαx.

2. Characteristic: A(α2 + 6α + 13) eαx = eαx ⇐⇒ A = 1
α2+6α+13 ← for this to hold, the denominator

cannot equal zero, which is satisfied by the condition provided in the statement of the problem.

3. Inhomogeneous ODE particular solution: yp(x) = Aeαx = 1
α2+6α+13e

αx.

Step 3 - Combining the general solution.

Finally, the general solution to the inhomogeneous ODE provided in the problem is:

y(x) = yh(x) + yp(x) = e−3x[c1 cos(2x) + c2 sin(2x)] +
1

α2 + 6α+ 13
eαx,

for c1, c2 arbitrary constants, α ∈ C, and such that α2 + 6α+ 13 ̸= 0.
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3. b) Give the general solution to

y′′ + 6y′ + 13y = sin(ax)

for a ∈ R.

Solution 1.

Step 1 - Finding yh.

y′′ + 6y′ + 13y = 0 ← homogeneous ODE

Recalling the steps in question 1. a)....this is step the same as 3.a) above.

1. Trial function: y = emx =⇒ y′ = memx and y′′ = m2emx.

2. Characteristic: (m2 + 6m+ 13) emx = 0 =⇒ m1,2 = −3± 2i

3. Homogeneous ODE solution: yh(x) = e−3x[c1 cos(2x) + c2 sin(2x)].

Step 2 - Finding yp.

y′′ + 6y′ + 13y = sin(ax) ← inhomogeneous ODE

1. Trial function: y = A cos(ax) +B sin(ax) ← we attempt to find A and B.
=⇒ y′ = −aA sin(ax) + aB cos(ax) and y′′ = −a2(A cos(ax) +B sin(ax)).

2. Solving for A & B by subbing in the trial function, and its derivatives into the ODE, and then rearranging:
B = a2+13

a4−10a2+156 , and A = 6a
a4−10a2+156

3. Inhomogeneous ODE particular solution:

yp(x) = A cos(ax) +B sin(ax) =
6a

a4 − 10a2 + 156
cos(ax) +

a2 + 13

a4 − 10a2 + 156
sin(ax).

Step 3 - Combining the general solution.

Finally, the general solution to the inhomogeneous ODE provided in the problem is:

y(x) = yh(x) + yp(x) = e−3x[c1 cos(2x) + c2 sin(2x)] +
6a

a4 − 10a2 + 156
cos(ax) +

a2 + 13

a4 − 10a2 + 156
sin(ax),

for a ∈ R, and c1, c2 arbitrary constants.

Solution 2.

Alternatively, we can solve this problem using the work we did in 3a). First, note that

1. if yf is a solution to y′′ +6y′ +13y = f(x) and yg is a solution to y′′ +6y′ +13y = g(x), then yf + yg is a
solution to y′′ + 6y′ + 13y = f(x) + g(x), and

2. if yh is a solution to y′′ +6y′ +13y = h(x), then λyh is a solution to y′′ +6y′ +13y = λh(x) for all λ ∈ C.
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These follow from the fact that “differentiation is a linear operator”, i.e. d
dx

(
af(x) + bg(x)

)
= a df

dx + b dg
dx .

With these linearity observations, and the fact that sin ax = 1
2i (e

iax − e−iax), and the solution of 3a), we
can solve 3b) as follows.

From 3a) with α = ia (to which 3a applies: by assumption a ∈ R and therefore α := ia satisfies the
hypothesis that α2 + 6α+ 13 ̸= 0), we find that

y+(x) :=
1

−a2 + 6ia+ 13
eiax and y−(x) :=

1

−a2 − 6ia+ 13
e−iax

are solutions to
y′′ + 6y′ + 13y = eiax and y′′ + 6y′ + 13y = e−iax

respectively.
With the linearity observations listed above, we then deduce that

y+ − y−
2i

=
1

−2ia2 − 12a+ 26i
eiax − 1

−2ia2 + 12a+ 26i
e−iax

is a particular solution to y′′+6y′+13y = 1
2i (e

iax− e−iax) = sin ax. Combining with the homogeneous solution
from problem 1 gives a general solution of

y =
1

−2ia2 − 12a+ 26i
eiax − 1

−2ia2 + 12a+ 26i
e−iax + C1e

(−3+2i)x + C2e
(−3−2i)x

for arbitrary C1, C2 ∈ C.


