Math 218 — Assignment 3

Alex Cowan

Due 2024/09/27

1. a) Find the general solution of the DE

$$y'' + \omega_0^2 y = \alpha \cos(\omega t) \tag{1}$$

where ω_0 , α , and ω are positive real constants. Which values(s) of ω have to be treated as special cases?

b) Find the unique solution of (1) with $\omega^2 \neq \omega_0^2$ subject to the initial conditions y(0) = 0 and y'(0) = 0. c) Show that the solution in b) can be written

$$y(t) = A(t)\sin\left(\frac{1}{2}(\omega_0 + \omega)t\right)$$

where

$$A(t) \coloneqq \frac{2\alpha}{\omega_0^2 - \omega^2} \sin\left(\frac{1}{2}(\omega_0 - \omega)t\right).$$

Give a qualitative sketch of the graph of y(t) in the case where $\omega_0 - \omega$ is small compared to ω_0 .

d) Show that the unique solution of (1) with $\omega^2 = \omega_0^2$ and initial conditions y(0) = y'(0) = 0 is

$$y(t) = \frac{\alpha}{2\omega_0} t \sin \omega_0 t.$$

Give a qualitative sketch of the graph.

2. Consider a mass whose position y(t) satisfies the DE

$$y'' + 2\lambda y' + \omega^2 y = 0$$

with initial conditions $y(0) = y_0$ and $y'(0) = v_0$. Suppose that $\lambda \ge \omega > 0$, so that oscillations do not occur.

a) One expects that if v_0 is sufficiently large then the mass will pass through the equilibrium position y = 0 before coming to rest. Find the restriction on v_0 that will ensure that this happens in the case of critical damping $\lambda = \omega$. Also find the corresponding time t_0 for which $y(t_0) = 0$.

b) Find the time t_{\min} at which y attains its minimum value y_{\min} . Show that t_{\min} satisfies

$$t_{\min} = t_0 + \frac{1}{\omega}$$

and that

$$y_{\min} = -\left(\frac{v_0}{\omega} - y_0\right)e^{-\omega t_{\min}}.$$

c) Sketch the graphs of the displacement y(t) and the velocity y'(t), and label t_0 , t_{\min} , v_0 , and y_{\min} .

d) Show that if $\lambda > \omega$ then the mass will pass through the equilibrium position y = 0 if

$$\begin{split} & \frac{v_0}{y_0} > \lambda + \sqrt{\lambda^2 - \omega^2}, \\ & \frac{v_0}{y_0} < \lambda + \sqrt{\lambda^2 - \omega^2}. \\ & \frac{v_0}{y_0} = \lambda + \sqrt{\lambda^2 - \omega^2} \, ? \end{split}$$

What happens if

and will not if

(