Math 218 — Assignment 5

Alex Cowan

Due 2024/10/29

1. Give the general solution to each of the following differential equations.

1.1)
$$x' = \begin{pmatrix} 5i & 0 \\ 0 & -6 \end{pmatrix} x$$

1.2) $x' = \begin{pmatrix} 3 & -2i \\ 0 & 1+i \end{pmatrix} x$
1.3) $x' = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix} x$
1.4) $x' = \begin{pmatrix} 0 & 1 \\ -11 & -3 \end{pmatrix} x$
1.5) $x' = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix} x$
1.6) $x' = \begin{pmatrix} \alpha & 1 \\ -1 & \alpha \end{pmatrix} x.$

2. Consider the initial value problem

$$x'(t) = Ax(t) \qquad \text{and} \qquad x(t_0) = c. \tag{1}$$

2.1) Write code which solves (1) numerically by modifying Euler's method to handle systems of linear first order differential equations with constant coefficients. Your code should take as input

- an $n \times n$ matrix A defined over \mathbb{C} ,
- a starting time t_0 ,
- an ending time t_f ,
- a list $c^T = (c_1, \ldots, c_n),$
- a step size Δt ,

and should output an approximation of $x(t_f)$.

2.2) In (1), take

$$A = \frac{1}{6445} \begin{pmatrix} -6408044856 + 2900994527i & -4456031192 + 10152071064i \\ -11196078372 + 3222022554i & 6408044856 + 22879134373i \end{pmatrix}$$

and $x(0) = (2, 1)^T$. Use your code to give a good numerical approximation of x(10).

2.3) Determine the value of x(10) analytically. Compare with your numerical approximation.

3. Fix
$$\lambda \in \mathbb{C}$$
 and let $J \coloneqq \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$.

3.1) What are the eigenvalues of J? For each eigenvalue, what is a basis of eigenvectors for the associated eigenspace (i.e. a basis for ker $(J - \mu I)$, where μ is the eigenvalue)?

- **3.2)** Find a simple expression for J^n , $n \in \mathbb{Z}_{\geq 0}$.¹ **3.3)** Find a simple expression for e^{tJ} .

3.4) Solve the initial value problem x' = Jx with x(0) = c for $c \in \mathbb{C}^2$ arbitrary.

3.5) What is the general solution to the differential equation

$$x' = \begin{pmatrix} -14 & 9\\ -16 & 10 \end{pmatrix} x?$$

¹Hint (rot13): Pnyphyngr gur svefg srj cbjref ol unaq naq gura hfr vaqhpgvba.