
Consider the coupled constant volume mixing tank system as shown with inflow
concentration cin(t), with state vector

x =

(
m1

m2

)
,

where m1 and m2 denote the mass of chemical in tanks 1 and 2 respectively. Let V be
the volume of each tank.
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14. Find the general solution to the vector DE

x0 =

✓
1 1
4 1

◆
x +

✓
1
2

◆

using the method of variation of parameters. (For extra practice later, consider re-
peating the problem using undetermined coe�cients and/or Laplace transforms.)

15. Consider the coupled constant volume mixing tank system as shown with inflow con-
centration cin(t), with state vector

x =

✓
m1

m2

◆
,

where m1 and m2 denote the mass of chemical in tanks 1 and 2 respectively. Let V be
the volume of each tank.
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b) Find a particular solution of the DE (*) for the 2 ⇥ 2 matrices given in #2, and
the input functions given below:

(i) f(t) = e�3t

✓
1
1

◆
(ii) f(t) =

✓
2 cos 2t
sin 2t

◆

(iii) f(t) = e�t

✓
0
1

◆
(iv) f(t) = cos t

✓
1
�1

◆
.

6. Consider the coupled constant volume mixing tank system as shown with inflow con-
centration cin(t), with state vector

x =

✓
m1

m2

◆
,

where m1 and m2 denote the mass of chemical in tanks 1 and 2 respectively. Let V be
the volume of each tank.

Tank 1

1
3
ff

Tank 2

f4
3
f

a) Show that the vector DE governing the state of the system is

x0 = Ax + f , A =

✓
�4 1
4 �4

◆
, f =

✓
3cinV

0

◆
,

where 0 denotes di↵erentiation with respect to ⌧ = f
3V

t. (The factor “3” is included
to simplify the numbers.)

b) Find the fundamental matrix for the homogeneous DE.

c) Find the solution for the following initial conditions, assuming cin(t) = 0:

i) m1(0) = M, m2(0) = 0 ii) m1(0) = 1
3
M, m2(0) = 2

3
M iii) m1(0) = 0, m2(0) = M.

In each case give a qualitative sketch of the mass functions m1(⌧) and m2(⌧) on
the same axes. Use the graphs to give a physical interpretation of the behaviour
of the system, discussing whether the mass of chemical in each tank is increasing
or decreasing and whether the masses are ever equal.

d) Referring to c), in which case does the system flush most rapidly, i.e. in which
case does the total mass in the system tend to zero most rapidly? First make an
“educated guess”, and then give a mathematical analysis.

a) Show that a vector DE governing the state of the system is

x0 = Ax + f , A =

✓
�4 1
4 �4

◆
, f =

✓
3cinV

0

◆
,

where 0 denotes di↵erentiation with respect to ⌧ = f
3V

t. (The factor “3” is included
to simplify the numbers.)

b) Find the fundamental matrix for the homogeneous DE.

c) Find the solution for the following initial conditions, assuming cin(t) = 0:

i) m1(0) = M, m2(0) = 0 ii) m1(0) = 1
3
M, m2(0) = 2

3
M iii) m1(0) = 0, m2(0) = M.

In each case give a qualitative sketch of the mass functions m1(⌧) and m2(⌧) on
the same axes. Use the graphs to give a physical interpretation of the behaviour
of the system, discussing whether the mass of chemical in each tank is increasing
or decreasing and whether the masses are ever equal.

(a) Show that the vector DE governing the state of the system is

x′ = Ax + f , A =

(
−4b b
4b −4b

)
, f =

(
3bV cin

0

)
,

where b = f
3V

(this simplifies the algebra).

(b) Find the solution to the homogeneous DE x′ = Ax.

(c) Find the solution for the following initial conditions, assuming cin(t) = 0:

i) m1(0) = M, m2(0) = 0 ii) m1(0) = 1
3
M, m2(0) = 2

3
M iii) m1(0) = 0, m2(0) = M.

In each case give a qualitative sketch of the mass functions m1(t) and m2(t) on
the same axes. Use the graphs to give a physical interpretation of the behaviour
of the system, discussing whether the mass of chemical in each tank is increasing
or decreasing and whether the masses are ever equal.

(d) Referring to (c), in which case does the system flush most rapidly, i.e. in which
case does the total mass in the system tend to zero most rapidly? First make an
“educated guess”, and then give a mathematical analysis.

(e) Sketch typical orbits of the DE in R2, subject to the restriction m1 ≥ 0, m2 ≥ 0.



(i) Mark the orbits corresponding to the three solutions in part (c) on your
sketch.

(ii) Consider an initial state with m2(0) < m1(0). Use the sketch to describe the
future evolution of the system.

(iii) Do the same for an initial state with m2(0) > 4m1(0).

(f) Find the solution of the non-homogeneous DE assuming cin(t) = c, a constant,
and an arbitrary initial state x(0) = a. What is the asymptotic behaviour as
t→ +∞?

Solution

(a) Using conservation of mass we have

dm1

dt
= fcin +

1

3
f
(m2

V

)
− 4

3
f
(m1

V

)

dm2

dt
=

4

3
f
(m1

V

)
− 1

3
f
(m2

V

)
− f

(m2

V

)

which we can rewrite as

m′1 =
f

3V
(m2 − 4m1 + 3V cin)

m′2 =
f

3V
(4m1 − 4m2)

which means that, in vector form,

x′ = b

[
−4 1
4 −4

]
x +

[
3bV cin

0

]

(b) For A =

[
−4b b
4b −4b

]
we have A−λI =

[
−4b− λ b

4b −4b− λ

]
so the characteristic

equation is

(−λ− 4b)2 − 4b2 = 0

λ2 + 8bλ+ 12b2 = 0

(λ+ 2b)(λ+ 6b) = 0

2



Thus λ = −2b and λ = −6b. Next we find the associated eigenvectors.

λ = −2b

Solving (A+ 2bI)~v = ~0 gives:

[
−2b b
4b −2b

] [
v1
v2

]
=

[
0
0

]
⇒ −2bv1 + bv2 = 0 ⇒ v2 = 2v1

Hence an eigenvector is

[
1
2

]

λ = −6b

Solving (A+ 6bI)~v = ~0 gives:

[
2b b
4b 2b

] [
v1
v2

]
=

[
0
0

]
⇒ 2bv1 + bv2 = 0 ⇒ v2 = −2v1

Hence an eigenvector is

[
1
−2

]

From this our solution is

~x = c1e
−2bt

[
1
2

]
+ c2e

−6t
[

1
−2

]

(c) (i) With m1(0) = M,m2(0) = 0 we get the system

[
M
0

]
= c1

[
1
2

]
+ c2

[
1
−2

]
⇒ M = c1 + c2

0 = 2c1 − 2c2

which has solutions c1 = c2 = M
2

The solutions are thus

m1(t) =
M

2
(e−2bt + e−6bt)

m2(t) = M(e−2bt − e−6bt)

Note that:

m′1(t) =
M

2
(−2be−2bt − 6be−6bt) = Mb(−e−2bt − 3e−6bt)

which is always negative.
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Whereas

m′2(t) = Mb(−2e−2bt + 6e−6bt) = 0 if 6e−6bt = 2e−2bt

which happens when t = ln 3
4b

.

Thus, m1 is always decreasing but m2 increases (to approximately 0.4M and
then decreases. To see if they intersect we solve m1 = m2 to get

M

2
(e−2bt + e−6bt) = M(e−2bt − e−6bt)

3e−6bt = e−2bt

t =
ln 3

4b

i.e. when m2 is a maximum.

The plot is shown below (m1 is red, m2 is blue)

M

tt= ln(3)/4b

m(t)

(ii) With m1(0) = 1
3
M,m2(0) = 2

3
M we get the system

[
M
3

2M
3

]
= c1

[
1

2

]
+ c2

[
1

−2

]
⇒

M
3

= c1 + c2

2M
3

= 2c1 − 2c2

which has solutions c1 = M
3

and c2 = 0.
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The solutions are thus

m1(t) =
M

3
e−2bt

m2(t) =
2M

3
e−2bt

Both functions decrease and m2 is always twice m1 (so they don’t intersect):

The plot is shown below (m1 is red, m2 is blue)

M

t

m(t)

(iii) With m1(0) = 0,m2(0) = M we get the system

[
0

M

]
= c1

[
1

2

]
+ c2

[
1

−2

]
⇒ 0 = c1 + c2

M = 2c1 − 2c2

which has solutions c1 = M
4

and c2 = −M
4

.

The solutions are thus

m1(t) =
M

4
(e−2bt − e−6bt)

m2(t) =
M

2
(e−2bt + e−6bt)

In this case m′2(t) < 0 for all t and m′1(t) = 0 when −2be−2bt + 6be−6bt = 0

which once again happens at t = ln(3)
4b

.
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Also, in this setup it we get that m2 is always greater than m1 (compare
with part (i) where the smaller coefficient, M

2
was with the solution that

adds the exponentials whereas here the smaller coefficient, M
4

is attached to
the solution with subtracting exponentials).

The plot is shown below (m1 is red, m2 is blue)

M

t

m(t)

t = ln(3)/4b

(d) The trick here is to realize that the ”slower” exponential e−2bt is the one that
matters. The faster one e−6bt will decay to zero very rapidly so we need to find
out which case has the fastest decaying ”slow” term e−2bt.

In terms of leading order behaviour (i.e. e−2bt) we have that:

Case (i) gives m1 +m2 = Me−2bt + M
2
e−2bt = 3M

2
e−2bt

Case (ii) gives m1 +m2 = M
3
e−2bt + 2M

3
e−2bt = Me−2bt

Case (iii) gives m1 +m2 = M
4
e−2bt + M

2
e−2bt = 3M

4
e−2bt

Thus the third case will decrease the fastest which probably makes sense when
you think that if all of the mass is initially in tank 2 then a large chunk will flush
out right away.

(e) The orbits are shown below
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m1(t)

m2(t)

M

M
horizontal isocline

vertical isocline

(i) The orbits corresponding to the scenarios above are marked in green.

(ii) The horizontal isoclines are given by m′2(t) = 0 ⇒ m2 = m1, this is
shown in the plot. When m2(0) < m1(0) then m1 decreases for all t whereas
m2 increases for a bit before decreasing. At that time m2 will become greater
than m1.

(iii) The vertical isoclines are given by m′1(t) = 0 ⇒ m2 = 4m1, this is shown
in the plot. When m2(0) > 4m1(0) then m2 decreases for all t while m1 hits a
maximum before decreasing. m1 becomes > m2

4
at that time but the masses

are never equal.

(f) Our system is now

[
m′1(t)
m′2(t)

]
=

[
−4b b
4b −4b

] [
m1

m2

]
+

[
3bV c

0

]

We already solved for the homogenous solution in part (b). We will now find the
particular solution xp by using undeterminded coefficients.
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Let xp =

[
k1
k2

]
. Upon substitution into the system we get

[
0
0

]
=

[
−4b b
4b −4b

] [
k1
k2

]
+

[
3bV c

0

]

0 = −4bk1 + bk2 + 3bV c

0 = 4bk1 − 4bk2

The second equation implies k1 = k2. Using this in the first we get k1 = k2 = cV .
Thus

xp =

[
cV
cV

]

and the full solution is

x = c1e
−2bt

[
1
2

]
+ c2e

−6t
[

1
−2

]
+

[
cV
cV

]

For an arbitrary initial condition x(0) = a we have

[
a1
a2

]
=

[
c1
2c1

]
+

[
c2
−2c2

]
+

[
cV
cV

]

a1 = c1 + c2 + cV

a2 = 2c1 − 2c2 + cV

Solving for c1 and c2 gives

c1 =
a1
2

+
a2
4
− 3cV

4

c2 =
a1
2
− a2

4
− cV

4

The full solution, for an arbitrary initial condition, is thus

x =

(
a1
2

+
a2
4
− 3cV

4

)
e−2bt

[
1
2

]
+

(
a1
2
− a2

4
− cV

4

)
e−6t

[
1
−2

]
+

[
cV
cV

]

As t→∞ we get the exponentials disappear and we are left with x =

[
cV
cV

]
which

makes sense considering c is mass/volume and V is volume, thus cV is a mass.
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