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The matrix exponential

1.

1.1) Let A be an n× n matrix defined over the complex numbers. Show that |Ak
i,j | ≤ Ck for some constant C

depending only on A (this means dependence on various features of A, such as n and its entries Ai,j , are okay
too).

1.2) Show that, for any n×n matrix A defined over the complex numbers, the series defining exp(tA) converges
for all t ∈ C.

2. Let A be an n× n matrix defined over C.

2.1) Show that, for any t0 ∈ R fixed, both exp(tA) exp(t0A) and exp((t+ t0)A) solve the initial value problem
M ′(t) = AM(t) with M(0) = exp(t0A) (here M is an n× n matrix of functions of t).

2.2) Justify the fact that exp(t1A) exp(t2A) = exp((t1 + t2)A) for all t1, t2 ∈ R.

2.3) Show that exp(tA)−1 = exp(−tA).

2.4) Show, using the series definition of exp, that “to first order” exp(t1A) exp(t2A) = exp((t1 + t2)A) for all
t1, t2 ∈ R. “To first order” means considering only the terms whose t1-degree plus t2-degree is 1 or less.

2.5) Show, using the series definition of exp, that exp(t1A) exp(t2A) = exp((t1 + t2)A) to second order in t1
and t2.

2.6) In general eXeY ̸= eX+Y . Define Z to be such that eXeY = eZ . Compute Z to third order in X and Y .

3. Give code which numerically estimates exp(tA), and then uses this to numerically estimate the solution x⃗ to
the initial value problem x⃗′(t) = Ax⃗(t) and x⃗(0) = c⃗.

4. Let x⃗ be a solution to the initial value problem x⃗′(t) = Ax⃗(t) and x⃗(0) = c⃗.

4.1) Show that x⃗ satisfies the equation

x⃗(t) = c⃗+

∫ t

0

Ax⃗(s) ds.

Define x⃗0(t) := c⃗ and

x⃗k+1(t) := c⃗+

∫ t

0

Ax⃗k(s) ds

for k = 0, 1, . . . .

4.2) Show that x⃗1 = (I + tA)c⃗.

4.3) Show that x⃗2 = (I + tA+ t2

2 A
2)c⃗.

4.4) Show that x⃗k = (I + tA+ t2

2 A
2 + · · ·+ tk

k!A
k)c⃗.
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4.5) Show that x⃗ = limk→∞ x⃗k = exp(tA)c⃗.

5. Prove the following statements.

5.1) det(I + εT ) = 1 + εtr(T ) +O(ε2).

5.2) det(A+ εT ) = det(A) + εtr(A−1T ) det(A) +O(ε2).

5.3) d
dt det(e

tB) = tr(B) det(etB). Hint: take T = d
dte

tB and ε = ∆t.

5.4) det(eX) = etr(X).

Lie groups

6. This problem introduces the Lie groups of orthogonal and unitary matrices, and illustrates some techniques
for computing their Lie algebras.

6.1) Show that exp(MT ) = exp(M)T , i.e. the exponential of the transpose of a matrix is the transpose of the
exponential of that matrix.

The matrix Q is said to be orthogonal if QQT = QTQ = I.

6.2) Fix an orthonormal basis of Rn (e.g. the standard basis). Show that, for v ∈ Rn, thought of as a column
vector, one has ∥v∥2 = vT v.

6.3) Let Q be an orthogonal matrix. Show that ∥Qv∥2 = ∥v∥2. (Q is an “isometry”.)

6.4) Show that if M = −MT (i.e. M is skew-symmetric) then exp(M) is orthogonal.

6.5) Show that if M is skew-symmetric then exp(M) has determinant 1.

6.6) Give an example of an orthogonal matrix with determinant −1.

Let A† := AT denote the (complex) conjugate transpose of A.1 The matrix A is Hermitian if A = A†. The
matrix U is unitary if UU† = U†U = I.

6.7) Show that if A is Hermitian, then exp(iA) is unitary.

6.8) Calculate
(
I + ε( a b

c d )
)(
I + ε( a b

c d )
)T .

6.9) If you want the expression you just got to be equal to I to “first order” in ε (i.e. imagining that ε2 = 0
while ε ̸= 0), what conditions must you impose on a, b, c, d?

6.10) For arbitrary dimension, what condition must you impose on the matrix X to ensure that (I + εX)(I +
εX)T = I+O(ε2)? Here O(ε2) denotes a matrix whose entries are all bounded by a constant times ε2 as ε→ 0.2

6.11) Consider side by side your work in parts 4, 9, and 10 of this problem. Do you see how these are three
sides of the same coin?

6.12) What questions would I have asked to prompt you to investigate unitary matrices, in a way parallel to
what you just did for orthogonal matrices?

7. Let U(1) denote the set of 1 × 1 unitary matrices (which we will think of as interchangible with certain
complex numbers). This set is in fact a group: any two elements can be multiplied to give another element, and
every element is invertible.

7.1) Show that cos θ + i sin θ ∈ U(1) for all θ ∈ R.

7.2) Show that every z ∈ U(1) can be written as cos θ + i sin θ ∈ U(1) for some θ ∈ R. In conjunction with the
1A† is pronounced “A dagger”. The notation A∗ for the conjugate transpose is also common, but beware that physicists often

write A∗ to mean the conjugate and not the conjugate transpose.
2This is big O notation.

2

https://en.wikipedia.org/wiki/Big_O_notation


previous question, you now have a complete description of U(1).

7.3) Note that I = 1 ∈ U(1). What condition must you impose on h ∈ Mat1×1(C) to ensure that 1+ εh ∈ U(1)
to first order in ε?

The condition you found in the previous problem is linear. Thus, the “Lie algebra” u(1) of matrices which
satisfy this condition is a vector space (of matrices, i.e. the “vectors” in this abstract vector space are matrices).
Consider u(1) as a vector space over R, not over C. This means that you are allowed to take R-linear combinations
of matrices in the vector space u(1), but not C-linear combinations.

One can pick a basis for this R-vector space u(1), i.e. a finite list of matrices such that every matrix in the Lie
algebra u(1) can be written uniquely as an R-linear combination of matrices in your list of basis matrices. In
this case, you should find that the Lie algebra u(1) is 1-dimensional over R, i.e. it is a 1-dimensional subspace
of the space Mat1×1(C) ∼= {a+ bi : a, b ∈ R}. Note that Mat1×1(C) is 2-dimensional as an R-vector space: the
two element set {1, i} is a basis since a+ bi = a · 1 + b · i, and there is no real number r such that r · 1 = i.

Let g ∈ u(1) span the 1-dimensional R-vector space u(1), i.e. take a basis {g} of one element. You can choose g
to be any nonzero element of u(1).

7.4) Write down the solution to the differential equation x′ = gx with initial condition x(0) = 1, using the
matrix exponential (which, you will note, for 1× 1 matrices is the same as the usual exponential).

You showed in a previous problem that if A is Hermitian then exp(iA) is unitary. Note that tg/i is Hermitian
for all t ∈ R. Therefore the solution x(t) is in U(1) for all t ∈ R. Recall from part 2 earlier that every z ∈ U(1)
can be written in the form cos θ + i sin θ for θ ∈ R. Therefore, x(t) = cos θ(t) + i sin θ(t).

7.5) What is the value of θ(0)?

7.6) Evaluate d
dt cos θ(t) + i sin θ(t)

∣∣
t=0

using the chain rule.

7.7) Give an expression for d
dt cos θ(t) + i sin θ(t)

∣∣
t=0

by inspecting the differential equation x′ = gx.

7.8) Oberve that, over the course of this problem, you have shown how Euler’s formula is a result of expo-
nentiating (i.e. it 7→ exp(it)) the “local symmetry” of the Lie algebra u(1) inherent in the differential equation
x′ = ix to the “global symmetry” of the Lie group U(1).

8. Let SO(2) denote the set of 2 × 2 orthogonal matrices with determinant 1. This set is in fact a group: any
two elements can be multiplied to give another element, and every element is invertible.

8.1) Show that
(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2) for all θ ∈ R.

8.2) Show that every matrix in SO(2) can be written as
(
cos θ − sin θ
sin θ cos θ

)
for some θ ∈ R. In conjunction with the

previous question, you now have a complete description of SO(2).

8.3) Note that I ∈ SO(2). What conditions must you impose on h ∈ Mat2×2(R) to ensure that I + εh ∈ SO(2)
to first order in ε?

8.4) Note that the conditions you found in the previous problem are linear. Thus, the “Lie algebra” so(2) of
matrices which satisfy these conditions is a vector space. Give a basis for this vector space, i.e. a finite list of
matrices such that every matrix which satisfies your conditions can be written uniquely as a linear combination
of matrices in your list.

8.5) You should find that your Lie algebra from the previous problem is 1-dimensional. Let g be a matrix which
spans this space (here this is just picking any nonzero elemeent). Solve the initial value problem x′ = gx and
x(0) = (1, 0)T . Give your solution in terms of real numbers only.

8.6) Recall that every matrix in SO(2) can be written as
(
cos θ − sin θ
sin θ cos θ

)
. Evaluate d

dθ

(
cos θ − sin θ
sin θ cos θ

)
at θ = 0.

Define φ : C → Mat2(R) by φ(a+ bi) =
(
a −b
b a

)
, where a, b ∈ R.

8.7) Show that φ(zw) = φ(z)φ(w) for all z, w ∈ C. The function φ is a homomorphism: it preserves structure,
in the sense that it doesn’t matter if you multiply before or after applying φ.

8.8) Show that |z| = detφ(z) for all z ∈ C.
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8.9) What is the preimage of SO(2) under φ? I.e. what is the set of complex numbers {z ∈ C : φ(z) ∈ SO(2)}?

You can now note that φ is injective (i.e. different inputs yield different outputs), so it is an “isomorphism”
between SO(2) and its preimage U(1). This means that they are basically the same thing and interchangible in
all situations.

9. In this problem we will give an example of how the perspective on Euler’s formula outlined in problem 6
can be generalized to other Lie groups. The following example concerns a case that is particularly important in
quantum mechanics.

Let SU(2) denote the group of 2× 2 unitary matrices with determinant 1. Define

σ1 :=

(
0 1
1 0

)
σ2 :=

(
0 −i
i 0

)
σ3 :=

(
1 0
0 −1

)
These are called the Pauli matrices. Note that they are Hermitian.

9.1) Show that the Pauli matrices satisfy the following relations.

σ2
1 = σ2

2 = σ2
3 = −iσ1σ2σ3 = I

σ1σ2 = −σ2σ1 = iσ3

σ2σ3 = −σ3σ2 = iσ1

σ3σ1 = −σ1σ3 = iσ2

Fix v ∈ R3 with ∥v∥ = 1. Define v · σ⃗ := v1σ1 + v2σ2 + v3σ3.

9.2) Show that (v · σ⃗)2k = I for all k ∈ Z≥0, and that (v · σ⃗)2k+1 = v · σ⃗.

9.3) Show that {iσ1, iσ2, iσ3} forms an R-basis for the Lie algebra su(2). (Reference previous problems to see
how to do this.)

9.4) Using the series definition of exp, show that, for any θ ∈ C,

exp(iθ(v · σ⃗)) = I cos θ + i(v · σ⃗) sin θ.

9.5) Explain why, if θ ∈ R, then I cos θ + i(v · σ⃗) sin θ ∈ SU(2).

10. The Schrödinger equation is

iℏ
∂

∂t
ψ(t) = Hψ(t),

where the Hamiltonian H is a Hermitian matrix, ψ(t) ∈ Cn is a vector of functions from R to C, and ℏ ≈
1.05457 · 10−34 kg·m2

s is Planck’s constant divided by 2π. The Schrödinger equation is the fundamental equation
of motion in quantum mechanics, playing the same role as F = ma does in classical mechanics. Basically all of
non-relativistic quantum mechanics is solving the Schrödinger equation.

10.1) Write down the solution to the Schrödinger equation with initial condition ψ = ψ(0) at t = 0 in terms of
the matrix exponential.

Every Hermitian matrix is diagonalizable and has real eigenvalues. Let ψ1, . . . , ψn be an eigenbasis with cor-
responding eigenvalues E1, . . . , En. (These eigenvalues are the energies of the corresponding eigenvectors a.k.a.
“eigenstates”.)

10.2) Write down the general solution to the Schrödinger equation as a linear combination of the eigenstates
ψk.

Let v0, v1, v2, v3 be real numbers, thought of as having units of energy, and define v := (v1, v2, v3) ∈ R3 (note
that v0 is omitted here). For the remainder of this problem, set H := v0I + v · σ⃗, where σ⃗ = (σ1, σ2, σ3) is the
vector of Pauli matrices defined in a previous problem.

10.3) Show that H = v0I + v · σ⃗ is the general form of a 2× 2 Hermitian matrix.
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10.4) Using the result of a previous problem, show that

e−iHt/ℏ = e−iv0t/ℏ
(
I cos

(∥v∥
ℏ t

)
− i( v

∥v∥ · σ⃗) sin
(∥v∥

ℏ t
))
.

10.5) What Lie group is e−iHt/ℏ an element of?

10.6) Show that the eigenvalues of H are v0 ± ∥v∥. This can be shown with minimal calculation by reflecting
on the previous parts of this problem.

10.7) Nuclear magnetic resonance imaging (nMRI), a technique widely used in medicine, applies a magnetic
field B⃗ = Bn⃗ ∈ R3 to particles with magnetic moment µ⃗ = µσ⃗, where ∥n⃗∥ = 1 and B,µ ∈ R with units of
mass per (time2 · current) and length2 · current respectively. The magnetic field B⃗ separates particles into two
eigenstates, a high-energy one and a low-energy one. The Hamiltonian of the resulting quantum-mechanical
system is H = −µ⃗ · B⃗. What is the energy difference between the two eigenstates?

Conserved quantities

11. For a matrix B and a vector x(t), define ⟨B⟩ := x(t)†Bx(t), where † denotes the conjugate transpose.
Suppose x satisfies the differential equation x′ = Ax.

11.1) Show that d
dt ⟨B⟩ = x(t)†(A†B +BA)x(t).

11.2) Suppose iA is Hermitian. Show that, if A and B commute, then the quantity ⟨B⟩ is constant as t varies.

In the Schrödinger equation iℏ ∂
∂tψ = Hψ, the matrix H is always Hermitian. Thus, whenever HB − BH = 0,

the expectation ⟨B⟩ for the quantum system is a conserved quantity as time elapses. A classical analogue of
this fact exists, involving “Poisson brackets”; these are explored in a later problem.

11.3) Let σ1, σ2, σ3 denote the Pauli matrices, defined previously. Take A = iσj . What is d
dt ⟨iσk⟩? Express

your answer in terms of j and k, considering all nine possible combinations of values.

12. Let Ω =
(

0 In
−In 0

)
be the standard “symplectic form” on R2n. Let Sp(2n) be the Lie group of 2n× 2n real

matrices M satisfying MTΩM = Ω.

12.1) What condition must be imposed on matrices for them to be in the Lie algebra sp(2n) of Sp(2n)?

Let A ∈ sp(4). Suppose x(t) = (x1, x2, x3, x4)
T and y(t) = (y1, y2, y3, y4)

T satisfy x′ = Ax and y′ = Ay.

12.2) Show that the value x1y3 + x2y4 − x3y1 − x4y2 is independent of t.

13. Hamiltonian mechanics are a formulation of classical mechanics. For i = 1, . . . , n, let qi denote the positions
of things in your system, and pi the associated momenta. In Hamiltonian mechanics, every physical system is
determined by a function H = H(q, p), where q = (q1, . . . , qn) and p = (p1, . . . , pn). (The Hamiltonian H can
also depend explicitly on time sometimes, but that’s weird so let’s not do that.) The equations of motion in
Hamiltonian mechanics are

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

for each i = 1, . . . , n.

13.1) The total energy of the system is the real number H(q, p) evaluated at the point (q, p) in phase space.
Using the chain rule, show that, if Hamilton’s equations of motion are satisfied, then energy is conserved.

13.2) Note that the equations of motion in Hamiltonian mechanics preserve a symplectic form. Use the previous
problem to prove Liouville’s theorem, that phase space is incompressible (i.e. that regions of phase space do not
change volume when evolved in time according to Hamiltonian dynamics).
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Given two functions F (q, p) and G(q, p) on phase space, define the Poisson bracket

{F,G} :=
∑
i

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
.

13.3) Show that Ḟ = {F,H}. Explain the parallel with the quantum-mechanical version of this statement
explored in problem 11.


