Math 218 — Extra problems 3

Alex Cowan

alex.cowan@uwaterloo.ca [https://www.math.uwaterloo.ca/](https://www.math.uwaterloo.ca/~a2cowan/)∼a2cowan/

- 1. In this question we are working over the complex numbers. Let A be an arbitrary square matrix of any size. Let v_1, \ldots, v_k be a complete list of eigenvectors of A, and $\lambda_1, \ldots, \lambda_k$ their associated eigenvalues. True or false? If true, demonstrate why. If false, give a counterexample and explain why it's a counterexample.
	- (a) For every possible choice of complex numbers c_1, \ldots, c_k , the function

$$
x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \dots + c_k e^{\lambda_k t} v_k
$$
\n(1)

is a solution to the differential equation $x' = Ax$.

- (b) Every solution to the differential equation $x' = Ax$ is of the form [\(1\)](#page-0-0).
- 2. The 2×2 matrix A has integer entries all less than or equal to 5 in absolute value. Below is a plot of phase space for the differential equation $x' = Ax$. Determine A. (Part marks: list properties A must posses.)

3. Consider the differential equation

$$
y'' + 8y' + 16y = 0.\t\t(2)
$$

- (a) By defining $x_1 \coloneqq y$ and $x_2 \coloneqq y'$, write [\(2\)](#page-1-0) in the form $x' = Ax$.
- (b) Find the general solution to the differential equation $x' = Ax$ from part (a).
- (c) Using your answer from part (b), give the general solution to [\(2\)](#page-1-0).
- 4. Consider the differential equation

$$
y'' + 8y' + 16y = 0.\t\t(3)
$$

Find the general solution to [\(3\)](#page-1-1) by taking a Laplace transform.

5. Consider the differential equation

$$
y'' + 8y' + 16y = 0.\t\t(4)
$$

- (a) Write $y(t) = \sum_{n=0}^{\infty} a_n t^n$. Relate each a_n to $a_0, a_1, \ldots, a_{n-1}$ so that y is a general solution to [\(4\)](#page-1-2).
- (b) Suppose $y(0) = -2$ and $y'(0) = -3$. Give the power series of $y(t)$ around $t = 0$ to degree up to and including 4.
- 6. Consider the differential equation

$$
y'' + 6y' + 34y = 4e^{-3t}\cos 5t.
$$
 (5)

- (a) By defining $x_1 := y$ and $x_2 := y'$, write [\(5\)](#page-1-3) in the form $x' = Ax + f(t)$.
- (b) Find the general solution to the differential equation $x' = Ax + f(t)$ from part (a).
- (c) Using your answer from part (b), give the general solution to [\(5\)](#page-1-3).
- (d) Find the general solution to [\(5\)](#page-1-3) using a different method.
- 7. Consider the differential equation

$$
x' = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} x + f(t). \tag{6}
$$

(a) Find a solution to (6) when
$$
f(t) = \vec{0}
$$
 and $x(0) = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$.

(b) Find a solution to [\(6\)](#page-1-4) when $f(t) = \begin{pmatrix} e^{2\pi i t} \\ 0 \end{pmatrix}$ $e^{2\pi it}$ and $x(0) = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ b_2 .

(c) Find a solution to (6) when
$$
f(t) = \begin{pmatrix} e^{2\pi it} \\ -e^{2\pi it} \end{pmatrix}
$$
 and $x(0) = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$.

(d) Find a solution to (6) when
$$
f(t) = \begin{pmatrix} 3\cos 2\pi t \\ 3\sin 2\pi t \end{pmatrix}
$$
 and $x(0) = \begin{pmatrix} -4 \\ 4 \end{pmatrix}$.

8. Match the following differential equations $y' = F(t, y)$ for each of the following F to their direction fields. One of the direction field plots is blank; sketch what it should be. Explain your reasoning throughout.

\n (i)
$$
y - \frac{y^2}{2}
$$
 \n (ii) $\log \frac{1}{1 + x^2 + y^2}$ \n (iii) $-\frac{x}{3} - \frac{3y}{4}$ \n (iv) $\frac{y}{t^2 - 9}$ \n

\n\n $\frac{1}{1 + x^2 + y^2}$ \n (iv) $\frac{y}{t^2 - 9}$ \n

\n\n $\frac{1}{1 + x^2 + y^2}$ \n (v) $\frac{y}{t^2 - 9}$ \n

\n\n $\frac{1}{1 + x^2 + y^2}$ \n (v) $\frac{y}{t^2 - 9}$ \n

\n\n $\frac{1}{1 + x^2 + y^2}$ \n (v) $\frac{y}{t^2 - 9}$ \n

\n\n $\frac{1}{1 + x^2 + y^2}$ \n (vi) $\frac{y}{t^2 - 9}$ \n

\n\n $\frac{1}{1 + x^2 + y^2}$ \n (v) $\frac{y}{t^2 - 9}$ \n

\n\n $\frac{1}{1 + x^2 + y^2}$ \n (vi) $\frac{y}{t^2 - 9}$ \n

\n\n $\frac{1}{1 + x^2 + y^2}$ \n (v) $\frac{y}{t^2 - 9}$ \n

\n\n $\frac{1}{1 + x^2 + y^2}$ \n (vi) $\frac{y}{t^2 - 9}$ \n

\n\n $\frac{1}{1 + x^2 + y^2}$ \n (v) $\frac{1}{1 + x^2 + y^2}$ \n

\n\n $\frac{1}{1 + x^2 + y^2}$ \n (vi) $\frac{y}{t^2 - 9}$ \n

\n\n $\frac{1}{1 + x^2 + y^2}$ \n (v) $\frac{1}{1 + x^2 + y^2}$ \n

9. Suppose A is a matrix such that

$$
e^{tA} = \begin{pmatrix} e^{2t}\cos 3t & -e^{2t}\sin 3t \\ e^{2t}\sin 3t & e^{2t}\cos 3t \end{pmatrix}.
$$

- (a) What are the eigenvalues of A?
- (b) What is A?

10. Calculate

$$
\exp\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}
$$

for $a \neq 0$ using the series definition of exp.

- 11. (a) Express $\mathscr{L}{tf(t)}$ in terms of $\mathscr{L}{f(t)}$ (with proof).
	- (b) Express $\mathscr{L}{g(t+k)}$ in terms of $\mathscr{L}{g(t)}$ (with proof).
	- (c) Solve the initial value problem

$$
y'' + y' + 4y = (t+1)e^{2t+2}, \t y(0) = 2, y'(0) = 0.
$$

on the interval $t > -\frac{1}{2}$ by taking a Laplace transform.

- 12. For arbitrary complex numbers α and β , compute $e^{\alpha t} * e^{\beta t}$...
	- (a) ...using the definition of ∗.
	- (b) ...by taking a Laplace transform.

13. Find a function $f(t)$ satisfying

$$
f(t) + \int_0^t (t - u) f(u) \, du = 1.
$$

14. If
$$
\mathscr{L}{y}(s) = e^{-\pi s} + \frac{\pi}{\pi + s}
$$
, find $\int_0^\infty y(t) dt$.

- 15. Define $F(s) \coloneqq \mathscr{L} \{ t^2 \sin t \}.$
	- (a) What is the domain of F ?
	- (b) Determine what $F(0)$ "should be"^{[1](#page-3-0)} using properties of the Laplace transform.

$$
\zeta(-1) = -\frac{1}{12} \neq \sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + \dots
$$

Instead, to evaluate the analytically continued function \tilde{F} , one typically uses functional equations which relate the value of F to the value of it or other functions at other points where they can be evaluated. For example, $\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s) = \pi^{-\frac{1-s}{2}}\Gamma(\frac{1-s}{2})\zeta(1-s)$.

Another example is that of the gamma function $\Gamma(s) = \int_0^\infty e^{-x} x^s \frac{dx}{x}$, which satisfies the relation $s\Gamma(s) = \Gamma(s+1)$, easily verified using integration by parts. (This relationship means that $\Gamma(n) = (n-1)!$, so Γ basically lets you take factorials of complex numbers.) The integral defining Γ only converges for $\text{Re}(s) > 0$, but it can be analytically continued to all of C save for $s = 0, -1, -2, \ldots$ by using the functional equation $\Gamma(s) = \frac{1}{s}\Gamma(s+1)$.

¹There exists a complex-differentiable, a.k.a. holomorphic function \tilde{F} which agrees with F on all of the latter's domain, while being defined on some strictly larger open connected domain Ω . It turns out, by the black magic of complex analysis, that \tilde{F} is unique among functions defined on Ω . This principle, called *analytic continuation*, is not even close to true when working only over $\overline{\mathbb{R}}$, and is really spectacular. For example, the Riemann zeta function $\zeta(s) := \sum_{n=1}^{\infty} n^{-s}$ is defined by its series only for $\text{Re}(s) > 1$, but can be analytically continued to all of \mathbb{C} except for the p is meant; there is only one!

However, when this happens, you can't just plug in values of s into F to find the value of \tilde{F} . For example, while it's true that $\zeta(0) = -\frac{1}{2}$ (where now ζ denotes the aforementioned analytic continuation), it's nonsense to say $\sum_{n=1}^{\infty} n^{-0} = 1 + 1 + 1 + 1 + \cdots = -\frac{1}{2}$. Similarly,

- 16. Let $s(x)$ be the sawtooth wave from [extra problems 1](https://www.math.uwaterloo.ca/~a2cowan/odes2024f/odes2024fextraproblems1.pdf) problem 2.6e). Compute the Fourier transform of $s(x)$ (heuristically). Compare with assignment 6 problem 4.6. (One way to do this is to recall how the Laplace transform interacts with derivatives; the Fourier transform is basically a Laplace transform, and you can show it interacts with derivatives in basically the same way.)
- 17. (a) State the definition of the Fourier transform \hat{f} .
	- (b) State the Fourier inversion theorem. (I.e. given \hat{f} , what formula recovers f ?) Note the symmetry between a function and its Fourier transform.
	- (c) State the convolution theorem for Fourier transforms.

Define

$$
r(x) := \sum_{j=0}^{\infty} \frac{\sin((2j+1)x)}{2j+1}.
$$
 (7)

The function $r(x)$ is a *square wave*. One can show by manipulating some geometric series that r is periodic with period 2π and that

$$
r(x) = \begin{cases} 1 & \text{if } x \in (0, \pi) \\ -1 & \text{if } x \in (-\pi, 0). \end{cases}
$$

Using the Fourier series [\(7\)](#page-4-0), I plot $r(x)$ below, truncating the sum, i.e. I sum only $0 < j < n$ for some finite n. Here is a plot of [\(7\)](#page-4-0) truncated at $j < n = 4$ (blue), 8 (gold), and 16 (black).

Examining the figure above, one sees that, away from the jumps at the multiples of π , taking more terms in [\(7\)](#page-4-0) causes $r(x)$ to better approximate its limit of the constant function 1 or -1 on those intervals. In contrast however, at the discontinuities of $r(x)$, the three approximations [\(7\)](#page-4-0) truncated at $n = 4, 8$, and 16 do not appear to be converging to the limiting function of alternating flat 1's and −1's. This is known as Gibbs' phenomenon.

- (d) By viewing truncation of the Fourier series [\(7\)](#page-4-0) as multiplication by the indicator function $\mathbb{1}_{\{|2k+1|< j\}}$, use the convolution theorem to explain why Gibbs' phenomenon occurs.
- 18. Solve the the initial value problem $\frac{y'}{r(x)} = 1 + y$ and $y(0.1) = 0.2$ (defined on the largest possible real domain; what is this domain?). How many free parameters does the solution have?