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1. In this question we are working over the complex numbers. Let A be an arbitrary square matrix of any
size. Let v1, . . . , vk be a complete list of eigenvectors of A, and λ1, . . . , λk their associated eigenvalues.
True or false? If true, demonstrate why. If false, give a counterexample and explain why it’s a counterex-
ample.

(a) For every possible choice of complex numbers c1, . . . , ck, the function

x(t) = c1e
λ1tv1 + c2e

λ2tv2 + · · ·+ cke
λktvk (1)

is a solution to the differential equation x′ = Ax.
(b) Every solution to the differential equation x′ = Ax is of the form (1).

2. The 2×2 matrix A has integer entries all less than or equal to 5 in absolute value. Below is a plot of phase
space for the differential equation x′ = Ax. Determine A. (Part marks: list properties A must posses.)
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3. Consider the differential equation

y′′ + 8y′ + 16y = 0. (2)

(a) By defining x1 := y and x2 := y′, write (2) in the form x′ = Ax.

(b) Find the general solution to the differential equation x′ = Ax from part (a).

(c) Using your answer from part (b), give the general solution to (2).

4. Consider the differential equation

y′′ + 8y′ + 16y = 0. (3)

Find the general solution to (3) by taking a Laplace transform.

5. Consider the differential equation

y′′ + 8y′ + 16y = 0. (4)

(a) Write y(t) =:
∑∞

n=0 ant
n. Relate each an to a0, a1, . . . , an−1 so that y is a general solution to (4).

(b) Suppose y(0) = −2 and y′(0) = −3. Give the power series of y(t) around t = 0 to degree up to and
including 4.

6. Consider the differential equation

y′′ + 6y′ + 34y = 4e−3t cos 5t. (5)

(a) By defining x1 := y and x2 := y′, write (5) in the form x′ = Ax+ f(t).

(b) Find the general solution to the differential equation x′ = Ax+ f(t) from part (a).

(c) Using your answer from part (b), give the general solution to (5).

(d) Find the general solution to (5) using a different method.

7. Consider the differential equation

x′ =

(
2 1
−1 2

)
x+ f(t). (6)

(a) Find a solution to (6) when f(t) = 0⃗ and x(0) =

(
a1
a2

)
.

(b) Find a solution to (6) when f(t) =

(
e2πit

e2πit

)
and x(0) =

(
b1
b2

)
.

(c) Find a solution to (6) when f(t) =

(
e2πit

−e2πit

)
and x(0) =

(
c1
c2

)
.

(d) Find a solution to (6) when f(t) =

(
3 cos 2πt
3 sin 2πt

)
and x(0) =

(
−4
4

)
.
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8. Match the following differential equations y′ = F (t, y) for each of the following F to their direction fields.
One of the direction field plots is blank; sketch what it should be. Explain your reasoning throughout.

(i) y − y2

2
(ii) log

1

1 + t2 + y2
(iii) − 2t

3
− 3y

4
(iv)

y

t2 − 9

(a) (b)

(c) (d)

9. Suppose A is a matrix such that

etA =

(
e2t cos 3t −e2t sin 3t
e2t sin 3t e2t cos 3t

)
.

(a) What are the eigenvalues of A?

(b) What is A?
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10. Calculate
exp

(
a b
0 0

)
for a ̸= 0 using the series definition of exp.

11. (a) Express L {tf(t)} in terms of L {f(t)} (with proof).

(b) Express L {g(t+ k)} in terms of L {g(t)} (with proof).

(c) Solve the initial value problem

y′′ + y′ + 4y = (t+ 1)e2t+2, y(0) = 2, y′(0) = 0.

on the interval t > − 1
2 by taking a Laplace transform.

12. For arbitrary complex numbers α and β, compute eαt ∗ eβt...

(a) ...using the definition of ∗.
(b) ...by taking a Laplace transform.

13. Find a function f(t) satisfying

f(t) +

∫ t

0

(t− u)f(u) du = 1.

14. If L {y}(s) = e−πs + π
π+s , find

∫∞
0

y(t) dt.

15. Define F (s) := L {t2 sin t}.

(a) What is the domain of F?

(b) Determine what F (0) “should be”1 using properties of the Laplace transform.

1There exists a complex-differentiable, a.k.a. holomorphic function F̃ which agrees with F on all of the latter’s domain, while
being defined on some strictly larger open connected domain Ω. It turns out, by the black magic of complex analysis, that F̃ is
unique among functions defined on Ω. This principle, called analytic continuation, is not even close to true when working only over
R, and is really spectacular. For example, the Riemann zeta function ζ(s) :=

∑∞
n=1 n

−s is defined by its series only for Re(s) > 1,
but can be analytically continued to all of C except for the point s = 1, and there is no ambiguity about which analytic continuation
is meant; there is only one!

However, when this happens, you can’t just plug in values of s into F to find the value of F̃ . For example, while it’s true that
ζ(0) = − 1

2
(where now ζ denotes the aforementioned analytic continuation), it’s nonsense to say

∑∞
n=1 n

−0 = 1+1+1+1+· · · = − 1
2
.

Similarly,

ζ(−1) = − 1
12

̸=
∞∑

n=1

n = 1 + 2 + 3 + 4 + . . .

Instead, to evaluate the analytically continued function F̃ , one typically uses functional equations which relate the value of F to
the value of it or other functions at other points where they can be evaluated. For example, π− s

2 Γ( s
2
)ζ(s) = π− 1−s

2 Γ( 1−s
2

)ζ(1−s).
Another example is that of the gamma function Γ(s) :=

∫∞
0 e−xxs dx

x
, which satisfies the relation sΓ(s) = Γ(s+1), easily verified

using integration by parts. (This relationship means that Γ(n) = (n−1)!, so Γ basically lets you take factorials of complex numbers.)
The integral defining Γ only converges for Re(s) > 0, but it can be analytically continued to all of C save for s = 0,−1,−2, . . . by
using the functional equation Γ(s) = 1

s
Γ(s+ 1).
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16. Let s(x) be the sawtooth wave from extra problems 1 problem 2.6e). Compute the Fourier transform of
s(x) (heuristically). Compare with assignment 6 problem 4.6. (One way to do this is to recall how the
Laplace transform interacts with derivatives; the Fourier transform is basically a Laplace transform, and
you can show it interacts with derivatives in basically the same way.)

17. (a) State the definition of the Fourier transform f̂ .

(b) State the Fourier inversion theorem. (I.e. given f̂ , what formula recovers f?) Note the symmetry
between a function and its Fourier transform.

(c) State the convolution theorem for Fourier transforms.

Define

r(x) :=

∞∑
j=0

sin((2j + 1)x)

2j + 1
. (7)

The function r(x) is a square wave. One can show by manipulating some geometric series that r is
periodic with period 2π and that

r(x) =

{
1 if x ∈ (0, π)

−1 if x ∈ (−π, 0).

Using the Fourier series (7), I plot r(x) below, truncating the sum, i.e. I sum only 0 < j < n for some
finite n. Here is a plot of (7) truncated at j < n = 4 (blue), 8 (gold), and 16 (black).

Examining the figure above, one sees that, away from the jumps at the multiples of π, taking more
terms in (7) causes r(x) to better approximate its limit of the constant function 1 or −1 on those
intervals. In contrast however, at the discontinuities of r(x), the three approximations (7) truncated
at n = 4, 8, and 16 do not appear to be converging to the limiting function of alternating flat 1’s and
−1’s. This is known as Gibbs’ phenomenon.

(d) By viewing truncation of the Fourier series (7) as multiplication by the indicator function 1{|2k+1|<j},
use the convolution theorem to explain why Gibbs’ phenomenon occurs.

18. Solve the the initial value problem y′

r(x) = 1 + y and y(0.1) = 0.2 (defined on the largest possible real
domain; what is this domain?). How many free parameters does the solution have?
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