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I do analytic number theory, computational number theory, and arithmetic statistics.

Section 1 presents [Cow22a] on the design and implementation of an algorithm for generating a database
of “modular forms”: complicated and mysterious objects of fundamental importance in number theory. The
database I generated is 200 times larger than the one before it, and is available on the widely-used L-functions
and Modular Forms Database so as to be easily and readily accessible to number theorists broadly. My algorithm
can be generalized to compute many other kinds of interesting arithmetic data.

Section 2 presents [Cow24b], wherein I use analytic techniques to study the phenomenon of “murmurations”
which has been of great interest since its discovery two years ago. My work connects murmurations to the field
of random matrix theory, the first time this connection has been made in the literature. To demonstrate how
existing results for a specific problem in random matrix theory can be used to explain murmurations, I give
proofs of murmurations, conditional on standard conjectures, for four cases.

Section 3 presents [Cow25], technically challenging analytic work in which I use the spectral theory of auto-
morphic forms to study the correlation between generalized divisor sums of integers a fixed distance apart. Such
“shifted convolutions” are a cornerstone of modern analytic number theory with many applications. Existing
general treatments of the problem all made simplifying assumptions which exclude the case I study. Determin-
ing the asymptotic value of this divisor sum correlation required an adaptation of a little-known theoretical
technique, and the error term I obtain is unusually small. This work was the subject of a topics course I taught
last year at Harvard; notes in the form of video lectures are available on my website and on YouTube.

Section 4 presents a selection of papers of mine in arithmetic geometry, not primarily computational or
analytic in nature, with statistical foci.
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1. A modular form database from supersingular isogeny graphs

Background

Classical weight 2 newforms are complex functions with certain kinds of arithmetic symmetries. They are
among the most important objects in number theory, and in many aspects remain quite mysterious.

Newforms can be ordered in a natural way according to a positive integer called their level. The q-expansion
of a newform is its Fourier expansion (guaranteed to have algebraic integer coefficients), and is in practice the
most convenient way of describing it. For example, setting q := e2πiz, the first newform, which has level 11, is

f11(z) = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 0q8 − 2q9 + . . . .

Modular forms are interesting in their own right, but also because standard “modularity conjectures” predict a
correspondence between genus d factors of the “modular Jacobian” J0(N) — a fundamental object in arithmetic
geometry — and weight 2 newforms of level N whose Fourier coefficients are algebraic integers of degree d. For
example, the pth Fourier coefficient of f11 above is equal to p minus the number of solutions mod p to the elliptic

1

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/?level_type=prime&level=10000-&weight=2
https://www.math.uwaterloo.ca/~a2cowan/topics2023f/
https://www.youtube.com/playlist?list=PL-eBxy63BhGuU5HvaXeqm8xAZilOGsMyU
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curve y2 + y = x3 − x2 − 10x− 20. The connection between newforms of this type and arithmetic geometry is,
in particular, the crux of the proof of Fermat’s last theorem [DS05].

Let S2(N) be the complex vector space spanned by the weight 2 newforms of prime level N . Define the
degree d of a newform of S2(N) to be the degree of the number field Kf its Fourier coefficients generate, or,
equivalently, the size of its Galois orbit. For example, S2(11) is one-dimensional and f11 above has degree 1.

My work

In [Cow22a], I designed and implemented an algorithm that computed the q-expansions of all trivial neben-
typus newforms with degree d ≤ 6 and prime level N < 2,000,000. Moreover, for 4,752 < N < 1,000,000, the
algorithm verified that there are exactly two newform orbits per level with d ≥ 7 (which is quite tricky!); these
remaining newform orbits were then described with the help of [Ass24]. The algorithm computes q-expansions
up to the Sturm bound [Stu87] in time O(N2+ε) and space O(N1+ε), improving on the O(N3+ε) runtime of
previous methods [BBB+21].

The database generated by [Cow22a] builds on many existing databases, like the Antwerp tables [BK75],
Cremona’s database of elliptic curves [CMF+24, Cre97], and the LMFDB [LMF24] which, prior to uploading
my data, contained all newforms with level N ≤ 10,000 [BBB+21].

The data

The association between genus 1 modular abelian varieties — elliptic curves — and degree 1 modular forms
is a theorem [Wil95, TW95, BCDT01]. The literature contains many conjectures and theorems about the
distributions of related invariants [PPVW19, BKL+15, BS15, HS17, Poo18, LR21, SSW21, Gol82, WDE+15,
etc.]. However, in many situations it is poorly understood what the correct generalizations for d ≥ 2 should be,
and merely formulating conjectures which are plausible is of great interest. Even the basic question asking how
many such objects exist with prescribed degree d ≥ 2 is totally mysterious [Ser97, SZ24], whereas there are well
established conjectures for the number of elliptic curves with bounded conductor [BM90, Wat08].

In light of this gap in understanding, databases of newforms of S2(N) are very helpful: the many examples
they provide allow one to observe generalizations of phenomena which occur in the genus 1 case, and to then
formulate heuristics and conjectures. Table 1.1 summarizes the dataset as a whole.

(Old data) (New data)

Deg Disc(Kf ) Gal(Kf/Q) Total
1—104 104 —106 106 —2 · 106
+ − + − + −

1 1 C1 15578 140 189 4364 4479 3206 3200

2

5 C2 3044 93 65 938 962 508 478
8 C2 379 18 19 115 127 54 46
13 C2 59 4 9 21 19 1 5
12 C2 18 1 8 6 1 2
21 C2 5 1 1 2 1
17 C2 1 1

3

49 C3 154 19 15 40 50 20 10
229 S3 29 6 2 13 7 1
148 S3 18 7 5 3 3
81 C3 16 2 1 2 11

257 S3 16 3 6 4 2 1
169 C3 11 1 1 2 4 1 2
321 S3 3 2 1

4

725 D4 22 10 6 2 3 1
1957 S4 6 2 2 1 1
2777 S4 5 2 1 2
8768 D4 1 1

5
70601 S5 3 2 1

114 C5 1 1

6 135 C6 1 1

Table 1.1. Number of prime level newforms by degree, discriminant, and Atkin–Lehner sign.
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Figure 1.2. Counts of degree 2 forms by discriminant. The graph on the right excludes discriminants 5 and 8.

In [CM23], Kimball Martin and I investigate this new modular form data. As one of many examples of how
the dataset enables a better understanding of newforms, Table 1.1, Figure 1.2, and heuristics based on the
geometry of associated moduli spaces [EK14] lead us to conjecture that 100% of degree 2 newforms f of prime

level have Kf = Q(
√
5).

The algorithm

The main idea of the algorithm in [Cow22a] comes from Mestre’s Méthode des Graphes [Mes86], in which he
relates the q-expansion of weight 2 newforms of prime level to “supersingular isogeny graphs”. These graphs have
recently been of independent interest because of their applications in cryptography [CLG09, JDF11, EHL+18,
ACNL+23, CD23, etc.].

The relationship [Mes86] presents between supersingular isogeny graphs and weight 2 newforms depends on
a trace formula: the action of the Hecke operator Tℓ on the space S2(N) can be represented as the adjacency
matrix of the supersingular ℓ-isogeny graph. My algorithm finds simultaneous eigenvectors of these matrices,
and then uses a formula from Mestre’s work to compute the associated q-expansions.

In designing the algorithm, I extendedWiedemann’s algorithm [Wie86] to compute characteristic polynomials,
I implemented a method for computing the q-expansion of the modular j function over finite fields which is
much faster than existing implementations, I designed a method to find all the low degree eigenvectors of Hecke
operators over Z using only knowledge of their characteristic polynomials over finite fields, and I designed a
method to check that, besides the aforementioned low degree factors, the Hecke modules were irreducible, again
only using knowledge of the Hecke operators over finite fields. This last part, checking irreducibility, is quite
challenging. For example, it involved the design and implementation of a technical quadratic time algorithm
for a manifestation of the subset-sum problem, which is NP-complete in general.

Extensions

The work presented in this section offers many tempting avenues for future research. Here are three that I’m
currently pursuing.

Constructions similar to [Mes86] exist in many other settings. I have already computed datasets of modular
forms with level of the form 2p, 3p, or 4p, and I have implemented a variation which computes q-expansions to
shallow depths for squarefree levels. Many other generalizations, e.g. using modular symbols, or with applications
to Hilbert modular forms, are possible; the algorithm is fundamentally one for quickly finding low-degree
eigenvectors of sparse integer matrices, which many problems can be recast as.

An explicitly statistical and probabilistic investigation of the database, joint with Kimball Martin, is in
preparation [CM]. A working manuscript and slides are available on my personal webpage. Both the novel
statistical methodology and the surprising discoveries presented in this manuscript form a basis for continued
future work.

In work in progress with Noam Elkies, we generate, from the q-expansions in the database defined over Q(
√
5),

Weierstrass models of the associated genus 2 curves with real multiplication by discriminant 5. We develop a
variety of theoretical and computational techniques to do this for every form in the database. The resulting data
will be contributed to the LMFDB, supporting the LMFDB’s interest in containing related arithmetic objects
wherever possible.

https://www.math.uwaterloo.ca/~a2cowan/statspaper.pdf
https://www.math.uwaterloo.ca/~a2cowan/statspaperslides.pdf
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2. Murmurations

A collaboration of data scientists [HLOP22] recently observed experimentally that the number of points on
an elliptic curve mod p, when averaged over a set of elliptic curves of fixed rank and similar conductor, oscillates
as p varies. These oscillations, called murmurations, hadn’t been observed previously, and it’s unclear what
causes them. Manifestations of the phenomenon have since been observed empirically in many other settings
[Sut22]. The topic is currently of great interest [Chi24].

In [Cow24b] I connect murmurations to distributions of low-lying zeros in families of L-functions. These
distributions are studied in the field of random matrix theory [ILS00, CS07], and I describe a process by which
results in that field such as [Mil08, Mil09, HMM11, GJM+10, MP12, FM15, BBJ+24, DHP15, Čec24] can be
adapted to explain murmurations of elliptic curves and other arithmetic objects.

Prior to [Cow24b], murmurations had been proven to exist in only three cases [Zub23, LOP23, BBLLD23],
with the latter two assuming the generalized Riemann hypothesis (GRH). The connection between murmurations
and L-function zeros was totally absent from the literature outside of my short note [Cow23].

To exemplify the underlying method, [Cow24b] proves murmurations in four cases: quadratic Dirichlet char-
acters under GRH, holomorphic newforms of prescribed weight and sign under GRH, quadratic twists of elliptic
curves under a “ratios conjecture”, and elliptic curves ordered by height under a ratios conjecture and a root
number equidistribution hypothesis.

Applying [Cow24b]’s method in the simple and computationally tractable case of even real primitive Dirichlet
characters χd — for a given d the function χd evaluates to 1 for squares mod d, and −1 for non-squares —
yields roughly

1

#Fχ

∑
d∈Fχ

1

X
1
2

∑
pk<X
k odd

χd(p) log p ≈ 1

2πi

∫ 1
2+ε+iT

1
2+ε−iT
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6

Γ
(
1−s
2

)
Γ
(
s
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1
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(
πX

d

)s− 1
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s
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Figure 2.1 visualizes (1) in the case Fχ := {d : 95,000 < d < 105,000, d a fundamental discriminant}. See
[Cow24b, Thm. 1.2, Thm. 2.4] for more precise statements, including error terms and their provenance.

Figure 2.1. For T = 900 and ε = 0.1, the left and right hand sides of (1) in blue and gold respectively, as well
as their difference in grey, as functions of X. The integral in (1) is approximated by Riemann sum evaluated at
180,000 equally-spaced points. In this example #Fχ = 3038. My code is available at [Cow24d].

Murmurations of elliptic curves were the initial catalyst for the study of the topic in general [HLOP22]. Prior
to [Cow24b], there were no predictions at all for the precise way in which the average value of the number of
points mod p oscillated, how many curves needed to be averaged for the oscillations to appear, the range in
which oscillations were visible, etc.
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Stating Theorem 2.2, about murmurations for elliptic curves ordered by height, requires some notation. Let
F(H) denote the family of elliptic curves

F(H) := {y2 = x3 + ax+ b : 3 ∤ a, 2 ∤ b, |a| < H
1
3 , |b| < H

1
2 , p4 | a =⇒ p6 ∤ b}.(2)

Roughly speaking, F(H) consists of elliptic curves with height less than H and good or “pretty good” reduction
at 2 and 3. The quantities αp and αp featuring in Theorem 2.2 are complex conjugates of norm 1 such that

√
p(αp + αp) = p−#{(x, y) ∈ (Z/p)2 : y2 = x3 + ax+ b}.

Theorem 2.2. Let F(H) be the family of elliptic curves ordered by height from [Cow24b, Def. 3.1], ω ∈ {±1},
and F(H)ω := {E ∈ F(H) : ωE = ω}. Assume that loc. cit. (7), (8), and the ratios conjecture [DHP15, Conj.

3.7] hold with F(H) replaced with F(H)ω. For any H, y, T, ε such that 0 < ε < 1
2 and (Hy)

1
2+ε ≪ T < Hy,

1

#F(H)ω

∑
E∈F(H)ω

1√
Hy

∑
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p ∤NE
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p
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log p
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2πi

∫
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− 1√
Hy
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pk<

√
Hy

log p+O
(
HεyεT εR(H)#F(H)−1 + (logH)−

5
6

)
,

where A(α, γ), FN , and R(H) are defined in loc. cit. Def. 3.2, Def. 3.9, and Thm. 3.4.

One of the most striking characteristics of murmurations is their “N/p-invariance”, where N can be taken to
be the analytic conductor of the arithmetic object’s L-function. This scale-invariance can be seen in Theorem 2.2,
manifesting as the absence of any dependence on H in the (oscillation-producing) first term on the right hand
side.

Determining FN above, the distribution of the conductors of elliptic curves in F(H), is an interesting and
difficult problem, and was the subject of the separate paper [Cow24a] motivated by Theorem 2.2. I present that
paper in Section 4.

The random matrix theory side of the link laid out in [Cow24b] is better understood than the murmurations
side; some random matrix theory papers describe a “recipe” [CS07]. Though [Cow24b] could be used to prove
murmurations in many more cases, my view is that the most natural next step in my work on murmurations is to
translate what’s known by random matrix theorists into an understanding of the phenomenon of murmurations
as a whole — a similar “recipe”.

3. Spectral theory of automorphic forms and divisor sum correlations

The classical additive divisor problem [Mot94] asks about the correlation between the number of divisors of n
and the number of divisors of n+1 via the study of the sum

∑
n<X σ0(n)σ0(n+1), where σ0(n) :=

∑
d|n 1 is the

number of divisors of the positive integer n. Many generalizations of the additive divisor problem are studied,
both because they’re inherently interesting and because they have important applications [Mic07]. One natural
generalization comes from replacing σ0(n) in the classical additive divisor problem with

n−sσ2s(n, χ) := n−s
∑
d|n

χ(d)d2s.

The normalization above is natural in light of a functional equation s 7→ −s. In [Cow25], I show, with some
restrictions on the Dirichlet characters χ, ψ and the complex numbers u, v, that

Theorem 3.1.
X∑

n=1

σ2u(n, χ)σ2v(n− k, ψ)

nu+v
=
L(1− 2u, χ)L(1− 2v, ψ)

L(2− 2u− 2v, χψ)
σ−1+2u+2v(k, χψ)

X1−u−v

1− u− v

+
L(1 + 2u, χ)L(1 + 2v, ψ)

L(2 + 2u+ 2v, χψ)
σ−1−2u−2v(k, χψ)

X1+u+v

1 + u+ v

τ(χψ)χψ(k)

τ(χ)τ(ψ)

+O
(
X1+|ℜ(u)|+|ℜ(v)|− 1+2|ℜ(u)|+2|ℜ(v)|

3+|ℜ(u+v)|+|ℜ(u−v)|+ε
)

as X → ∞.
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This is proved by purely analytic techniques: an automorphic function which encodes the sum on the left is
constructed and then expressed as a combination of eigenfunctions of the Laplacian on a hyperbolic manifold.
The analysis that’s done to establish Theorem 3.1 generalizes the key steps of many well-known results, e.g.
[VT84, Jut96, DFI02, Mic04]. This analysis is quite involved, and in previous work there had always been extra
simplifying assumptions imposed on χ, ψ, u, and v. Even the very general treatments of these sorts of problems
[MV10, Nel19, Wu19, HLN21] don’t cover the case done in Theorem 3.1.

A key ingredient in [Cow25] is the use of a generalized form of a lesser-known technique that’s sometimes called
“automorphic regularization” [Zag81, MV10]. This technique permits the spectral decomposition of automorphic
functions which are not obviously square-integrable, enabling one to study a wider class of problems.

The error term in Theorem 3.1 is unusually small compared to the main term for certain admissible choices
of u and v. Previous work had always observed a power savings of 1

3 , but loosening the restrictions on u and
v allows the power savings to be larger than this, both in an absolute and a relative sense. The error term is
obtained using the best technique currently known, the “spectral large sieve”, and the additional power saving
is a natural consequence of some of the generalizations made in Theorem 3.1 relative to previous work.

In general, spectral methods in automorphic forms are a broadly useful toolkit. They’re versatile in the
types of problems they’re ammenable to, and historically have yielded strong results [Iwa02]. In [Cow22b] I
use spectral methods of automorphic forms study statistics of modular symbols, after interest was generated
by Mazur and Rubin in [MR16, MR19]. As part of the topics course I taught last fall I gave a version of
Theorem 3.1 involving holomorphic Eisenstein series, also requiring automorphic regularization, which seems to
have not yet appeared in the literature.

4. Arithmetic geometry

I have several papers [Cow20, BBC+20, Cow21, CM22, CFM24, Cow24a] falling under the broad umbrella of
arithmetic geometry that are not primarily computational or analytic in nature. This section presents [Cow20],
[CM22, CFM24], and [Cow24a].

Real points on elliptic curves and continued fractions

An elliptic curve is a Diophantine equation of the form E : y2 = x3 + ax + b. These equations and their
solutions are very important in modern number theory. The solutions, i.e. the points on a fixed elliptic curve,
form an abelian group.

In [Cow20] I establish a correspondence between the statistics of the real or complex points on an elliptic curve
and the statistics of continued fractions. Then, via the theory of continued fractions, I describe the statistical
behaviour of points on elliptic curves from various perspectives, e.g. their distributions and their extreme values.
Figure 4.1 illustrates two examples.

Figure 4.1. How large multiples of a fixed point get (left), and the distribution of those multiples (right).

The plot on the left of Figure 4.1 shows points (n, log(x(nP )+2)) for P ≈ (−0.406, 0.966) on E : y2 = x3+1,
i.e. it captures how large the multiples of a fixed point P get. The red curve is the lower(!) bound of [Cow20,
Thm. 1.1]:

x(nP ) >
5

ω2
1

n2 +O(n−2)

for infinitely many n, where ω1 is the positive real period of E.

https://www.math.uwaterloo.ca/~a2cowan/topics2023f/
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The plot on the right of Figure 4.1 shows {nP : −5 · 105 < n < 5 · 105, x(nP ) < 1.89} for P = (0, 8) on
E37a: y2 = 4x3 − 64x + 64, i.e. the distribution of the multiples of a fixed point P . This distribution is given
explicitly in [Cow20, Cor. 1.7]; in this case it is

1

ω1

√
y2 + (6x2 − 32)2

.

The poles of this density function are shown in red.

Genus 2 curves with real multiplication

Genus 2 curves with real multiplication arose naturally in my research via their connection with the degree 2
newforms described in Section 1. Elkies and Kumar [EK14] give a nice description of the moduli space of these
curves, but it remained difficult to determine the fields of definition of the associated Weierstrass equations.
For any one particular point in the moduli space this is straightforward thanks to a theorem of Mestre [Mes91],
which says that the obstruction for the existence of a Weierstrass model over a field K can be expressed in terms
of whether or not a specific conic with coefficients that are polynomials in the moduli has a K-rational point.
However, this conic was too unwieldy to be useful for understanding the behaviour of genus 2 curves with real
multiplication in aggregate.

In [CM22], Kimball Martin and I show that, in the case of real multiplication by discriminant 5, this Mestre
conic which obstructs the existence of a Weierstrass model can be reduced to the very simple conic

x2 − 5y2 − (m2 − 5n2 − 5)z2 = 0,

where m and n parameterize the rational moduli space given in [EK14].
In [CFM24], Sam Frengley, Kimball Martin, and I prove analogous statements for discriminants 8, 12, 13,

17, 21, 24, 28, 29, 33, 37, 44, 53, and 61. We also give generic families (in the sense of [CFM24, Remark 2.1]) in
these cases; for D ≥ 12 no such families were previously known. We prove some additional results, in particular
that the Mestre obstruction vanishes for all discriminants which are 1mod 8. Our work involves a mix of theory
and computation, and includes algorithms for finding these sorts of reductions.

Conductor distributions

Elliptic curves are most naturally ordered by conductor but most easily ordered by height. Converting
between these two orderings is an interesting and difficult problem. The well-known and widely believed
Brumer–McGuinness–Watkins heuristics [BM90, Wat08] on this subject are in certain restricted cases sup-
ported empirically [BGR19]. Theoretical support of the Brumer–McGuinness–Watkins heuristics is challenging
[CS23], and has only been done for families of elliptic curves that impose restrictions on the relationship between
discriminant and conductor [SSW21].

[Cow24a] gives the distribution of the conductors of elliptic curves in the large height-ordered family F(H)
considered in [You10, DHP15]. Describing this distribution is closely connected to, and in many ways a refined
version of, the problem discussed in the previous paragraph. The elliptic curves my results apply to are restricted
only in their reduction at 2 and 3, and only so that this result can be used to prove Theorem 2.2; in the near
future I anticipate updating the results below with variations applying to all elliptic curves, with no restrictions
(more precisely, all globally minimal short Weierstrass equations over Q).

Theorem 4.2 below can be viewed as a precise and effective version of the Brumer–McGuinness–Watkins
heuristic. Presenting it requires the introduction of some notation. Define F(H) as in (2), i.e.

F(H) := {y2 = x3 + ax+ b : 3 ∤ a, 2 ∤ b, |a| < H
1
3 , |b| < H

1
2 , p4 | a =⇒ p6 ∤ b},

and let

F∆(λ) :=
1

4

∫ 1

−1

∫ 1

−1

{
1 if −16(4α3 + 27β2) < λ

0 otherwise
dα dβ.

Let ρ = ρ(p,m) be the function defined case by case in [Cow24a, Def. 3.3]; the values of ρ are simple rational
functions of p depending only on the p-part of m, and satisfy ρ(p,m) ≍ (p · gcd(p∞,m))−1 when p | m.
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Theorem 4.2. For any λ1 > λ0 >
4464
logH ,

#
{
E ∈ F(H) : λ0 <

NE

H < λ1
}

#F(H)

=
ζ(6)(10)

ζ(6)(2)

∞∑
m=1

(
F∆(mλ1)− F∆(mλ0) + F∆(−mλ0)− F∆(−mλ1)

)
· ρ(2,m)ρ(3,m)

∏
p≥5
p|m

ρ(p,m)

1− p−2

+O((logH)−1+ε).

The expression on the right hand side of Theorem 4.2 may appear to be quite complicated. However, it is
simple to compute: for any given λ0 and λ1 the sum over m is finite, because the summand is 0 for mλ0 > 496.
Figure 4.3 and Figure 4.4 plot the main term of Theorem 4.2 and its derivative. These are essentially the
cumulative distribution function and histogram/distribution of {NE/H : E ∈ F(H)}.

Figure 4.3. Main term on the right hand side of The-
orem 4.2 with λ0 = 0, as a function of λ1 (blue), and

the function (λ1/496)
5
6 (black).

Figure 4.4. Derivative with respect to λ1 of the
main term of Theorem 4.2, computed numerically
with ∆λ1 = 0.496 [Cow24c].

Theorem 4.2 gives no information about the region NE ≤ 4464H
logH , where the conductor is much smaller than

the height bound. Theorem 4.5 and Theorem 4.6 describe the distribution there, complementing Theorem 4.2.

Theorem 4.5. For any λ > 4464
logH ,

λ
5
6 ≪ #{E ∈ F(H) : NE < λH}

#F(H)
≪ λ

5
6 .

Theorem 4.6.

X
5
6 ≪ #{E ∈ F(H) : NE < X} ≪ X

5
6

(
H

X

) 35
54

H
7

324+ε +H
1
2 .

Analyzing the distribution of small conductors in F(H) is connected to the problem of estimating the number
of elliptic curves with bounded conductor, i.e. #{E ∈ F(H) : NE < X} as H → ∞ with X fixed. Based on

[Wat08, §4] it is commonly believed that #{E ∈ F(∞) : NE < X} ∼ cX
5
6 for some explicit c > 0 [SSW21,

§1]. The best known general result of this sort is [DK00, Prop. 1] by Duke and Kowalski, which says that the
number of elliptic curves with conductor less than X is ≪ X1+ε.

In this context, Theorem 4.5 and Theorem 4.6 can be viewed as upper bounds on the number of elliptic curves
with bounded conductor when one is allowed to take the height of said curves to be large but not arbitrarily
large. The aforementioned result of Duke–Kowalski alone implies neither Theorem 4.5, nor Theorem 4.6 in the
case X ≫ H

217
264+ε > H0.8219.

The proofs of Theorem 4.2, Theorem 4.5, and Theorem 4.6 are technical but largely elementary. The key
ingredient is [Cow24a, Lemma 4.2], which intertwines “Archimedean” and “non-Archimedean” restrictions on
the elliptic curves in F(H) in an effective way. There is some similarity with elements of [BM90, Wat08, SSW21,
CS23]. See [Cow24a, §2] for a more thorough overview.
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10(1):75–102, 1997. 1

[SSW21] Ananth N. Shankar, Arul Shankar, and Xiaoheng Wang. Large families of elliptic curves ordered by conductor. Compos.
Math., 157(7):1538–1583, 2021. 1, 4, 4

[Stu87] Jacob Sturm. On the congruence of modular forms. In Number theory (New York, 1984–1985), volume 1240 of Lecture

Notes in Math., pages 275–280. Springer, Berlin, 1987. 1
[Sut22] Andrew Sutherland. Letter to Michael Rubinstein and Peter Sarnak. https://math.mit.edu/~drew/

RubinsteinSarnakLetter.pdf, 2022. 2

[SZ24] Peter Sarnak and Nina Zubrilina. Convergence to the Plancherel measure of Hecke eigenvalues. Acta Arithmetica,
214:191–213, 2024. Publisher Copyright: © Instytut Matematyczny PAN, 2024. 1

[TW95] Richard Taylor and Andrew Wiles. Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2), 141(3):553–

572, 1995. 1
[VT84] A. I. Vinogradov and L. A. Takhtadzhyan. The zeta function of the additive divisor problem and spectral expansion

of the automorphic Laplacian. volume 134, pages 84–116. 1984. Automorphic functions and number theory, II. 3
[Wat08] Mark Watkins. Some heuristics about elliptic curves. Experiment. Math., 17(1):105–125, 2008. 1, 4, 4

[WDE+15] Mark Watkins, Stephen Donnelly, Noam D. Elkies, Tom Fisher, Andrew Granville, and Nicholas F. Rogers. Ranks
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