Kemeny's constant for random walks on graphs

Sooyeong Kim

York University

AGT Seminar in University of Waterloo

A random walker traverses the vertices of *G*, at each step choosing an adjacent vertex to move to uniformly at random. (A random walk on a given graph $G = (V, E)$ is an example of a Markov chain.)

The **mean first passage time** $m_{i,j}$ from vertex *i* to vertex *j* is the expected number of time-steps elapsed before the random walker reaches vertex *j*, given that it begins at vertex *i*.

Kemeny's constant $K(G)$ of a graph *G* is defined as

$$
\mathcal{K}(G)=\sum_{j\neq i}\left(\frac{d_j}{2m}\right)m_{i,j}\quad \forall i\in V(G).
$$

It can be recast as follows:

$$
\mathcal{K}(G) = \sum_i \sum_{j \neq i} \left(\frac{d_i}{2m_G} \right) m_{i,j} \left(\frac{d_j}{2m_G} \right).
$$

Kemeny's constant can be interpreted as the expected length of a random trip in the graph *G*. One can consider it as measuring how well-connected the graph is.

How does graph structure affect Kemeny's constant?

- Sparsity?
- Distances between vertices?

Examples: star, path, cycle, complete graph

Let *D* be the diagonal matrix of vertex degrees of a connected graph *G*, and *A* be its adjacency matrix. It is shown in [\[Levene and Loizou, 2002\]](#page-31-0) that

$$
\mathcal{K}(G)=\sum_{i=2}^n\frac{1}{1-\lambda_i},
$$

where 1, $\lambda_2,\ldots,\lambda_n$ are the eigenvalues of the transition matrix $D^{-1}A$.

(Note) For *r*-regular graph, 1, $\lambda_2, \ldots, \lambda_n$ can be obtained from adjacency eigenvalues by multiplication of $1/r$. We can obtain $\mathcal{K}(C_n)$ and $\mathcal{K}(K_n)$.

Alternate formula of Kemeny's constant 2

Let F be the matrix given by $F = [f_{i,j}]$ where $f_{i,j}$ is the number of spanning 2-forests of *G* where one component of the forest contains vertex *i*, and the other contains *j*. It is shown in [\[Kirkland and Zeng, 2016\]](#page-31-1) that

$$
\mathcal{K}(G) = \frac{\mathbf{d}^T F \mathbf{d}}{4m\tau},
$$

where *m* is the number of edges, **d** is the degree vector of *G* and τ is the number of spanning trees of *G*.

(Example)

(Note) If *G* is a tree, then *F* is the distance matrix. We can obtain $K(S_n)$ and $K(P_n)$.

Let *R* be the matrix given by *R* = [*ri*,*j*], where *ri*,*^j* is the so-called *effective resistance distance* between vertices *i* and *j*. It is known that $r_{i,j} = \frac{t_{i,j}}{\tau}$. Hence,

$$
\mathcal{K}(G) = \frac{\mathbf{d}^T R \mathbf{d}}{4m}.
$$

(Note) The so-called *Kirchhoff index* Kf(*G*) is a graph invariant and is defined as $Kf(G) = \frac{1}{2}$ **1**^{*T*} *R***1**. If *G* is *r*-regular, then $K(G) = \frac{r}{n} Kf(G)$.

- Kemeny's constant is a graph invariant, and it can be regarded as a measure of graph connectivity.
- It is natural to study how graph structure informs a graph invariant.
- We will understand how graph structures influence Kemeny's constant via asymptotic behaviour.

(Notation) Let *Gⁿ* represent a graph of order *n* in a sequence or family of graphs.

- We write $f(G_n) = O(g(n))$ if lim sup $_{n \to \infty} \frac{f(G_n)}{g(n)}$ is finite.
- We write $f(G_n) = \Omega(q(n))$ if $q(n) = O(f(G_n))$.
- We write $f(G_n) = \Theta(g(n))$ if $f(G_n) = O(g(n))$ and $f(G_n) = \Omega(g(n))$.

Examples: star, path, cycle, complete graph

 $\mathcal{K}(C_n) = \frac{1}{6}(n-1)(n+1) = \Theta(n^2)$ $\mathcal{K}(K_n) = n-2+\frac{1}{n} = \Theta(n)$

(Note) For any graph $G, K(G) \geq K(K_n)$. Hence, $K(G_n) = \Omega(n)$.

Proposition (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let G be a connected graph. Then

 $\mathcal{K}(G) < 2m$ diam(G).

(Proof)

• Recall

$$
\mathcal{K}(G)=\sum_{j\neq i}\left(\frac{d_j}{2m}\right)m_{i,j}\quad\forall i\in V(G).
$$

• It is known from [\[Chandra et al., 1989\]](#page-31-2) that $m_{i,j} + m_{i,j} = 2mr_{i,j}$.

• It follows that

$$
\mathcal{K}(G) = \sum_{\substack{j=1 \ j \neq i}}^n \left(\frac{d_j}{2m}\right)m_{i,j} < \sum_{\substack{j=1 \ j \neq i}}^n \left(\frac{d_j}{2m}\right)(m_{i,j} + m_{j,i}) = \sum_{\substack{j=1 \ j \neq i}}^n d_j r_{i,j}
$$

• Furthermore, $r_{i,j} \leq \text{diam}(G)$ in [\[Palacios, 2010\]](#page-31-3). □

(Note) Since $m = O(n^2)$ and $\text{diam}(G) = O(n)$, we have $\mathcal{K}(G) = O(n^3)$. Moreover, if $\text{diam}(G)$ is fixed, then $\mathcal{K}(G) = O(n^2)$.

[Breen et al., 2019]:
$$
\mathcal{K}(G) = \frac{1}{54}n^3 + O(n^2)
$$
.

Let ∆(*G*) be the maximum degree of *G*.

Theorem (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let G be a connected graph on n vertices with $\Delta(G) = n - O(1)$ *. Then,* $K(G) = \Theta(n)$.

Theorem (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let G be a graph on n vertices with $\Delta(G) = n - 1$ *. Then,* $\mathcal{K}(G) < 2(n - 1)$ *.*

(Sketch of proof)

Let *i* be a vertex of degree $n-1$. Since $r_{i,j} = \frac{1}{\tau} f_{i,j}$,

$$
\mathcal{K}(G) < \sum_{\substack{j=1 \ j \neq i}}^n d_j r_{i,j} = \sum_{\substack{j=1 \ j \neq i}}^n \frac{1}{\tau} d_j f_{i,j}.
$$

• We claim that $d_i f_{i,j} \leq 2\tau$.

- Let *N*(*j*) be the neighbour of *j*.
- For each $v ∈ N(j)$, we define $\mathcal{F}_v(i;j)$ to be the set of spanning rooted 2-forests separating *i* and *j* by labelling *v* as a root. Then

$$
\left|\bigcup_{v\in N(j)}\mathcal{F}_v(i;j)\right|=\sum_{v\in N(j)}|\mathcal{F}_v(i;j)|=d_jf_{i,j}.
$$

• We define \mathcal{T}_i (resp. \mathcal{T}_i) to be the set of spanning rooted trees of *G* with root *i* (resp. with root *j*). Then

$$
|\mathcal{T}_i\cup\mathcal{T}_j|=2\tau.
$$

It can be proved that the following map from $\bigcup_{v\in N(j)}\mathcal{F}_v(i;j)$ to $\mathcal{T}_i\cup\mathcal{T}_j$ is injective.

- Given a graph invariant *f*, the Nordhaus–Gaddum type problem is to find lower and upper bounds for $f(G) + f(\overline{G})$ and $f(G)f(\overline{G})$, where \overline{G} is the complement of *G*.
- It provides insights into the interplay between a graph and its complement.
- We consider $f(G) = \mathcal{K}(G)$ for connected *G* and \overline{G} in order to see how graph structures influence Kemeny's constant.
- Since $\mathcal{K}(G) = O(n^3)$, we have $\mathcal{K}(G) + \mathcal{K}(\overline{G}) = O(n^3)$ and $\mathcal{K}(G)\mathcal{K}(\overline{G})=O(n^6).$
- We shall focus on $\mathcal{K}(G)\mathcal{K}(\overline{G})$.
- If diam(*G*) > 3 then diam(\overline{G}) = 2. Hence $\mathcal{K}(G)\mathcal{K}(\overline{G}) = O(n^5)$.
- Is this sharp?
- We do not know yet.

There is a vertex of degree $n-3$. Hence $\mathcal{K}(\overline{G}) = \Theta(n)$ and $\mathcal{K}(G)\mathcal{K}(\overline{G})=\Theta(n^4).$

Maximum degree

Theorem (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let U be a real constant such that $0 < U < 1$. Then there is a constant Ψ_U *such that for every n* ∈ N *and every graph G on n vertices such that* ∆(*G*) ≤ *Un,*

$$
\min \left\{ \mathcal{K}(G),\, \mathcal{K}(\overline{G}) \right\} \ \leq \ n \Psi_{U} \, .
$$

(Idea of proof)

Recall

$$
\mathcal{K}(G) = \sum_{i=2}^n \frac{1}{1-\lambda_i},
$$

where $\lambda_1 = 1 > \lambda_2 \geq \lambda_3 \geq \ldots \geq \lambda_n$ are the eigenvalues of $D^{-1}A$.

• Then

$$
\frac{1}{1-\lambda_2} \leq \mathcal{K}(G) \leq \frac{n}{1-\lambda_2}.
$$

For *S* ⊆ *V*(*G*), let

$$
\mathrm{vol}(S) \ := \ \sum_{v \in S} d_v \, .
$$

• When *S* and *T* are disjoint subsets of $V(G)$, we define [*S*, *T*]_{*G*} to be the set of all edges of *G*.

The *bottleneck ratio* of the graph *G* is defined to be

$$
\Phi \;=\; \Phi(G) \;=\; \min_{S\subseteq V:\, 0<{\rm vol}(S)\leq |E(G)|} \frac{|[S,S^c]_G|}{\rm vol}(S) \;.
$$

 \bullet It is known that

$$
\frac{\Phi^2}{2} \leq 1 - \lambda_2 \leq 2\Phi.
$$

• Hence,

$$
\frac{1}{2\Phi} \leq \mathcal{K}(G) \leq \frac{2n}{\Phi^2}.
$$

• Now we claim that if $K(G)$ is "large", then $K(\overline{G}) = O(n)$.

This structure forces mean first passage to be of order *n*.

Theorem (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let U be a real constant such that 0 < *U* < 1*. Then there is a constant* Ψ*^U such that for every n* ∈ N *and every graph G on n vertices such that* ∆(*G*) ≤ *Un,*

$$
\min \left\{ \mathcal{K}(G),\, \mathcal{K}(\overline{G}) \right\} \ \leq\ n \Psi_U\,.
$$

Corollary

Let G be a regular graph on n vertices. There exists a constant Ψ*reg such that*

$$
\min\left\{\mathcal{K}(G),\,\mathcal{K}(\overline{G})\right\}\;\leq\;n\Psi_{\text{reg}}.
$$

(Note) We have proved that when maximum degree is $n - \Omega(n)$, or when it is *n* − *O*(1), we have $\mathcal{K}(G)\mathcal{K}(\overline{G}) = O(n^4)$.

• Let *G* be *r*-regular graph. Recall

$$
\mathcal{K}(G)=\frac{r}{n}\mathrm{Kf}(G).
$$

From [\[Palacios, 2010\]](#page-31-3), we have $\frac{n(n-1)}{2k} \leq Kf(G) \leq \frac{3n^3}{k}$ $\frac{n^2}{k}$.

• Hence,

$$
\frac{n-1}{2}\leq \mathcal{K}(G)\leq 3n^2.
$$

- That is, $\mathcal{K}(G) = O(n^2)$.
- Since $\min\{K(G), K(\overline{G})\} = O(n)$, we have

 $\mathcal{K}(G)\mathcal{K}(\overline{G})=O(n^3).$

Using a formula of Kemeny's constant of graphs with bridges in [Breen, Crisostomi and Kim, 2022], we obtain

$$
\mathcal{K}(G) = \Omega\left(\frac{m_{G_1}m_{G_2}d}{m_{G_1}+m_{G_2}+d}\right)
$$

.

If $d = \Theta(n)$, $m_{G_1} = \Theta(n^2)$ and $m_{G_2} = \Theta(n^2)$, then

$$
\mathcal{K}(G)=\Theta(n^3).
$$

• Moreover,

$$
\mathcal{K}(G)\mathcal{K}(\overline{G})=\Theta(n^4).
$$

- Let T be a tree.
- It appears in [Jang, Kim and Song, 2023] that

$$
\mathcal{K}(\mathcal{T})=\frac{2W(\mathcal{T})}{n-1}-n+\frac{1}{2}
$$

where $W(\mathcal{T})$ (called *Wiener index*) is the sum of distances for all pairs of two distinct vertices.

- It is known that $W(\mathcal{T}) = O(n^3)$.
- Hence $\mathcal{K}(\mathcal{T}) = O(n^2)$ and

$$
\mathcal{K}(\mathcal{T})\mathcal{K}(\overline{\mathcal{T}})=O(n^3).
$$

See [Brouwer and Haemers, 2012] for a comprehensive monograph on distance regular graphs.

The spectrum of strongly regular graph *G* is well-known (see [\[Godsil and Royle, 2001\]](#page-31-5)). We can find that $\mathcal{K}(G) = O(n)$ and so

$$
\mathcal{K}(G)\mathcal{K}(\overline{G})=\Theta(n^2).
$$

Recall $\mathcal{K}(C_n) = \Theta(n^2)$. How about distance regular graphs with growing diameter?

- The spectrum of distance regular graph with classical parameter is found in [\[Jurišic and Vidali, 2017\]](#page-31-6). ´
- We can find that when *G* is a Hamming graph, $\mathcal{K}(G) = O(n)$.
- In addition, Kemeny's constants for families (C2), (C3), (C3a), (C4), (C4a), (C10), (C11), and (C11a) in [\[Brouwer and Haemers, 2012,](#page-31-7) Tables 6.1 and 6.2] are *O*(*n*) while their diameters grow as *n* increases.
- Kemeny's constant measures how fast a random walker moveces around in a graph.
- Does Kemeny's constant decrease after adding a new edge?
- Recall that $\mathcal{K}(G) = \frac{d^T A d}{4m}$ and $\text{Kf}(G) = \frac{1}{2} \mathbf{1}^T R \mathbf{1}$.
- It is known that the addition of a new edge decreases Kirchhoff index.
- It does not hold for Kemeny's constant in general.
- Such an edge is called a *Braess edge*, whose name comes from Braess's paradox in road networks.

 $K(G) = 3.6667$

$$
\mathcal{K}(G \cup e) = 4
$$

Asymptotic behaviour of having the Braess edge

We consider the following sequence $\mathcal{G}^{\nu}=(\mathcal{T}_n)^{\nu}$ of trees, where $\mathcal{V}(\mathcal{T}_1)=\{\nu\}$ and for each $n > 2$, \mathcal{T}_n is obtained from \mathcal{T}_{n-1} by one of the following cases:

- adding a new pendent vertex to T*n*−1, or
- subdividing an edge in T*n*−¹ into two edges connecting to a new vertex.

We denote by α_n the eccentricity of *v* in \mathcal{T}_n .

Theorem (Kim, 2022)

Suppose that $G^{\vee} = (\mathcal{T}_n)^{\vee}$ *is a sequence of trees* \mathcal{T}_n *such that* $\alpha_n = \omega(n^{\frac{2}{3}})$ *. Given k*₁, $k_2 \geq 0$, if $\alpha = \omega(n^{\frac{2}{3}})$, then $\{v_{k_1+1}, v_{w_2+1}\}$ tends to be a Braess edge.

- The Braess edges in a path are concentrated towards the endpoints with creating a small cycle.
- An edge connecting points that were originally far apart will tend to decrease travel times of the random walker.
- But, edges close to the endpoints of a path create bottlenecks where the random walker could get stuck for a time.
- In [Jang, Kempton, Kim, Knudson, Madras and Song, 2023], the number of Braess edges for a path of length *n* is

$$
\frac{1}{3}n\ln n - cn + o(n)
$$

for a constant $c \approx .548$.

(Note) In [Kirkland, Li, McAlister and Zhang, 2023], the maximum increment from the addition of a new edge to any tree is approximately $\frac{2}{3}n$.

Thank you for your attention!

References

Breen, J., Butler, S., Day, N., DeArmond, C., Lorenzen, K., Qian, H., and Riesen, J. (2019). Computing Kemeny's constant for a barbell graph. *Electronic Journal of Linear Algebra*, 35:583–598.

Brouwer, A. E. and Haemers, W. H. (2012).

Distance-Regular Graphs. Springer.

Chandra, A. K., Raghavan, P., Ruzzo, W. L., and Smolensky, R. (1989).

The electrical resistance of a graph captures its commute and cover times. In *Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing*, pages 574–586.

Godsil, C. and Royle, G. F. (2001).

Algebraic Graph Theory, volume 207. Springer Science & Business Media.

Jurišic, A. and Vidali, J. (2017). ´

Restrictions on classical distance-regular graphs. *Journal of Algebraic Combinatorics*, 46:571–588.

Kirkland, S. and Zeng, Z. (2016).

Kemeny's constant and an analogue of Braess' paradox for trees. *Electronic Journal of Linear Algebra*, 31:444–464.

Levene, M. and Loizou, G. (2002).

Kemeny's constant and the random surfer. *American Mathematical Monthly*, 109(8):741–745.

Palacios, J. L. (2010).

On the Kirchhoff index of regular graphs.

International Journal of Quantum Chemistry, 110(7):1307–1309.