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Random walks on a graph

A random walker traverses the vertices of G, at each step choosing an
adjacent vertex to move to uniformly at random. (A random walk on a
given graph G = (V ,E) is an example of a Markov chain.)
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Mean first passage time

The mean first passage time mi,j from vertex i to vertex j is the expected
number of time-steps elapsed before the random walker reaches vertex j ,
given that it begins at vertex i .
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Kemeny’s constant for random walks in a graph

Kemeny’s constant K(G) of a graph G is defined as

K(G) =
∑
j ̸=i

(
dj

2m

)
mi,j ∀i ∈ V (G).

It can be recast as follows:

K(G) =
∑

i

∑
j ̸=i

(
di

2mG

)
mi,j

(
dj

2mG

)
.

Kemeny’s constant can be interpreted as the expected length of a random
trip in the graph G. One can consider it as measuring how well-connected the
graph is.

How does graph structure affect Kemeny’s constant?

Sparsity?
Distances between vertices?
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Examples: star, path, cycle, complete graph

K(Sn) = n − 3
2 K(Pn) =

1
3 (n − 1)2 + 1

6

K(Cn) =
1
6 (n − 1)(n + 1) K(Kn) = n − 2 + 1

n
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Alternate formula of Kemeny’s constant 1

Let D be the diagonal matrix of vertex degrees of a connected graph G, and
A be its adjacency matrix. It is shown in [Levene and Loizou, 2002] that

K(G) =
n∑

i=2

1
1 − λi

,

where 1, λ2, . . . , λn are the eigenvalues of the transition matrix D−1A.

(Note) For r -regular graph, 1, λ2, . . . , λn can be obtained from adjacency
eigenvalues by multiplication of 1/r . We can obtain K(Cn) and K(Kn).
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Alternate formula of Kemeny’s constant 2

Let F be the matrix given by F = [fi,j ] where fi,j is the number of spanning
2-forests of G where one component of the forest contains vertex i , and the
other contains j . It is shown in [Kirkland and Zeng, 2016] that

K(G) =
dT Fd
4mτ

,

where m is the number of edges, d is the degree vector of G and τ is the
number of spanning trees of G.

(Example)

1

2

3

4
G

f1,4 = 5

τ = 3

(Note) If G is a tree, then F is the distance matrix. We can obtain K(Sn) and
K(Pn).
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Alternate formula of Kemeny’s constant 3

Let R be the matrix given by R = [ri,j ], where ri,j is the so-called effective
resistance distance between vertices i and j . It is known that ri,j =

fi,j
τ

. Hence,

K(G) =
dT Rd

4m
.

(Note) The so-called Kirchhoff index Kf(G) is a graph invariant and is defined
as Kf(G) = 1

2 1T R1. If G is r -regular, then K(G) = r
n Kf(G).
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Topic of this talk

Kemeny’s constant is a graph invariant, and it can be regarded as a
measure of graph connectivity.

It is natural to study how graph structure informs a graph invariant.

We will understand how graph structures influence Kemeny’s constant
via asymptotic behaviour.

(Notation) Let Gn represent a graph of order n in a sequence or family of
graphs.

We write f (Gn) = O(g(n)) if lim supn→∞
f (Gn)
g(n) is finite.

We write f (Gn) = Ω(g(n)) if g(n) = O(f (Gn)).

We write f (Gn) = Θ(g(n)) if f (Gn) = O(g(n)) and f (Gn) = Ω(g(n)).
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Examples: star, path, cycle, complete graph

K(Sn) = n − 3
2 = Θ(n) K(Pn) =

1
3 (n − 1)2 + 1

6 = Θ(n2)

K(Cn) =
1
6 (n − 1)(n + 1) = Θ(n2) K(Kn) = n − 2 + 1

n = Θ(n)

(Note) For any graph G, K(G) ≥ K(Kn). Hence, K(Gn) = Ω(n).
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Sparsity and diameter

Proposition (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let G be a connected graph. Then

K(G) < 2m diam(G).

(Proof)
Recall

K(G) =
∑
j ̸=i

(
dj

2m

)
mi,j ∀i ∈ V (G).

It is known from [Chandra et al., 1989] that mi,j + mj,i = 2mri,j .
It follows that

K(G) =
n∑

j=1
j ̸=i

( dj

2m
)
mi,j <

n∑
j=1
j ̸=i

( dj

2m
)
(mi,j + mj,i) =

n∑
j=1
j ̸=i

dj ri,j

Furthermore, ri,j ≤ diam(G) in [Palacios, 2010]. □

(Note) Since m = O(n2) and diam(G) = O(n), we have K(G) = O(n3).
Moreover, if diam(G) is fixed, then K(G) = O(n2).
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Graphs with K(G) = Θ(n3)

Barbell graph

[Breen et al., 2019]: K(G) = 1
54 n3 + O(n2).
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Maximum degree

Let ∆(G) be the maximum degree of G.

Theorem (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let G be a connected graph on n vertices with ∆(G) = n − O(1). Then,
K(G) = Θ(n).

Theorem (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let G be a graph on n vertices with ∆(G) = n − 1. Then, K(G) < 2(n − 1).

(Sketch of proof)

Let i be a vertex of degree n − 1. Since ri,j =
1
τ

fi,j ,

K(G) <
n∑

j=1
j ̸=i

dj ri,j =
n∑

j=1
j ̸=i

1
τ

dj fi,j .

We claim that dj fi,j ≤ 2τ .
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Continuing proof

Let N(j) be the neighbour of j .

For each v ∈ N(j), we define Fv (i; j) to be the set of spanning rooted
2-forests separating i and j by labelling v as a root. Then∣∣∣∣∣∣

⋃
v∈N(j)

Fv (i; j)

∣∣∣∣∣∣ =
∑

v∈N(j)

|Fv (i; j)| = dj fi,j .

We define Ti (resp. Tj ) to be the set of spanning rooted trees of G with
root i (resp. with root j). Then

|Ti ∪ Tj | = 2τ.
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Continuing proof

It can be proved that the following map from
⋃

v∈N(j) Fv (i; j) to Ti ∪ Tj is
injective.
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Nordhaus-Gaddum Problem

Given a graph invariant f , the Nordhaus–Gaddum type problem is to find
lower and upper bounds for f (G) + f (G) and f (G)f (G), where G is the
complement of G.

It provides insights into the interplay between a graph and its
complement.

We consider f (G) = K(G) for connected G and G in order to see how
graph structures influence Kemeny’s constant.

Since K(G) = O(n3), we have K(G) +K(G) = O(n3) and
K(G)K(G) = O(n6).

We shall focus on K(G)K(G).

If diam(G) > 3 then diam(G) = 2. Hence K(G)K(G) = O(n5).

Is this sharp?

We do not know yet.
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Barbell graph

There is a vertex of degree n − 3. Hence K(G) = Θ(n) and

K(G)K(G) = Θ(n4).
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Maximum degree

Theorem (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let U be a real constant such that 0 < U < 1. Then there is a constant ΨU

such that for every n ∈ N and every graph G on n vertices such that
∆(G) ≤ Un,

min
{
K(G), K(G)

}
≤ nΨU .

(Idea of proof)
Recall

K(G) =
n∑

i=2

1
1 − λi

,

where λ1 = 1 > λ2 ≥ λ3 ≥ . . . ≥ λn are the eigenvalues of D−1A.
Then

1
1 − λ2

≤ K(G) ≤ n
1 − λ2

.

For S ⊆ V (G), let
vol(S) :=

∑
v∈S

dv .

When S and T are disjoint subsets of V (G), we define [S,T ]G to be the
set of all edges of G.
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Continuing Idea of proof

The bottleneck ratio of the graph G is defined to be

Φ = Φ(G) = min
S⊆V : 0<vol(S)≤|E(G)|

| [S,Sc ]G|
vol(S)

.

It is known that
Φ2

2
≤ 1 − λ2 ≤ 2Φ.

Hence,
1

2Φ
≤ K(G) ≤ 2n

Φ2 .

Now we claim that if K(G) is “large”, then K(G) = O(n).
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Continuing Idea of proof

This structure forces mean first passage to be of order n.
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Maximum degree

Theorem (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let U be a real constant such that 0 < U < 1. Then there is a constant ΨU

such that for every n ∈ N and every graph G on n vertices such that
∆(G) ≤ Un,

min
{
K(G), K(G)

}
≤ nΨU .

Corollary

Let G be a regular graph on n vertices. There exists a constant Ψreg such that

min
{
K(G), K(G)

}
≤ nΨreg .

(Note) We have proved that when maximum degree is n − Ω(n), or when it is
n − O(1), we have K(G)K(G) = O(n4).
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Regular graphs for N-G problem

Let G be r -regular graph. Recall

K(G) =
r
n

Kf(G).

From [Palacios, 2010], we have n(n−1)
2k ≤ Kf(G) ≤ 3n3

k .

Hence,

n − 1
2

≤ K(G) ≤ 3n2.

That is, K(G) = O(n2).

Since min{K(G),K(G)} = O(n), we have

K(G)K(G) = O(n3).
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General barbell graph for N-G problem

v1

v2 vd

G1 G2

Using a formula of Kemeny’s constant of graphs with bridges in [Breen,
Crisostomi and Kim, 2022], we obtain

K(G) = Ω

(
mG1 mG2 d

mG1 + mG2 + d

)
.

If d = Θ(n), mG1 = Θ(n2) and mG2 = Θ(n2), then

K(G) = Θ(n3).

Moreover,
K(G)K(G) = Θ(n4).
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Tree for N-G problem

Let T be a tree.

It appears in [Jang, Kim and Song, 2023] that

K(T ) =
2W (T )

n − 1
− n +

1
2

where W (T ) (called Wiener index) is the sum of distances for all pairs of
two distinct vertices.

It is known that W (T ) = O(n3).

Hence K(T ) = O(n2) and

K(T )K(T ) = O(n3).
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Distance regular graph for N-G problem

See [Brouwer and Haemers, 2012] for a comprehensive monograph on
distance regular graphs.

The spectrum of strongly regular graph G is well-known (see
[Godsil and Royle, 2001]). We can find that K(G) = O(n) and so

K(G)K(G) = Θ(n2).

Recall K(Cn) = Θ(n2). How about distance regular graphs with growing
diameter?

The spectrum of distance regular graph with classical parameter is found
in [Jurišić and Vidali, 2017].

We can find that when G is a Hamming graph, K(G) = O(n).

In addition, Kemeny’s constants for families (C2), (C3), (C3a), (C4),
(C4a), (C10), (C11), and (C11a) in [Brouwer and Haemers, 2012, Tables
6.1 and 6.2] are O(n) while their diameters grow as n increases.
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Kemeny’s constant and edge insertion

Kemeny’s constant measures how fast a random walker moveces
around in a graph.

Does Kemeny’s constant decrease after adding a new edge?

Recall that K(G) = dT Rd
4m and Kf(G) = 1

2 1T R1.

It is known that the addition of a new edge decreases Kirchhoff index.

It does not hold for Kemeny’s constant in general.

Such an edge is called a Braess edge, whose name comes from
Braess’s paradox in road networks.
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Example

G

K(G) = 3.6667

G ∪ e

e

K(G ∪ e) = 4
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Asymptotic behaviour of having the Braess edge

v
−0.4167

v

0

v

−0.2857

v

0.1500

v

−0.1458
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Braess edges and eccentricity in trees

T

v

v2

vk1+1

w2

wk2+1

We consider the following sequence Gv = (Tn)
v of trees, where V (T1) = {v}

and for each n ≥ 2, Tn is obtained from Tn−1 by one of the following cases:

adding a new pendent vertex to Tn−1, or

subdividing an edge in Tn−1 into two edges connecting to a new vertex.

We denote by αn the eccentricity of v in Tn.

Theorem (Kim, 2022)

Suppose that Gv = (Tn)
v is a sequence of trees Tn such that αn = ω(n

2
3 ).

Given k1, k2 ≥ 0, if α = ω(n
2
3 ), then {vk1+1, vw2+1} tends to be a Braess edge.
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Braess edges on path

· · · center . . .
(Not Braess)

· · · center . . .
(Not likely)

· · · center . . .
(Likely)

The Braess edges in a path are concentrated towards the endpoints with
creating a small cycle.
An edge connecting points that were originally far apart will tend to
decrease travel times of the random walker.
But, edges close to the endpoints of a path create bottlenecks where the
random walker could get stuck for a time.
In [Jang, Kempton, Kim, Knudson, Madras and Song, 2023], the number
of Braess edges for a path of length n is

1
3

n ln n − cn + o(n)

for a constant c ≈ .548.
(Note) In [Kirkland, Li, McAlister and Zhang, 2023], the maximum increment
from the addition of a new edge to any tree is approximately 2

3 n.
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Thank you for your attention!
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