Kemeny's constant for random walks on graphs

Sooyeong Kim

York University

AGT Seminar in University of Waterloo

A random walker traverses the vertices of *G*, at each step choosing an adjacent vertex to move to uniformly at random. (A random walk on a given graph *G* = (*V*, *E*) is an example of a Markov chain.)

The **mean first passage time** $m_{i,j}$ from vertex *i* to vertex *j* is the expected number of time-steps elapsed before the random walker reaches vertex *j*, given that it begins at vertex *i*.

Kemeny's constant $\mathcal{K}(G)$ of a graph G is defined as

$$\mathcal{K}(G) = \sum_{j \neq i} \left(\frac{d_j}{2m} \right) m_{i,j} \quad \forall i \in V(G).$$

It can be recast as follows:

$$\mathcal{K}(G) = \sum_{i} \sum_{j \neq i} \left(\frac{d_i}{2m_G} \right) m_{i,j} \left(\frac{d_j}{2m_G} \right).$$

Kemeny's constant can be interpreted as the expected length of a random trip in the graph G. One can consider it as measuring how well-connected the graph is.

How does graph structure affect Kemeny's constant?

- Sparsity?
- Distances between vertices?

Examples: star, path, cycle, complete graph

Let *D* be the diagonal matrix of vertex degrees of a connected graph G, and *A* be its adjacency matrix. It is shown in [Levene and Loizou, 2002] that

$$\mathcal{K}(G) = \sum_{i=2}^n \frac{1}{1-\lambda_i},$$

where 1, $\lambda_2, \ldots, \lambda_n$ are the eigenvalues of the transition matrix $D^{-1}A$.

(Note) For *r*-regular graph, $1, \lambda_2, \ldots, \lambda_n$ can be obtained from adjacency eigenvalues by multiplication of 1/r. We can obtain $\mathcal{K}(C_n)$ and $\mathcal{K}(K_n)$.

Alternate formula of Kemeny's constant 2

Let *F* be the matrix given by $F = [f_{i,j}]$ where $f_{i,j}$ is the number of spanning 2-forests of *G* where one component of the forest contains vertex *i*, and the other contains *j*. It is shown in [Kirkland and Zeng, 2016] that

$$\mathcal{K}(G) = rac{\mathbf{d}^T F \mathbf{d}}{4m\tau},$$

where *m* is the number of edges, **d** is the degree vector of *G* and τ is the number of spanning trees of *G*.

(Example)

(Note) If *G* is a tree, then *F* is the distance matrix. We can obtain $\mathcal{K}(S_n)$ and $\mathcal{K}(P_n)$.

Let *R* be the matrix given by $R = [r_{i,j}]$, where $r_{i,j}$ is the so-called *effective resistance distance* between vertices *i* and *j*. It is known that $r_{i,j} = \frac{t_{i,j}}{\tau}$. Hence,

$$\mathcal{K}(G) = \frac{\mathbf{d}^T R \mathbf{d}}{4m}.$$

(Note) The so-called *Kirchhoff index* Kf(*G*) is a graph invariant and is defined as Kf(*G*) = $\frac{1}{2}\mathbf{1}^T R\mathbf{1}$. If *G* is *r*-regular, then $\mathcal{K}(G) = \frac{r}{n} \text{Kf}(G)$.

- Kemeny's constant is a graph invariant, and it can be regarded as a measure of graph connectivity.
- It is natural to study how graph structure informs a graph invariant.
- We will understand how graph structures influence Kemeny's constant via asymptotic behaviour.

(Notation) Let G_n represent a graph of order n in a sequence or family of graphs.

- We write $f(G_n) = O(g(n))$ if $\limsup_{n \to \infty} \frac{f(G_n)}{g(n)}$ is finite.
- We write $f(G_n) = \Omega(g(n))$ if $g(n) = O(f(G_n))$.
- We write $f(G_n) = \Theta(g(n))$ if $f(G_n) = O(g(n))$ and $f(G_n) = \Omega(g(n))$.

Examples: star, path, cycle, complete graph

 $\mathcal{K}(C_n) = \frac{1}{6}(n-1)(n+1) = \Theta(n^2)$ $\mathcal{K}(K_n) = n-2 + \frac{1}{n} = \Theta(n)$

(Note) For any graph G, $\mathcal{K}(G) \geq \mathcal{K}(K_n)$. Hence, $\mathcal{K}(G_n) = \Omega(n)$.

Sparsity and diameter

Proposition (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let G be a connected graph. Then

 $\mathcal{K}(G) < 2m \operatorname{diam}(G).$

(Proof)

Recall

$$\mathcal{K}(G) = \sum_{j \neq i} \left(rac{d_j}{2m}
ight) m_{i,j} \quad \forall i \in V(G).$$

- It is known from [Chandra et al., 1989] that $m_{i,j} + m_{j,i} = 2mr_{i,j}$.
- It follows that

$$\mathcal{K}(G) = \sum_{\substack{j=1\\j\neq i}}^{n} (\frac{d_j}{2m}) m_{i,j} < \sum_{\substack{j=1\\j\neq i}}^{n} (\frac{d_j}{2m}) (m_{i,j} + m_{j,i}) = \sum_{\substack{j=1\\j\neq i}}^{n} d_j r_{i,j}$$

• Furthermore, $r_{i,j} \leq \text{diam}(G)$ in [Palacios, 2010].

(Note) Since $m = O(n^2)$ and diam(G) = O(n), we have $\mathcal{K}(G) = O(n^3)$. Moreover, if diam(G) is fixed, then $\mathcal{K}(G) = O(n^2)$.

[Breen et al., 2019]:
$$\mathcal{K}(G) = \frac{1}{54}n^3 + O(n^2)$$
.

Let $\Delta(G)$ be the maximum degree of G.

Theorem (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let G be a connected graph on n vertices with $\Delta(G) = n - O(1)$. Then, $\mathcal{K}(G) = \Theta(n)$.

Theorem (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let G be a graph on n vertices with $\Delta(G) = n - 1$. Then, $\mathcal{K}(G) < 2(n - 1)$.

(Sketch of proof)

• Let *i* be a vertex of degree n - 1. Since $r_{i,j} = \frac{1}{\tau} f_{i,j}$,

$$\mathcal{K}(G) < \sum_{\substack{j=1\\j\neq i}}^n d_j r_{i,j} = \sum_{\substack{j=1\\j\neq i}}^n \frac{1}{\tau} d_j f_{i,j}.$$

• We claim that $d_j f_{i,j} \leq 2\tau$.

- Let *N*(*j*) be the neighbour of *j*.
- For each v ∈ N(j), we define F_v(i; j) to be the set of spanning rooted 2-forests separating i and j by labelling v as a root. Then

$$\left|\bigcup_{\nu\in N(j)}\mathcal{F}_{\nu}(i;j)\right|=\sum_{\nu\in N(j)}|\mathcal{F}_{\nu}(i;j)|=d_{j}f_{i,j}.$$

• We define \mathcal{T}_i (resp. \mathcal{T}_j) to be the set of spanning rooted trees of *G* with root *i* (resp. with root *j*). Then

$$|\mathcal{T}_i \cup \mathcal{T}_j| = \mathbf{2}\tau.$$

It can be proved that the following map from U_{v∈N(j)} F_v(i; j) to T_i ∪ T_j is injective.

- Given a graph invariant f, the Nordhaus–Gaddum type problem is to find lower and upper bounds for $f(G) + f(\overline{G})$ and $f(G)f(\overline{G})$, where \overline{G} is the complement of G.
- It provides insights into the interplay between a graph and its complement.
- We consider $f(G) = \mathcal{K}(G)$ for connected G and \overline{G} in order to see how graph structures influence Kemeny's constant.
- Since $\mathcal{K}(G) = O(n^3)$, we have $\mathcal{K}(G) + \mathcal{K}(\overline{G}) = O(n^3)$ and $\mathcal{K}(G)\mathcal{K}(\overline{G}) = O(n^6)$.
- We shall focus on $\mathcal{K}(G)\mathcal{K}(\overline{G})$.
- If diam(G) > 3 then diam(\overline{G}) = 2. Hence $\mathcal{K}(G)\mathcal{K}(\overline{G}) = O(n^5)$.
- Is this sharp?
- We do not know yet.

There is a vertex of degree n - 3. Hence $\mathcal{K}(\overline{G}) = \Theta(n)$ and $\mathcal{K}(G)\mathcal{K}(\overline{G}) = \Theta(n^4).$

Maximum degree

Theorem (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let U be a real constant such that 0 < U < 1. Then there is a constant Ψ_U such that for every $n \in \mathbb{N}$ and every graph G on n vertices such that $\Delta(G) \leq Un$,

$$\min\left\{\mathcal{K}(\boldsymbol{G}),\,\mathcal{K}(\overline{\boldsymbol{G}})
ight\} \leq n\Psi_U$$
 .

(Idea of proof)

Recall

$$\mathcal{K}(G) = \sum_{i=2}^{n} \frac{1}{1-\lambda_i},$$

where $\lambda_1 = 1 > \lambda_2 \ge \lambda_3 \ge \ldots \ge \lambda_n$ are the eigenvalues of $D^{-1}A$.

Then

$$\frac{1}{1-\lambda_2} \leq \mathcal{K}(G) \leq \frac{n}{1-\lambda_2}$$

• For $S \subseteq V(G)$, let

$$\operatorname{vol}(S) := \sum_{v \in S} d_v.$$

• When *S* and *T* are disjoint subsets of *V*(*G*), we define [*S*, *T*]_{*G*} to be the set of all edges of *G*.

• The bottleneck ratio of the graph G is defined to be

$$\Phi = \Phi(G) = \min_{S \subseteq V: 0 < \operatorname{vol}(S) \le |E(G)|} \frac{|[S, S^c]_G|}{\operatorname{vol}(S)}.$$

It is known that

$$\frac{\Phi^2}{2} \leq 1 - \lambda_2 \leq 2\Phi.$$

• Hence,

$$\frac{1}{2\Phi} \leq \mathcal{K}(G) \leq \frac{2n}{\Phi^2}.$$

• Now we claim that if $\mathcal{K}(G)$ is "large", then $\mathcal{K}(\overline{G}) = O(n)$.

This structure forces mean first passage to be of order *n*.

Theorem (Kim, Madras, Chan, Kempton, Kirkland and Knudson, 2023)

Let U be a real constant such that 0 < U < 1. Then there is a constant Ψ_U such that for every $n \in \mathbb{N}$ and every graph G on n vertices such that $\Delta(G) \leq Un$,

$$\min\left\{\mathcal{K}(G),\,\mathcal{K}(\overline{G})\right\} \leq n\Psi_U.$$

Corollary

Let G be a regular graph on n vertices. There exists a constant Ψ_{reg} such that

$$\min\left\{\mathcal{K}(\textit{G}),\,\mathcal{K}(\overline{\textit{G}})\right\} \;\leq\; \textit{n}\Psi_{\textit{reg}}.$$

(Note) We have proved that when maximum degree is $n - \Omega(n)$, or when it is n - O(1), we have $\mathcal{K}(G)\mathcal{K}(\overline{G}) = O(n^4)$.

• Let G be r-regular graph. Recall

$$\mathcal{K}(G)=\frac{r}{n}\mathrm{Kf}(G).$$

• From [Palacios, 2010], we have $\frac{n(n-1)}{2k} \leq Kf(G) \leq \frac{3n^3}{k}$.

• Hence,

$$\frac{n-1}{2}\leq \mathcal{K}(G)\leq 3n^2.$$

- That is, $\mathcal{K}(G) = O(n^2)$.
- Since $\min\{\mathcal{K}(G), \mathcal{K}(\overline{G})\} = O(n)$, we have

 $\mathcal{K}(G)\mathcal{K}(\overline{G}) = O(n^3).$

• Using a formula of Kemeny's constant of graphs with bridges in [Breen, Crisostomi and Kim, 2022], we obtain

$$\mathcal{K}(G) = \Omega\left(\frac{m_{G_1}m_{G_2}d}{m_{G_1}+m_{G_2}+d}\right)$$

• If
$$d = \Theta(n)$$
, $m_{G_1} = \Theta(n^2)$ and $m_{G_2} = \Theta(n^2)$, then

$$\mathcal{K}(G) = \Theta(n^3).$$

Moreover,

$$\mathcal{K}(G)\mathcal{K}(\overline{G}) = \Theta(n^4).$$

- Let T be a tree.
- It appears in [Jang, Kim and Song, 2023] that

$$\mathcal{K}(\mathcal{T}) = \frac{2W(\mathcal{T})}{n-1} - n + \frac{1}{2}$$

where $W(\mathcal{T})$ (called *Wiener index*) is the sum of distances for all pairs of two distinct vertices.

- It is known that $W(\mathcal{T}) = O(n^3)$.
- Hence $\mathcal{K}(\mathcal{T}) = O(n^2)$ and

$$\mathcal{K}(\mathcal{T})\mathcal{K}(\overline{\mathcal{T}}) = O(n^3).$$

See [Brouwer and Haemers, 2012] for a comprehensive monograph on distance regular graphs.

• The spectrum of strongly regular graph *G* is well-known (see [Godsil and Royle, 2001]). We can find that $\mathcal{K}(G) = O(n)$ and so

$$\mathcal{K}(G)\mathcal{K}(\overline{G})=\Theta(n^2).$$

Recall $\mathcal{K}(C_n) = \Theta(n^2)$. How about distance regular graphs with growing diameter?

- The spectrum of distance regular graph with classical parameter is found in [Jurišić and Vidali, 2017].
- We can find that when G is a Hamming graph, $\mathcal{K}(G) = O(n)$.
- In addition, Kemeny's constants for families (C2), (C3), (C3a), (C4), (C4a), (C10), (C11), and (C11a) in [Brouwer and Haemers, 2012, Tables 6.1 and 6.2] are *O*(*n*) while their diameters grow as *n* increases.

- Kemeny's constant measures how fast a random walker moveces around in a graph.
- Does Kemeny's constant decrease after adding a new edge?
- Recall that $\mathcal{K}(G) = \frac{\mathbf{d}^T R \mathbf{d}}{4m}$ and $\mathrm{Kf}(G) = \frac{1}{2} \mathbf{1}^T R \mathbf{1}$.
- It is known that the addition of a new edge decreases Kirchhoff index.
- It does not hold for Kemeny's constant in general.
- Such an edge is called a *Braess edge*, whose name comes from Braess's paradox in road networks.

 $\mathcal{K}(G) = 3.6667$

$$\mathcal{K}(G \cup e) = 4$$

We consider the following sequence $\mathcal{G}^{v} = (\mathcal{T}_{n})^{v}$ of trees, where $V(\mathcal{T}_{1}) = \{v\}$ and for each $n \geq 2$, \mathcal{T}_{n} is obtained from \mathcal{T}_{n-1} by one of the following cases:

- adding a new pendent vertex to T_{n-1} , or
- subdividing an edge in T_{n-1} into two edges connecting to a new vertex.

We denote by α_n the eccentricity of v in \mathcal{T}_n .

Theorem (Kim, 2022)

Suppose that $\mathcal{G}^{\nu} = (\mathcal{T}_n)^{\nu}$ is a sequence of trees \mathcal{T}_n such that $\alpha_n = \omega(n^{\frac{2}{3}})$. Given $k_1, k_2 \ge 0$, if $\alpha = \omega(n^{\frac{2}{3}})$, then $\{v_{k_1+1}, v_{w_2+1}\}$ tends to be a Braess edge.

- The Braess edges in a path are concentrated towards the endpoints with creating a small cycle.
- An edge connecting points that were originally far apart will tend to decrease travel times of the random walker.
- But, edges close to the endpoints of a path create bottlenecks where the random walker could get stuck for a time.
- In [Jang, Kempton, Kim, Knudson, Madras and Song, 2023], the number of Braess edges for a path of length *n* is

$$\frac{1}{3}n\ln n - cn + o(n)$$

for a constant $c \approx .548$.

(Note) In [Kirkland, Li, McAlister and Zhang, 2023], the maximum increment from the addition of a new edge to any tree is approximately $\frac{2}{3}n$.

Thank you for your attention!

References

Breen, J., Butler, S., Day, N., DeArmond, C., Lorenzen, K., Qian, H., and Riesen, J. (2019). Computing Kemeny's constant for a barbell graph. *Electronic Journal of Linear Algebra*, 35:583–598. Brouwer, A. E. and Haemers, W. H. (2012).

Distance-Regular Graphs. Springer.

Chandra, A. K., Raghavan, P., Ruzzo, W. L., and Smolensky, R. (1989). The electrical resistance of a graph captures its commute and cover times. In *Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing*, pages 574–586.

Godsil, C. and Royle, G. F. (2001).

Algebraic Graph Theory, volume 207. Springer Science & Business Media.

Jurišić, A. and Vidali, J. (2017).

Restrictions on classical distance-regular graphs. Journal of Algebraic Combinatorics, 46:571–588.

Kirkland, S. and Zeng, Z. (2016).

Kemeny's constant and an analogue of Braess' paradox for trees. *Electronic Journal of Linear Algebra*, 31:444–464.

Levene, M. and Loizou, G. (2002).

Kemeny's constant and the random surfer. American Mathematical Monthly, 109(8):741–745.

Palacios, J. L. (2010).

On the Kirchhoff index of regular graphs. International Journal of Quantum Chemistry, 110(7):1307–1309.