Non-existence of some Moore Cayley digraphs

Alexander Gavrilyuk

(University of Memphis)

based on joint work with

Mitsugu Hirasaka

Vladislav Kabanov

(Pusan National University)

(Krasovskii Institute of Mathematics and Mechanics)

January 27, 2025

Graphs and Combinatorics https://doi.org/10.1007/s00373-021-02286-w

ORIGINAL PAPER

A Note on Moore Cayley Digraphs

Alexander L. Gavrilyuk^{1,2} () · Mitsugu Hirasaka¹ · Vladislav Kabanov²

Received: 29 April 2020/Revised: 12 February 2021/Accepted: 23 February 2021 © The Author(s), under exclusive licence to Springer Japan KK part of Springer Nature 2021

Degree/diameter problem

Let Γ be an undirected graph:

- regular of degree k;
- of diameter D;
- $|V(\Gamma)| \rightarrow \max?$

Moore graphs

Let Γ be an undirected graph:

- regular of degree k;
- of diameter *D*;
- $|V(\Gamma)| \leq 1 + k + k(k-1) + \ldots + k(k-1)^{D-1}$,

and if equality attains (Damerell, Bannai & Ito, 1973):

Diameter D	Degree k	Graph	Vertex-transitive
1	k	κ_{k+1}	yes
D	2	C_{2D+1}	yes
2	3	Petersen	yes
2	7	Hoffman-Singleton	yes
2	57	?	no

Digraphs = Mixed graphs = Partially directed graphs

Digraphs may have arcs as well as (undirected) edges:

Digraphs = Mixed graphs = Partially directed graphs

Digraphs may have arcs as well as (undirected) edges:

A digraph is regular with degrees (r, z) if every vertex:

- is incident to the same number r of undirected edges,
- has the same in-/out-degree z (counting only arcs not contained in digons).

An analogue of the Moore bound for digraphs can be derived, but its general form is quite complicated. In fact:

An analogue of the Moore bound for digraphs can be derived, but its general form is quite complicated. In fact:

Theorem (Nguyen, Miller, Gimbert, 2007)

There are no Moore (proper) digraphs with diameter > 2.

An analogue of the Moore bound for digraphs can be derived, but its general form is quite complicated. In fact:

Theorem (Nguyen, Miller, Gimbert, 2007)

There are no Moore (proper) digraphs with diameter > 2.

Moore digraphs of diameter 2 can be defined by the 'unique trail' property:

for every pair (x, y) of vertices of Δ , there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length at most 2.

Moore digraphs of diameter 2

Theorem (Bosák, 1979)

Let Δ be a Moore digraph of diameter 2 with degrees (r, z). Then the number *n* of vertices of Δ equals

$$n = (r+z)^2 + z + 1$$

and one of the following cases occurs:

- z = 1, r = 0 (a directed 3-cycle);
- z = 0, r = 2 (an undirected 5-cycle);
- there exists an odd positive integer c such that

c divides
$$(4z - 3)(4z + 5)$$
 and $r = \frac{1}{4}(c^2 + 3)$.

Moore digraphs of diameter 2

Theorem (Bosák, 1979)

Let Δ be a Moore digraph of diameter 2 with degrees (r, z). Then the number *n* of vertices of Δ equals

$$n = (r+z)^2 + z + 1$$

and one of the following cases occurs:

- z = 1, r = 0 (a directed 3-cycle);
- z = 0, r = 2 (an undirected 5-cycle);
- there exists an odd positive integer c such that

c divides
$$(4z - 3)(4z + 5)$$
 and $r = \frac{1}{4}(c^2 + 3)$.

Admissible values of r: 1, 3, 7, 13, 21, ...,For given r: infinitely many admissible values of z.

Known Moore digraphs

• r = 1: only Moore digraphs are the Kautz digraphs.

They are the line graphs of complete digraphs.

(Gimbert, 2001)

Known Moore digraphs

• r = 1: only Moore digraphs are the Kautz digraphs.

They are the line graphs of complete digraphs.

(Gimbert, 2001)

- r > 1: only three examples are known:
 - the Bosák graph on 18 vertices, (r, z) = (3, 1);

Known Moore digraphs

• r = 1: only Moore digraphs are the Kautz digraphs.

They are the line graphs of complete digraphs.

- *r* > 1: only three examples are known:
 - the Bosák graph on 18 vertices, (r, z) = (3, 1);
 - two Jørgensen graphs on 108 vertices, (r, z) = (3, 7).

All three examples with r > 1 are **Cayley** digraphs.

(Gimbert, 2001)

 $S_3 \times C_3$ or $(C_3 \times C_3) \rtimes C_2$.

Cayley digraphs

Given a finite group G and a subset $S \subseteq G \setminus \{1\}$ s.t.

$$S=S_1\cup S_2$$
, $S_1=S_1^{-1}$, and $S_2\cap S_2^{-1}=\emptyset$,

the **Cayley** (di-)graph Cay(G, S) has:

- the vertex set *G*;
- the arcs $g \longrightarrow gs$ for every $g \in G$, $s \in S$;
- the undirected degree $r = |S_1|$;
- the directed degree $z = |S_2|$.

Cayley digraphs

Given a finite group G and a subset $S \subseteq G \setminus \{1\}$ s.t.

$$S=S_1\cup S_2$$
, $S_1=S_1^{-1}$, and $S_2\cap S_2^{-1}=\emptyset$,

the **Cayley** (di-)graph Cay(G, S) has:

- the vertex set *G*;
- the arcs $g \longrightarrow gs$ for every $g \in G$, $s \in S$;
- the undirected degree $r = |S_1|$;
- the directed degree $z = |S_2|$.

Since Moore digraphs of diameter 2 are defined by the 'unique trail' property:

for every pair (x, y) of vertices of Δ , there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length at most 2,

Cayley digraphs

Given a finite group G and a subset $S \subseteq G \setminus \{1\}$ s.t.

$$S=S_1\cup S_2$$
, $S_1=S_1^{-1}$, and $S_2\cap S_2^{-1}=\emptyset$,

the **Cayley** (di-)graph Cay(G, S) has:

- the vertex set *G*;
- the arcs $g \longrightarrow gs$ for every $g \in G$, $s \in S$;
- the undirected degree $r = |S_1|$;
- the directed degree $z = |S_2|$.

Since Moore digraphs of diameter 2 are defined by the 'unique trail' property:

for every pair (x, y) of vertices of Δ , there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length at most 2,

it follows that if $\Delta = Cay(G, S)$ is Moore, then:

- for $g \in S$, earroware a pair $(s_1, s_2) \in S imes S$ such that $g = s_1 s_2$;
- for $g \notin S$, $\exists !$ a pair $(s_1, s_2) \in S \times S$ such that $g = s_1 s_2$.

Moore Cayley digraphs on at most 486 vertices, 1

Feasible parameters:

n	r	z	Exist	Transitive	Cayley
18	3	1	!		Yes
40	3	3	$\rm No^1$		
54	3	4	$\rm No^1$		
84	7	2	$\rm No^1$		
88	3	6	?	?	$ m No^2$
108	3	7	≥ 2		Yes
150	7	5	?	?	No^2
154	3	9	?	?	$\rm No^2$
180	3	10	?	?	$\rm No^2$

[1]: López, Miret, Fernández: Non-existence of some mixed Moore graphs of diameter 2 using SAT (2016).

[2]: Erskine: Mixed Moore Cayley graphs (2017).

Moore Cayley digraphs on at most 486 vertices, 2

n	r	z	Exist	Transitive	Cayley
204	7	7	?	?	No^2
238	3	12	?	?	No^2
270	3	13	?	?	No^2
294	13	4	?	?	No^2
300	7	10	?	?	No^2
340	3	15	?	?	No^2
368	13	6	?	?	No^2
374	7	12	?	?	No^2
378	3	16	?	?	No^2
460	3	18	?	?	No^2
486	21	1	?	No^{3}	

[3]: Jørgensen: talk in Pilsen (2018).

The adjacency algebra of a Moore digraph Δ

The adjacency matrix $A = A(\Delta) \in \mathbb{R}^{V \times V}$:

$$(\mathsf{A})_{x,y} := \begin{cases} 1 & \text{if } x \to y, \\ 0 & \text{otherwise.} \end{cases}$$

The adjacency algebra of a Moore digraph Δ

The adjacency matrix $A = A(\Delta) \in \mathbb{R}^{V \times V}$:

$$(\mathsf{A})_{x,y} := egin{cases} 1 & ext{if } x o y, \\ 0 & ext{otherwise.} \end{cases}$$

Recall that for every pair (x, y) of vertices of Δ , there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length ≤ 2 . Then:

$$A^2 = (r-1)I + J - A$$
, and $JA = AJ = kJ$,

so A is diagonalizable with 3 eigenspaces with eigenvalues k = r + z, and $\lambda_1, \lambda_2 \in \mathbb{Z}$, which can be computed from r and z.

The adjacency algebra of a Moore digraph Δ

The adjacency matrix $A = A(\Delta) \in \mathbb{R}^{V \times V}$:

$$(\mathsf{A})_{x,y} := egin{cases} 1 & ext{if } x o y, \\ 0 & ext{otherwise.} \end{cases}$$

Recall that for every pair (x, y) of vertices of Δ , there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length ≤ 2 . Then:

$$A^2 = (r-1)I + J - A$$
, and $JA = AJ = kJ$,

so A is diagonalizable with 3 eigenspaces with eigenvalues k = r + z, and $\lambda_1, \lambda_2 \in \mathbb{Z}$, which can be computed from r and z.

The **projection matrix** E_{λ_i} onto the (right) λ_i -eigenspace:

 $\mathsf{E}_{\lambda_i} \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle.$

Duval (1988); Jørgensen (2003); Godsil, Hobart, Martin (2007)

- Let $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G$: $g \mapsto \mathsf{P}_g$, a permutation matrix;

- Let $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G$: $g \mapsto \mathsf{P}_g$, a permutation matrix;
- $\mathsf{P}_{g}\mathsf{A} = \mathsf{A}\mathsf{P}_{g}$, and since $\mathsf{E}_{\lambda_{i}} \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle$

- Let $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G$: $g \mapsto \mathsf{P}_g$, a permutation matrix;
- $\mathsf{P}_{g}\mathsf{A} = \mathsf{A}\mathsf{P}_{g}$, and since $\mathsf{E}_{\lambda_{i}} \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle \Rightarrow \mathsf{P}_{g}\mathsf{E}_{\lambda_{i}} = \mathsf{E}_{\lambda_{i}}\mathsf{P}_{g}$;

- Let $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G$: $g \mapsto \mathsf{P}_g$, a permutation matrix;
- $\mathsf{P}_{g}\mathsf{A} = \mathsf{A}\mathsf{P}_{g}$, and since $\mathsf{E}_{\lambda_{i}} \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle \Rightarrow \mathsf{P}_{g}\mathsf{E}_{\lambda_{i}} = \mathsf{E}_{\lambda_{i}}\mathsf{P}_{g}$;
- By using this, one can show that

 $Tr(E_{\lambda_i}P_g)$ is an algebraic integer;

- Let $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G$: $g \mapsto \mathsf{P}_g$, a permutation matrix;
- $\mathsf{P}_{g}\mathsf{A} = \mathsf{A}\mathsf{P}_{g}$, and since $\mathsf{E}_{\lambda_{i}} \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle \Rightarrow \mathsf{P}_{g}\mathsf{E}_{\lambda_{i}} = \mathsf{E}_{\lambda_{i}}\mathsf{P}_{g}$;
- By using this, one can show that

 $Tr(E_{\lambda_i}P_g)$ is an algebraic integer;

• On the other hand, again, since $\mathsf{E}_{\lambda_i} \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle$, we have: $\operatorname{Tr}(\mathsf{E}_{\lambda_i}\mathsf{P}_g) = \alpha_i \operatorname{Tr}(\mathsf{A}\mathsf{P}_g) + \beta_i \operatorname{Tr}(\mathsf{I}\mathsf{P}_g) + \gamma_i \operatorname{Tr}(\mathsf{J}\mathsf{P}_g) \in \mathbb{Z}$

- Let $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G$: $g \mapsto \mathsf{P}_g$, a permutation matrix;
- $\mathsf{P}_{g}\mathsf{A} = \mathsf{A}\mathsf{P}_{g}$, and since $\mathsf{E}_{\lambda_{i}} \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle \Rightarrow \mathsf{P}_{g}\mathsf{E}_{\lambda_{i}} = \mathsf{E}_{\lambda_{i}}\mathsf{P}_{g}$;
- By using this, one can show that

 $Tr(E_{\lambda_i}P_g)$ is an algebraic integer;

- Now:

$$\begin{aligned} \operatorname{Tr}(\mathsf{IP}_g) &= \#\{v \in \Delta \mid v = v^g\} = \#\operatorname{Fix}(g), \\ \operatorname{Tr}(\mathsf{AP}_g) &= \#\{v \in \Delta \mid v \longrightarrow v^g\}. \end{aligned}$$

- Let $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G$: $g \mapsto \mathsf{P}_g$, a permutation matrix;
- $\mathsf{P}_{g}\mathsf{A} = \mathsf{A}\mathsf{P}_{g}$, and since $\mathsf{E}_{\lambda_{i}} \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle \Rightarrow \mathsf{P}_{g}\mathsf{E}_{\lambda_{i}} = \mathsf{E}_{\lambda_{i}}\mathsf{P}_{g}$;
- By using this, one can show that

 $\operatorname{Tr}(\mathsf{E}_{\lambda_i}\mathsf{P}_g)$ is an algebraic integer;

• On the other hand, again, since $E_{\lambda_i} \in \langle A, I, J \rangle$, we have: $\operatorname{Tr}(E_{\lambda_i} P_{-\lambda_i}) = \alpha_i \operatorname{Tr}(AP_{-\lambda_i}) + \beta_i \operatorname{Tr}(IP_{-\lambda_i}) + \gamma_i \operatorname{Tr}(IP_{-\lambda_i})$

$$r(\mathsf{E}_{\lambda_i}\mathsf{P}_g) = \alpha_i \operatorname{Tr}(\mathsf{A}\mathsf{P}_g) + \beta_i \operatorname{Tr}(\mathsf{I}\mathsf{P}_g) + \gamma_i \operatorname{Tr}(\mathsf{J}\mathsf{P}_g) \in \mathbb{Z}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\in \mathbb{Q}, \text{ but often } \notin \mathbb{Z}.$$

• Now:

$$\begin{aligned} \operatorname{Tr}(\mathsf{IP}_g) &= \#\{v \in \Delta \mid v = v^g\} = \#\operatorname{Fix}(g), \\ \operatorname{Tr}(\mathsf{AP}_g) &= \#\{v \in \Delta \mid v \longrightarrow v^g\}. \end{aligned}$$

- Higman: a degree 57 Moore graph is not transitive;
- Benson: automorphisms of finite GQs.
- De Winter, Kamischke, Wang: partial difference sets over Abelian groups.

- Let Δ be a Moore **Cayley** digraph over G with degrees (r, z). Recall: \exists an odd positive c which divides (4z - 3)(4z + 5), and $r = \frac{1}{4}(c^2 + 3)$.
- Then $G \leq \operatorname{Aut}(\Delta)$ is a regular subgroup. Hence, for $g \neq 1$:

$$\operatorname{Tr}(\mathsf{IP}_g) = \#\{v \in \Delta \mid v = v^g\} = \#\operatorname{Fix}(g) = 0.$$

- Let Δ be a Moore **Cayley** digraph over G with degrees (r, z). Recall: \exists an odd positive c which divides (4z - 3)(4z + 5), and $r = \frac{1}{4}(c^2 + 3)$.
- Then $G \leq \operatorname{Aut}(\Delta)$ is a regular subgroup. Hence, for $g \neq 1$:

$$\operatorname{Tr}(\mathsf{IP}_g) = \#\{v \in \Delta \mid v = v^g\} = \#\operatorname{Fix}(g) = 0.$$

• The Higman-Benson observation simplifies to:

$$\left(-\frac{1}{c}\mathbf{a}(g) + \frac{c^2 - 2c + 4z + 5}{4c}\right) \in \mathbb{Z}$$
(1)

for any non-identity automorphism $g \in G$, where

$$\mathbf{a}(g) := \mathrm{Tr}(\mathsf{AP}_g) = \#\{v \in \Delta \mid v \longrightarrow v^g\}.$$

- Let Δ be a Moore Cayley digraph over G with degrees (r, z).
 Recall: ∃ an odd positive c which divides (4z 3)(4z + 5), and r = ¼(c² + 3).
- Then $G \leq \operatorname{Aut}(\Delta)$ is a regular subgroup. Hence, for $g \neq 1$:

$$\operatorname{Tr}(\mathsf{IP}_g) = \#\{v \in \Delta \mid v = v^g\} = \#\operatorname{Fix}(g) = 0.$$

• The Higman-Benson observation simplifies to:

$$\left(-\frac{1}{c}\mathbf{a}(g) + \frac{c^2 - 2c + 4z + 5}{4c}\right) \in \mathbb{Z}$$
(1)

for any non-identity automorphism $g \in G$, where

$$\mathbf{a}(g) := \mathrm{Tr}(\mathsf{AP}_g) = \#\{v \in \Delta \mid v \longrightarrow v^g\}.$$

• Note that a(g) counts the number of arcs in the g-orbits that are (directed) cycles.

- Let Δ be a Moore Cayley digraph over G with degrees (r, z).
 Recall: ∃ an odd positive c which divides (4z 3)(4z + 5), and r = ¼(c² + 3).
- Then $G \leq \operatorname{Aut}(\Delta)$ is a regular subgroup. Hence, for $g \neq 1$:

$$\operatorname{Tr}(\mathsf{IP}_g) = \#\{v \in \Delta \mid v = v^g\} = \#\operatorname{Fix}(g) = 0.$$

• The Higman-Benson observation simplifies to:

$$\left(-\frac{1}{c}\mathbf{a}(g) + \frac{c^2 - 2c + 4z + 5}{4c}\right) \in \mathbb{Z}$$
(1)

for any non-identity automorphism $g \in G$, where

$$\mathbf{a}(g) := \operatorname{Tr}(\mathsf{AP}_g) = \#\{v \in \Delta \mid v \longrightarrow v^g\}.$$

- Note that a(g) counts the number of arcs in the g-orbits that are (directed) cycles.
- For some |G| and |g|, Condition (1) implies that a(g) is "too large" so that it contradicts: for every pair (x, y) of vertices of Δ, there is a unique trail x → ... → y of length at most 2.

Let Δ be a Moore **Cayley** digraph over a group *G* of order *n*. Let $g \in G \leq Aut(\Delta)$ be an automorphism of a **prime** order *p*.

Let Δ be a Moore **Cayley** digraph over a group *G* of order *n*. Let $g \in G \leq Aut(\Delta)$ be an automorphism of a **prime** order *p*.

- The number a(g) must be divisible by p.
 - Because it counts the number of arcs in the orbits that are (directed) *p*-cycles.

Let Δ be a Moore **Cayley** digraph over a group *G* of order *n*. Let $g \in G \leq \operatorname{Aut}(\Delta)$ be an automorphism of a **prime** order *p*.

- The number a(g) must be divisible by p.
 - Because it counts the number of arcs in the orbits that are (directed) *p*-cycles.
- If $h \in G$, of prime order $q \neq p$, commutes with g, then also q divides $\mathbf{a}(g)$.

Let Δ be a Moore **Cayley** digraph over a group *G* of order *n*. Let $g \in G \leq Aut(\Delta)$ be an automorphism of a **prime** order *p*.

- The number a(g) must be divisible by p.
 - Because it counts the number of arcs in the orbits that are (directed) *p*-cycles.
- If $h \in G$, of prime order $q \neq p$, commutes with g, then also q divides $\mathbf{a}(g)$.
- If there are arcs $x \longrightarrow x^{g^i}$ and $x \longrightarrow x^{g^j}$ then:

Let Δ be a Moore **Cayley** digraph over a group *G* of order *n*. Let $g \in G \leq Aut(\Delta)$ be an automorphism of a **prime** order *p*.

- The number a(g) must be divisible by p.
 - Because it counts the number of arcs in the orbits that are (directed) *p*-cycles.
- If $h \in G$, of prime order $q \neq p$, commutes with g, then also q divides $\mathbf{a}(g)$.
- If there are arcs $x \longrightarrow x^{g^i}$ and $x \longrightarrow x^{g^j}$ then:

Let Δ be a Moore **Cayley** digraph over a group *G* of order *n*. Let $g \in G \leq Aut(\Delta)$ be an automorphism of a **prime** order *p*.

- The number a(g) must be divisible by p.
 - Because it counts the number of arcs in the orbits that are (directed) *p*-cycles.
- If $h \in G$, of prime order $q \neq p$, commutes with g, then also q divides $\mathbf{a}(g)$.
- If there are arcs $x \longrightarrow x^{g^i}$ and $x \longrightarrow x^{g^j}$ then:

which violates the 'unique trail' property of Δ . Using this, we can show:

$$\sum_{i=1}^{p-1} a(g^i) \le 2n.$$

Let n = |G| = 88 and $g \in G$ of a prime order p.

- By Cauchy's Lemma, we may assume p = 11.
- The Higman-Benson observation implies that

$$\frac{-\mathbf{a}(g)+8}{3} \in \mathbb{Z},$$

thus $\mathbf{a}(g) \ge 11$.

Let n = |G| = 88 and $g \in G$ of a prime order p.

- By Cauchy's Lemma, we may assume p = 11.
- The Higman-Benson observation implies that

$$\frac{-\mathbf{a}(g)+8}{3} \in \mathbb{Z},$$

thus $\mathbf{a}(g) \ge 11$.

Using the Sylow theorem, we can show that there exists an element of order 2 in C_G(g), thus a(g) ≥ 2 · 11.

Let n = |G| = 88 and $g \in G$ of a prime order p.

- By Cauchy's Lemma, we may assume p = 11.
- The Higman-Benson observation implies that

$$\frac{-\mathbf{a}(g)+8}{3} \in \mathbb{Z},$$

thus $\mathbf{a}(g) \ge 11$.

- Using the Sylow theorem, we can show that there exists an element of order 2 in C_G(g), thus a(g) ≥ 2 · 11.
- Therefore, $\mathbf{a}(g) \ge 44$.

Let n = |G| = 88 and $g \in G$ of a prime order p.

- By Cauchy's Lemma, we may assume p = 11.
- The Higman-Benson observation implies that

$$\frac{-\mathbf{a}(g)+8}{3} \in \mathbb{Z},$$

thus $\mathbf{a}(g) \ge 11$.

- Using the Sylow theorem, we can show that there exists an element of order 2 in C_G(g), thus a(g) ≥ 2 · 11.
- Therefore, $\mathbf{a}(g) \ge 44$.
- Now we get a contradiction with

$$\sum_{i=1}^{p-1} \mathbf{a}(g^i) \le 2n.$$

Let n = |G| = 88 and $g \in G$ of a prime order p.

- By Cauchy's Lemma, we may assume p = 11.
- The Higman-Benson observation implies that

$$\frac{-\mathbf{a}(g)+8}{3} \in \mathbb{Z},$$

thus $\mathbf{a}(g) \ge 11$.

- Using the Sylow theorem, we can show that there exists an element of order 2 in C_G(g), thus a(g) ≥ 2 · 11.
- Therefore, $\mathbf{a}(g) \ge 44$.
- Now we get a contradiction with

$$\sum_{i=1}^{p-1} \mathbf{a}(g^i) \le 2n.$$

• There are no Moore Cayley digraphs on 88 vertices.

Results

n	r	z	Cayley (by Erskine)	Cayley (by Higman)
40	3	3	No	No
54	3	4	No	
84	7	2	No	No
88	3	6	No	No
150	7	5	No	
154	3	9	No	No
180	3	10	No	

Results

n	r	z	Cayley (by Erskine)	Cayley (by Higman)
204	7	7	No	No
238	3	12	No	No
270	3	13	No	
294	13	4	No	
300	7	10	No	
340	3	15	No	No
368	13	6	No	No
374	7	12	No	No
378	3	16	No	
460	3	18	No	No
486	21	1		

It rules out 29 out of 58 feasible parameter sets for $v \leq 2000$.

Although it does not cover all results by Erskine, the proof is computer-free.

Results

n	r	z	Cayley (by Erskine)	Cayley (by Higman)
204	7	7	No	No
238	3	12	No	No
270	3	13	No	
294	13	4	No	
300	7	10	No	
340	3	15	No	No
368	13	6	No	No
374	7	12	No	No
378	3	16	No	
460	3	18	No	No
486	21	1		

It rules out 29 out of 58 feasible parameter sets for $v \leq 2000$.

Although it does not cover all results by Erskine, the proof is computer-free. Thank you!