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Degree/diameter problem

Let Γ be an undirected graph:
• regular of degree k ;
• of diameter D;
• |V (Γ)| → max?

|V (Γ)| ≤ 1 + k + k(k − 1) + . . .+ k(k − 1)D−1
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Moore graphs

Let Γ be an undirected graph:

• regular of degree k ;

• of diameter D;

• |V (Γ)| ≤ 1 + k + k(k − 1) + . . .+ k(k − 1)D−1,

and if equality attains (Damerell, Bannai & Ito, 1973):

Diameter D Degree k Graph Vertex-transitive
1 k Kk+1 yes
D 2 C2D+1 yes
2 3 Petersen yes
2 7 Hoffman-Singleton yes

2 57 ? no
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Digraphs = Mixed graphs = Partially directed graphs

Digraphs may have arcs as well as (undirected) edges:

A digraph is regular with degrees (r , z) if every vertex:

• is incident to the same number r of undirected edges,

• has the same in-/out-degree z (counting only arcs not contained in digons).
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Moore digraphs

An analogue of the Moore bound for digraphs can be derived, but its general form is quite
complicated. In fact:

Theorem (Nguyen, Miller, Gimbert, 2007)

There are no Moore (proper) digraphs with diameter > 2.

Moore digraphs of diameter 2 can be defined by the ’unique trail’ property:

for every pair (x , y) of vertices of ∆,
there is a unique trail x −→ . . . −→ y of length at most 2.
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Moore digraphs of diameter 2

Theorem (Bosák, 1979)

Let ∆ be a Moore digraph of diameter 2 with degrees (r , z).
Then the number n of vertices of ∆ equals

n = (r + z)2 + z + 1

and one of the following cases occurs:

• z = 1, r = 0 (a directed 3-cycle);

• z = 0, r = 2 (an undirected 5-cycle);

• there exists an odd positive integer c such that

c divides (4z − 3)(4z + 5) and r = 1
4(c

2 + 3).

Admissible values of r : 1, 3, 7, 13, 21, . . .,
For given r : infinitely many admissible values of z .
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Known Moore digraphs

• r = 1: only Moore digraphs are the Kautz digraphs.
(Gimbert, 2001)

They are the line graphs of complete digraphs.

• r > 1: only three examples are known:
• the Bosák graph on 18 vertices, (r , z) = (3, 1);
• two Jørgensen graphs on 108 vertices, (r , z) = (3, 7).

All three examples with r > 1 are Cayley digraphs.

S3 × C3 or (C3 × C3)⋊ C2.
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Cayley digraphs

Given a finite group G and a subset S ⊆ G \ {1} s.t.

S = S1 ∪ S2, S1 = S−1
1 , and S2 ∩ S−1

2 = ∅,

the Cayley (di-)graph Cay(G ,S) has:
• the vertex set G ;
• the arcs g −→ gs for every g ∈ G , s ∈ S ;
• the undirected degree r = |S1|;
• the directed degree z = |S2|.

Since Moore digraphs of diameter 2 are defined by the ’unique trail’ property:

for every pair (x , y) of vertices of ∆,
there is a unique trail x −→ . . . −→ y of length at most 2,

it follows that if ∆ = Cay(G ,S) is Moore, then:
• for g ∈ S , ̸ ∃ a pair (s1, s2) ∈ S × S such that g = s1s2;
• for g ̸∈ S , ∃! a pair (s1, s2) ∈ S × S such that g = s1s2.
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Moore Cayley digraphs on at most 486 vertices, 1

Feasible parameters:
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Moore Cayley digraphs on at most 486 vertices, 2
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The adjacency algebra of a Moore digraph ∆

The adjacency matrix A = A(∆) ∈ RV×V :

(A)x ,y :=

{
1 if x → y ,

0 otherwise.

Recall that for every pair (x , y) of vertices of ∆, there is a unique trail x −→ . . . −→ y of
length ≤ 2. Then:

A2 = (r − 1)I + J− A, and JA = AJ = kJ,

so A is diagonalizable with 3 eigenspaces with eigenvalues k = r + z , and λ1, λ2 ∈ Z, which
can be computed from r and z .

The projection matrix Eλi
onto the (right) λi -eigenspace:

Eλi
∈ ⟨A, I, J⟩.

Duval (1988); Jørgensen (2003); Godsil, Hobart, Martin (2007)
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The Higman-Benson observation

• Let G ≤ Aut(∆);
• g ∈ G : g 7→ Pg , a permutation matrix;

• PgA = APg , and since Eλi
∈ ⟨A, I, J⟩ ⇒ PgEλi

= Eλi
Pg ;

• By using this, one can show that

Tr(Eλi
Pg ) is an algebraic integer;

• On the other hand, again, since Eλi
∈ ⟨A, I, J⟩, we have:

Tr(Eλi
Pg ) = αiTr(APg ) + βiTr(IPg ) + γiTr(JPg ) ∈ Z

↓ ↓ ↓
∈ Q, but often ̸∈ Z.

• Now:

Tr(IPg ) = #{v ∈ ∆ | v = vg} = #Fix(g),
Tr(APg ) = #{v ∈ ∆ | v −→ vg}.

• Higman: a degree 57 Moore graph is not transitive;
• Benson: automorphisms of finite GQs.
• De Winter, Kamischke, Wang: partial difference sets over Abelian groups.
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Application to Moore Cayley digraphs

• Let ∆ be a Moore Cayley digraph over G with degrees (r , z).

Recall: ∃ an odd positive c which divides (4z − 3)(4z + 5), and r = 1
4 (c

2 + 3).

• Then G ≤ Aut(∆) is a regular subgroup. Hence, for g ̸= 1:

Tr(IPg ) = #{v ∈ ∆ | v = vg} = #Fix(g) = 0.

• The Higman-Benson observation simplifies to:(
− 1

c
a(g) +

c2 − 2c + 4z + 5

4c

)
∈ Z (1)

for any non-identity automorphism g ∈ G , where

a(g) :=Tr(APg ) = #{v ∈ ∆ | v −→ vg}.
• Note that a(g) counts the number of arcs in the g -orbits that are (directed) cycles.

• For some |G | and |g |, Condition (1) implies that a(g) is “too large” so that it contradicts:

for every pair (x , y) of vertices of ∆,
there is a unique trail x −→ . . . −→ y of length at most 2.

14 / 18



Application to Moore Cayley digraphs

• Let ∆ be a Moore Cayley digraph over G with degrees (r , z).

Recall: ∃ an odd positive c which divides (4z − 3)(4z + 5), and r = 1
4 (c

2 + 3).

• Then G ≤ Aut(∆) is a regular subgroup. Hence, for g ̸= 1:

Tr(IPg ) = #{v ∈ ∆ | v = vg} = #Fix(g) = 0.

• The Higman-Benson observation simplifies to:(
− 1

c
a(g) +

c2 − 2c + 4z + 5

4c

)
∈ Z (1)

for any non-identity automorphism g ∈ G , where

a(g) :=Tr(APg ) = #{v ∈ ∆ | v −→ vg}.

• Note that a(g) counts the number of arcs in the g -orbits that are (directed) cycles.

• For some |G | and |g |, Condition (1) implies that a(g) is “too large” so that it contradicts:

for every pair (x , y) of vertices of ∆,
there is a unique trail x −→ . . . −→ y of length at most 2.

14 / 18



Application to Moore Cayley digraphs

• Let ∆ be a Moore Cayley digraph over G with degrees (r , z).

Recall: ∃ an odd positive c which divides (4z − 3)(4z + 5), and r = 1
4 (c

2 + 3).

• Then G ≤ Aut(∆) is a regular subgroup. Hence, for g ̸= 1:

Tr(IPg ) = #{v ∈ ∆ | v = vg} = #Fix(g) = 0.

• The Higman-Benson observation simplifies to:(
− 1

c
a(g) +

c2 − 2c + 4z + 5

4c

)
∈ Z (1)

for any non-identity automorphism g ∈ G , where

a(g) :=Tr(APg ) = #{v ∈ ∆ | v −→ vg}.
• Note that a(g) counts the number of arcs in the g -orbits that are (directed) cycles.

• For some |G | and |g |, Condition (1) implies that a(g) is “too large” so that it contradicts:

for every pair (x , y) of vertices of ∆,
there is a unique trail x −→ . . . −→ y of length at most 2.

14 / 18



Application to Moore Cayley digraphs

• Let ∆ be a Moore Cayley digraph over G with degrees (r , z).

Recall: ∃ an odd positive c which divides (4z − 3)(4z + 5), and r = 1
4 (c

2 + 3).

• Then G ≤ Aut(∆) is a regular subgroup. Hence, for g ̸= 1:

Tr(IPg ) = #{v ∈ ∆ | v = vg} = #Fix(g) = 0.

• The Higman-Benson observation simplifies to:(
− 1

c
a(g) +

c2 − 2c + 4z + 5

4c

)
∈ Z (1)

for any non-identity automorphism g ∈ G , where

a(g) :=Tr(APg ) = #{v ∈ ∆ | v −→ vg}.
• Note that a(g) counts the number of arcs in the g -orbits that are (directed) cycles.

• For some |G | and |g |, Condition (1) implies that a(g) is “too large” so that it contradicts:

for every pair (x , y) of vertices of ∆,
there is a unique trail x −→ . . . −→ y of length at most 2.

14 / 18



A few observations

Let ∆ be a Moore Cayley digraph over a group G of order n.
Let g ∈ G ≤ Aut(∆) be an automorphism of a prime order p.

• The number a(g) must be divisible by p.
• Because it counts the number of arcs in the orbits that are (directed) p-cycles.

• If h ∈ G , of prime order q ̸= p, commutes with g , then also q divides a(g).
• If there are arcs x −→ xg

i
and x −→ xg

j
then:

x

xg
i

xg
j

xg
i+j

which violates the ’unique trail’ property of ∆. Using this, we can show:

p−1∑
i=1

a(g i ) ≤ 2n.
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Example: n = 88, (r , z) = (3, 6)

Let n = |G | = 88 and g ∈ G of a prime order p.
• By Cauchy’s Lemma, we may assume p = 11.
• The Higman-Benson observation implies that

−a(g) + 8

3
∈ Z,

thus a(g) ≥ 11.

• Using the Sylow theorem, we can show that there exists an element of order 2 in CG (g),
thus a(g) ≥ 2 · 11.

• Therefore, a(g) ≥ 44.
• Now we get a contradiction with

p−1∑
i=1

a(g i ) ≤ 2n.

• There are no Moore Cayley digraphs on 88 vertices.
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Results

Although it does not cover all results by Erskine, the proof is computer-free.

Thank you!
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