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Sum-rank metric and the size of a sum-rank-metric code



SUM-RANK DISTANCE
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SUM-RANK DISTANCE
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SUM-RANK METRIC

In general, the sum-rank-metric space is
nxXm ng§Xm
Fgtm™ X X Fem™
with sum-rank distance between A := (Ay,..., A;) and
B:= (B]_,...,Bt):
t

srkd(A.B) = >_ rk(A; — B)).

Denoted by | Fg*™ |, where n = [ny,..., n;] and m = [mq,..., my].
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MOTIVATION FROM NETWORK CODING

o Network coding: transmitting messages vy, ..., v, € Fy’ over network N
from source S to terminals Ty, ..., Ty.
e The terminals demand all the messages.
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MOTIVATION FROM NETWORK CODING

o Network coding: transmitting messages vy, ..., v, € Fy’ over network N
from source S to terminals Ty,..., Ty.
e The terminals demand all the messages.
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MOTIVATION FROM NETWORK CODING

o Network coding: transmitting messages vy, ..., v, € Fy’ over network N
from source S to terminals Ty,..., Ty.
e The terminals demand all the messages.
Vi
T1
Vi
vi, W € Iqu
<—error propagation
V2

e When using rank-metric codes can help resolve the error propagation.
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MAXIMAL SIZE OF A SUM-RANK-METRIC CODE

A sum-rank-metric code C with minimum distance d is a
subset of ]F'C;X"‘ such that:

min srkd(A,B) = d.
A.BeC
NB! The code is non-linear in general.

Question: What is the maximal size of a
sum-rank-metric code with minimum distance d?
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BOUNDS FOR SUM-RANK-METRIC CODES

o Induced Singleton, induced Hamming, induced Plotkin, induced
Elias, Singleton, Sphere-Packing, Projective Sphere-Packing,
Total Distance (Byrne, Gluesing-Luerssen, Ravagnani,
2021): come from adaptation of classical coding arguments.
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BOUNDS FOR SUM-RANK-METRIC CODES

o Induced Singleton, induced Hamming, induced Plotkin, induced
Elias, Singleton, Sphere-Packing, Projective Sphere-Packing,
Total Distance (Byrne, Gluesing-Luerssen, Ravagnani,
2021): come from adaptation of classical coding arguments.

o The Ratio-type bound (Abiad, K, Ravagnani, 2024): a
spectral bound from the connection to the k-independence
number of the respective graph.

o The Delsarte's LP bound (Abiad, Gavrilyuk, K,
Ponomarenko, 2025): the new bound from constructing an
association scheme and applying Delsarte’s approach to it.
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OUTLINE

© SUM-RANK METRIC AND THE SIZE OF SUM-RANK-METRIC CODE
© SUM-RANK-METRIC GRAPH AND RATIO-TYPE BOUND
© DELSARTE’S LP APPROACH FOR SUM-RANK-METRIC CODES

@ CONCLUSION AND FUTURE RESEARCH



Sum-rank-metric graph and Ratio-type bound
joint work with Aida Abiad and Alberto Ravagnani (2024)



SUM-RANK-METRIC GRAPH

Sum-rank-metric graph I :==T(n,m,F;), n=[ny,..., ny,
m = [mq,...,m], with m; > n;and my > --- > m;:
o vertices of [ = t-tuples of matrices from ng"‘;

o A:=(Ay,...,A:) and B:= (By,..., B;) form an edge iff the
sum-rank distance is 1:

t
srkd(A,B) = > rk(A; — B;)) = 1.
i=1
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SUM-RANK-METRIC GRAPH, t =1

Sum-rank-metric graph

M:=r(2,2,F,):

V(') = matrices 2 x 2 over F,.

A~ Bifrk(A—B) =1,

If t =1 itis also a bilinear forms
graph.

(Byrne, Gluesing-Luerssen, Ravagnani, 2022)

Geodesic distance between A and B in ' = sum-rank distance srkd(A, B).
10 /37



SUM-RANK-METRIC GRAPH

Sum-rank-metric graph I :=[([2, 1], [2, 1], F>):
o vertices: (A1, Ay), Aj is size 2 X 2 over [y, A; € {0,1};
) edges: (Al,Az) ~ (Bl, BQ) if rk(A1 — Bl) + rk(A2 - 82) =1.

The graph is a Cartesian product of the first graph (2,2, F,) and
M(1,1,F,) = Ky, a graph of two adjacent vertices.
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k-INDEPENDENCE NUMBER

For a graph G, its k-independence number « is the size of the
largest set of vertices S such that distance between any u,v € S is

more than k:

ax = min distg(u, v) > k.
u,veS

It is easy to see that ag_1 of [(n,m,F,) =
= the maximal size of a code in ngm with minimum distance d.

Question: What is an upper bound on ay_1 of the sum-rank-metric
graph?
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RATIO BOUND ON g

Let Ay > --- > )\, be the eigenvalues of the adjacency matrix A of a graph G.

Ratio bound (Hoffman, 19747): For a regular graph G, we have

A\,
A — A

a; <n

For example, the eigenvalues of Petersen graph are
3,1,1,1,1,1,-2,-2, -2, 2.

Then the Ratio bound is a; < 10 - ﬁ =4, and it is tight.
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EIGENVALUE BOUND ON ayg_;

Let \; > --- > \, be the eigenvalues of the adjacency matrix A of a graph G.

The following result generalizes the Hoffman's bound:

Ratio-type bound (Abiad, Coutinho, Fiol, 2019): For a regular graph G
and p € Ry_4[x] let W(p) be the largest element of the diagonal of p(A). Then

W(p) — min;cp,m p(N)
p(A1) — miniep,n p(A)

ag-1<n

How to define p so the right-hand expression is minimized?
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FioL’s LINEAR PROGRAM

The right-hand expression can be minimized e.g. by using the LP method (Fiol,
2020), if we have the eigenvalues of the sum-rank-metric graph:

minimize Y ;o m(6;)x

subject to f[f,...,0s] =0, s=d,....r
x >0, i=1,...r
Xo = 1

Y

where f[fy, ..., 0] is defined recursively: f[0;] = x; for i € {0,...,r}, and

L (/TN e
0, —0; ’

f[9,~,...,€j] j>l
In general, the method works for (d — 1)-walk-regular graphs. All
sum-rank-metric graphs are walk-regular (Abiad, K, Ravagnani, 2024).
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CONNECTION TO BILINEAR FORMS GRAPHS

Letn={[ny,....n:], m=[my,..., my].

(Abiad, K, Ravagnani, 2024) The sum-rank-metric graph ['(n,m, F,) is the
Cartesian product of graphs I'(n;, m;,F,) for i =1,...,t.

The graph I'(n;, m;,F,) is a bilinear forms graph
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CONNECTION TO BILINEAR FORMS GRAPHS

Bilinear forms graph '(2,2,F;), vertices are 2 x 2 matrices over F:

16 /37



CONNECTION TO BILINEAR FORMS GRAPHS
Sum-rank-metric graph I'([2,1], [2, 1], F2):
e vertices: (A1, Ay), Ay is 2 X 2 matrix over Fa, A, € {0,1} (1 x 1 matrix);
o edges: (Al, A2) ~ (By, By) if rk(A1 — By) + rk(A; — 82) =1

N 43 Al
““Z‘v’ ;. gg&

\ S ()
/ “ A,“‘
7 ’/,§,;:" ,,_
e 2
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CONNECTION TO BILINEAR FORMS GRAPHS

Letn={[ny,....n:], m=[my,..., my].

(Abiad, K, Ravagnani, 2024) The sum-rank-metric graph ['(n,m, F,) is the

Cartesian product of graphs I'(n;, m;,F,) for i =1,...,t.

The graph I'(n;, m;,F,) is a bilinear forms graph, with eigenvalues given by
= _ 1\ (g™ — /) — ¢ + 1

(9 " —d)—d+1 .

0, =
J q_]- ’

..o, N

The eigenvalues of the Cartesian product are all possible sums of eigenvalues of
the product's factors.
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CONNECTION TO BILINEAR FORMS GRAPHS

Letn={[ny,....n:], m=[my,..., my].

(Abiad, K, Ravagnani, 2024) The sum-rank-metric graph ['(n,m, F,) is the
Cartesian product of graphs I'(n;, m;,F,) for i =1,...,t.

The eigenvalues of the Cartesian product are all possible sums of eigenvalues of
the product's factors:

The graph I'(n,m,[F,) has the eigenvalues (i; = 0,. .., n; for each j € [t])

t . . .
(" -1)(@" —-q") - q"+1
)\(ilv“'ait) = Z q . 1 .

J=1

= From the full list of eigenvalues we can calculate the Ratio-type bound either
from an explicit formula (d = 3,4) or using the LP (d > 5).
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Delsarte’'s LP bound

joint work with Aida Abiad, Alexander L. Gavrilyuk,
and Ilia Ponomarenko (2025)



LITERATURE OVERVIEW

The Delsarte’s LP bound is an efficient tool that has been used to
estimate the maximal size of the code in multiple metrics:

o Hamming codes (Delsarte, 1973);

o rank-metric codes (Delsarte, 1978);

o bilinear alternating forms (Delsarte, Goethals, 1975);
o Lee codes (Astola, 1982);

o permutation codes (Dukes, lhringer, Lindzey, 2020);

e sum-rank-metric codes?
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ASSOCIATION SCHEMES

A = (X,R) is a symmetric association scheme on set X with
relations R = {Ry, ..., R,} that form a partition of X x X such
that:

@ Ry consists of all (x, x) for x € X.
@ (x,y) € Ry means (y,x) € R; for any R;, x, y.
@ If (x,y) € Ry, then the number of z such that (x, z) € R; and

(v,z) € R; is a constant pffj that does not depend on the choice
of x, y.
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ASSOCIATION SCHEME OF A DISTANCE-REGULAR GRAPH

If G is a distance-regular graph, then (V(G),R) is a symmetric
association scheme if we define relations by:

(x.y) € Ri & do(x,y) = 1.

A well-known example of distance-regular graphs are Hamming
graphs.
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EXAMPLE: HAMMING SCHEME

Vertices at distance 0:

110 111

100

101

010 011

000 001

000
001
010
011
100
101
110
111

000 001 010 011 100 101 110 111

Ro
Ro
Ro
Ro
Ro

Ro
Ro

Ro
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EXAMPLE: HAMMING SCHEME

Vertices at distance 1:

110 1 000 001 010 011 100 101 110 111
100 / 000 Ry, R R R;
101 001 R, Rq Ry R,
010 R, Ro R R,
011 R, R, Re R,
100 R, R, R, R,
010 011 101 R, R, R R,
110 R, R, Ro R,
000 001 111 R, R. R, Ro
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EXAMPLE: HAMMING SCHEME

Vertices at distance 2:

000 Ro, Ri Ri R Ri R» R»
01 R, Ry, R» Ri R» Ri R,
010 R, R, Ro Ri R» Ri R,
011 R, R, R, R R, R, Ry
100 R1 R2 R2 Ro R1 R1 R2
101 R, Ry R, Ri Ry R» Ri
110 R, Ri R, Ri R, Ry R:
111 R, Ry Ri R, Ri R Rp
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EXAMPLE: HAMMING SCHEME

Vertices at distance 3:

111 000 001 010 011 100 101 110 111

21 /37



BILINEAR FORMS SCHEMES

It is well-known that bilinear forms graphs are distance-regular.

A symmetric association scheme defined
on a bilinear forms graph is called a
bilinear forms scheme.
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THE Q-EIGENMATRIX IN A BILINEAR FORMS GRAPH

By considering the Bose-Mesner algebra, one can derive the Q-eigenmatrix
(the second eigenmatrix) of a bilinear forms scheme.
Given eigenvalues 6, ..., 0, and intersection numbers a;, b;, ¢;:

Qs = pi(0) = Cl ((0i — aj-1)pi-1(0i) — bj—2p;—2(6)),  po(6i) =1, p1(0:) = 0;.

J
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THE Q-EIGENMATRIX IN A BILINEAR FORMS GRAPH

By considering the Bose-Mesner algebra, one can derive the Q-eigenmatrix
(the second eigenmatrix) of a bilinear forms scheme.
Given eigenvalues 6, ..., 0, and intersection numbers a;, b;, ¢;:

Qs = pi(0) = Cl ((0i — aj-1)pi-1(0i) — bj—2p;—2(6)),  po(6i) =1, p1(0:) = 0;.

d]

The values 0;, a;, b;, ¢c; are all expressed in the parameters of the graph:

0; = ( ) ) ) Ci=P1i1= Q,
g—1 q—1
) 2i( ym—i __ 1 n—i __ 1 )
bi=p1iy1 = RE Na ), aj = py; = bo— bi —c;.

g—1
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DELSARTE’S LP BOUND

Let A= (X; Ro,...,R,) be an association scheme, and let A C X. We define
(axM)NR| .

the distribution vector a of A with entries a; = N ,i=0,...,n.
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the distribution vector a of A with entries a; = N ,i=0,...,n.
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DELSARTE’S LP BOUND

Let A= (X; Ro,...,R,) be an association scheme, and let A C X. We define
(A x A)N Ry o )
N , ..., n.

the distribution vector a of A with entries a; =

(Delsarte, 1973) For the Q-eigenmatrix of A, we have aQ > 0 for any A.

This gives rise to the Delsarte's LP bound on the size of the code with
minimum distance d:

maximize Y ., ai(=|A|)
subject to a@Q >0,

a>0,
2021,
a; =0, 0<i<d.
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DELSARTE’S LP BOUND FOR DRG

Delsarte’s LP bound, 1973:

maximize ),
subject to aQ@
a>

( |A])

2
0,

1,
0, 0<i<d.

When an association scheme is defined, one can use Delsarte’s LP to upper
bound the size of the code with given minimum distance.

= We can use Delsarte’s LP bound if the graph is distance-regular (e.g. bilinear
forms schemes).

Is sum-rank-metric graph distance-regular?
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SUM-RANK-METRIC SCHEMES?

Is sum-rank-metric graph distance-regular?

(Abiad, K, Ravagnani, 2024) A sum-rank-graph on t > 2 blocks is
distance-regular if and only if all of the blocks are of size 1 x m for some positive
integer m.

Hence sum-rank-graph is not distance-regular in general, unlike
Hamming or rank-metric graphs.
1 The main challenge in applying Delsarte’'s approach in sum-rank!

But can we still apply Delsarte’s LP bound? Distance-regularity is
sufficient, but not necessary.
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DIRECT PRODUCT OF ASSOCIATION SCHEMES

Given two association schemes
.Al = (X, {50, . SDl}) and .AQ = (Y, {To, RN TD2}),

the direct product A; ® A, is the association scheme (X x Y, R) such that:
o R ={Roo,Ro1;---,Rop,, Rig,---sRipss -5 Rpyos--- s Rpypy }i
o If (x1,x) € S; and (y1,y2) € T;, then ((x1, 1), (x2,¥2)) € Rij.

The Q-eigenmatrix of A; ® A, is the Kronecker product of the Q-eigenmatrices
of A; and As,.

In the direct product of bilinear forms schemes for graphs I'; and ',

((A1,A2),(B1, By)) € R j means A; and A; are at (sum-rank) distance /, while
B; and B, are at distance j.
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DIRECT PRODUCT OF BILINEAR FORMS SCHEMES

IR0

ol T S

S

Q ‘W“!’ Y’M' - q
P A 17 IAIX
Q0 ’ém('l}" AT o I’A!’.-\\Vh.z%’ig'ﬁ')’

o

X 5 N NS AT 6{’ “"

X S S S

A T ST
L Lol Y
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EXAMPLE: THE HAMMING CUBE
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EXAMPLE: THE HAMMING CUBE

10 11
° ®
00 01 10 11
00 Ropo Rop Rio Ri
01 Rop Roo Rii Rip
10 Rig Rii Roo Rox
11 Rip Rip Roi Rop
° ®
00 01
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EXAMPLE: THE HAMMING CUBE

100

000

110

111

010

101

011

001

000
001
010
011
100
101
110
111

000
Ro.0,0
Roo,1

001
Ro.0,1

Ro.0.0
Roi1

010

011

100

101
Rio1

Rio00
Riia

110
Rii0
Riia

111
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EXAMPLE: THE HAMMING CUBE

The Hamming scheme based on distances in the graph:

110 111 000 001 010 011 100 101 110 111
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SUM-RANK-METRIC SCHEME?

[Sum—rank—metric graph I j <:| [Sum—rank—metric scheme? ]

a 'good’ scheme for 7 T

Cartesian product direct product

C biLinear[form.L grap[hs] :> ( billear lrmjscherIes )

bilinear forms graphs
are distance-regular

30 /37



FUSION IN ASSOCIATION SCHEMES

For two association schemes A; and A, on the same point set X, we say A; is a
fusion of A, and write A; < A, if every relation of A; is a union of some
relations of A,.

31/37



WEISFEILER-LEMAN CLOSURE

Let G be a graph with the edge set E£(G).

A Weisfeiler-Leman closure WL(G) is an association scheme on vertices of G
such that:
e there are relations, w.l.o.g. Ry, R», ..., Ry, such that

R1UR2U"'UR52E(G);
e it is the smallest such association scheme (in terms of fusion <).

WL(G) is a 'good’ association scheme to run Delsarte LP on (smaller size of Q,
the distances between vertices are taken into account).

How does the direct product of bilinear forms schemes compare to WL(G)?
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A SCHEME FOR THE CARTESIAN PRODUCT

(Abiad, Gavrilyuk, K, Ponomarenko, 2025) If the graph G is a
sum-rank-metric graph which is a Cartesian product of bilinear forms graphs
Gy, ..., G;, then WL(G) is a fusion of the direct product of bilinear forms
schemes corresponding to Gy, ..., G;.

= We can define an association scheme for a sum-rank-metric graph G, possibly
larger than WL(G), and apply Delsarte’s LP bound to it.
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BOUND COMPARISON: COMPUTATIONAL RESULTS

bold = best performing bound; underlined = RT-bound outperforms coding bounds.

For |V| <1024 and t < 7 Delsarte’'s LP is never strictly outperformed.

t g n m d V] Ratio-type  Delsarte LP | iS; H; iE; | S;, SPy; PSPy
2 2 2,2 2, 2] 3 | 256 i1 10 6 19 34 | 16 13 3
3 2 [2,2,1] 2,2,1] 3| s12 25 20 64 64 151 | 32 25 25
3 2 [2,2,1] 2,2,1] 4 | 512 10 6 6 64 27 | 8 25 18
3 2 [2,2,1] 2,2,2] 3 | 1024 38 34 64 64 151 | 64 46 46
3 2 [2,2,1] 2,2,2] 4 | 1024 15 8 6 64 27 | 16 46 36
4 2 [2,1,1,1] 2,2,2,1] 3| s12 28 24 64 64 151 | 32 30 30
4 2 [2,1,1,1] 2,2,2,1] 4 | 512 11 6 16 64 27 | 8 30 32
4 2 [2,1,1,1] 2,2,2,2] 3 | 1024 44 42 64 64 151 | 64 53 53
4 2 [2,1,1,1] 2,2,2,2] 4 | 1024 18 10 16 64 27 | 16 53 64
4 2 [2,2,1,1] 2,2,1,1] 3 | 1024 46 40 256 215 529 | 64 48 48
4 2 [2,2,1,1] 2,2,1,1] 4 | 1024 19 12 64 215 119 | 16 48 36
5 2 [2,1,1,1,1] 2,1,1,1,1] 5 | 256 5 2 16 26 19 | 4 4 3
5 2 [2,1,1,1,1] 3,1,1,1,1] 5 | 1024 8 2 64 336 240 | 4 6 3
5 2 2,1,1,1,1] 2,2,2,1,1] 3 1024 56 49 256 215 529 64 56 56
5 2 [2,1,1,1,1] 2,2,2,1,1] 4 | 1024 22 13 64 215 119 | 16 56 64
6 2 [2,1,1,1,1,1] [2,1,1,1,1,1] 4 | 512 16 12 256 512 407 | 16 34 32
6 2 [2,1,1,1,1,1] [2,1,1,1,1,1] 5 | 512 8 4 64 77 99 | 8 6 5
6 2 [2,1,1,1,1,1] [2,2,1,1,1,1] 5 | 1024 11 6 64 77 99 | 8 9 8
6 2 [2,1,1,1,1,1] [2,2,1,1,1,1] 6 | 1024 7 2 6 77 14 | 4 9 3

(Schrijver, 1979) The Delsarte’s LP does not perform worse than Lovasz 6y bound.
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Conclusion and future research



CONCLUSION AND OPEN PROBLEMS

7 What are the codes that optimize the new bound? Recently there
was progress in addressing the optimality of Delsarte’'s LP for
Hamming and rank metrics, but not sum-rank.

36 /37



CONCLUSION AND OPEN PROBLEMS

7 What are the codes that optimize the new bound? Recently there
was progress in addressing the optimality of Delsarte’'s LP for
Hamming and rank metrics, but not sum-rank.

7 Can the Delsarte's LP approach be applied to other metrics? (In
case the respective graph is not distance-regular.)
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Thank you for your attention!

The talk is based on:

Abiad, A., Khramova, A.P., Ravagnani A. Eigenvalue bounds for sum-rank-metric codes. IEEE
Transactions on Information Theory (2024)
https://doi.org/10.1109/TIT.2023.3339808

Abiad, A., Gavrilyuk, A.L., Khramova, A.P., Ponomarenko |. The linear programming bound for
sum-rank-metric codes. |EEE Transactions on Information Theory (2025)

https://doi.org/10.1109/TIT.2024.3488902

e 8 papers in graph, coding, group, and scheduling theory

* 28+1 conferences, seminars, workshops
¢ In the market for a postdoc from Nov 2025 ;)



https://doi.org/10.1109/TIT.2023.3339808
https://doi.org/10.1109/TIT.2024.3488902

APPENDIX: WL(G) EQUALITY

If G is a Cartesian product G;[J---[G;, and A is the direct product of bilinear
forms schemes, then WL(G) < A.
When do we have WL(G) = A7 A sufficient condition:

(Abiad, Garvilyuk, K, Ponomarenko, 2025) Let G; and G, be graphs with
precisely s; and s, pairwise distinct eigenvalues 0;; and 6y, respectively, j € [s1],
k € [s;]. Then

WL (G,OG;) = WL(G;) @ WL(Gy)

if the set S := {01; + 6ok | j € [s1], k € [s2]} is of cardinality s;5;.

Checked computationally, this condition does not often hold for sum-rank-metric
graphs. On the other hand, after checking Bannai-Muzychuk criterion for small
graphs we found no counterexamples to WL(G) = A when all blocks of the
sum-rank-metric graph are of different sizes.
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