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Introduction

A graph G is a pair of sets (V,E), where V is a non-empty set of elements
called vertices, and E is a set of unordered pairs of distinct vertices called
edges.

Example

a b d

c

1 2

3 4

Degree of a vertex v ∈ V deg(v) = |{u ∈ V | {u, v} ∈ E}|.

Left : deg(a) = deg(b) = deg(c) = 2, deg(d) = 0.
Right : deg(1) = deg(2) = 3, deg(3) = deg(4) = 2.
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Introduction

We can capture a graph G = (V,E) on n vertices by a n× n matrix
A(G) = (aij), where aij = 1 if {i, j} ∈ E, else aij = 0. This matrix is
called adjacency matrix of G.

Example



0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

 {3, 0, 0, 0, 0,−3}

The largest eigenvalue ρ(G) of A(G) is called the spectral radius or index
of G.
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Introduction

In 1986, Brualdi and Solheid posed the following problem.

Let Un be the set of all {0, 1} matrices and let P ⊂ Un. Determine

ρmin = min{ρ(A) : A ∈ P}, and

ρmax = max{ρ(A) : A ∈ P}.

ρ(A) denotes the largest eigenvalue of A.
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Introduction

Set of all simple connected graphs on n vertices with fixed-

#edges e

#edges e and minimum degree δ

diameter D

chromatic number χ

maximum degree ∆

independence number α

dissociation number τ

matching number

number of cut vertices

forbidden subgraph
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Part I: fixing order n and size e

Vishal Gupta (Univ. of Delaware) Minimum Spectral Radius AGT Seminar 6 / 35



Problem Statement

∆(G) : maximum degree in G.

δ(G) : minimum degree in G.

Gn,e : the set of all simple connected graphs on n vertices with e edges.

Yuan Hong (1993)

Problem 3: If G ∈ Gn,e has the minimum spectral radius among all graphs
in Gn,e, then is it true that ∆(G)− δ(G) ≤ 1?

We call such graphs spectral minimizers.
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First observation

Courant-Fischer Theorem

If G is a graph on n vertices, then

ρ(G) = max
u∈Rn,u ̸=0

uTAu

uTu

If G has n vertices and e edges, then

ρ(G) ≥
−→
1 TA

−→
1

−→
1 T−→1

=
2e

n
= the average degree of G.

Equality happens if and only if n|2e and G is a 2e
n -regular graph.
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First observation

The case 2e/n ∈ N
If 2e/n = k ∈ N, then a k-regular graph G is a spectral minimizer in Gn,e;
∆(G)− δ(G) = 0.

Our work deals with the cases when n ̸ |2e. We measure the irregularity of
a graph by

Ir(G) = ∆(G)− δ(G).

When Ir(G) = 1, ∆(G) = ⌈2en ⌉ and δ(G) = ⌊2en ⌋.
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Known instances : e = n− 1 (trees)

Collatz and Sinogowitz (1957), Lovász and Pelikan (1973)

If G is a tree of order n, then

2 cos(π/(n+ 1)) = ρ(Pn) ≤ ρ(G) ≤ ρ(K1,n−1) =
√
n− 1.

The lower bound occurs only when G is the path Pn and the upper bound
occurs only when G is the star K1,n−1.

=⇒ Among all simple connected graphs Pn has the smallest spectral
radius.

Figure: Path P5 (left), Star K1,4 (right).
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e = n and e = n+ 1 (bicyclic graphs)

For e = n, by our previous observation for cases when n|2e, the cycle
graph Cn is the spectral minimizer in Gn,n.

Simić (1989)

Among bicyclic graphs, B(k, n+ 1− 2k, k) and P (k, n+ 1− 2k, k), where
k = ⌈n3 ⌉, are the spectral minimizers.

q

p r

q

p

r

Figure: B(p, q, r) (left) and P (p, q, r) (right).
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k-cyclic graphs

When e = n+ 2 (tricyclic graphs) or when e = n+ k (k-cyclic graphs), for
k some constant - still open.

n-1 n n+1 n+2

(
n
2

)
n(n−2)

2
n(n−3)

2
− 1

Figure: Range of e.
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Our results

Dense Graphs

e ≥ n(n−2)
2

e =
(
n−1
2

)(
n−1
2

)
< e ≤ n(n−2)

2

e = n(n−3)
2 − 1

Sporadic Cases

e =
(
n−1
2

) (
n+1
2

)
e = n2

4 − 1

e = n2

3 − 1
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Join of graphs

Join of two graphs

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Their join
G = G1 ∨G2 = (V,E), where V = V1 ∪ V2 and
E = E1 ∪ E2 ∪ {{x, y} : x ∈ V1, y ∈ V2}.

∨

2K1 C4 2K1 ∨ C4

=
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The case e ≥ n(n−2)
2

The Cocktail Party graph CP2m is the complement of a perfect matching
of K2m.

Proposition (Cioaba-Gupta-Marques, 2024)

For n ∈ N, let 1 ≤ p ≤ ⌊n2 ⌋ and e =
(
n
2

)
− p. Then

ρmin(n, e) =
n− 3 +

√
(n+ 1)2 − 8p

2
.

For p < n
2 , the spectral minimizer is Kn−2p ∨ CP2p and for p = n

2 , the
spectral minimizer is the Cocktail Party graph CPn.
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The case e ≥ n(n−2)
2

Proof.

For e =
(
n
2

)
− 2p, we observe any graph G has at least n− 2p vertices of

degree n− 1.
G = Kn−2p ∨H, where |V (H)| = 2p and |E(H)| = 2p(p− 1).

Q =

[
n− 2p− 1 2p
n− 2p 2(p− 1)

]
.

PQ(x) = x2 − x(n− 3) + 2(p− n+ 2),

ρ(Q) =
n− 3 +

√
(n+ 1)2 − 8p

2
.

By eigenvalue interlacing it follows that ρ(G) ≥ n−3+
√

(n+1)2−8p

2 and
equality happens if and only if H is a regular graph, that is, the Cocktail
Party graph on 2p vertices.

Vishal Gupta (Univ. of Delaware) Minimum Spectral Radius AGT Seminar 16 / 35



The case e ≥ n(n−2)
2

Proof.

For e =
(
n
2

)
− 2p, we observe any graph G has at least n− 2p vertices of

degree n− 1.
G = Kn−2p ∨H, where |V (H)| = 2p and |E(H)| = 2p(p− 1).

Q =

[
n− 2p− 1 2p
n− 2p 2(p− 1)

]
.

PQ(x) = x2 − x(n− 3) + 2(p− n+ 2),

ρ(Q) =
n− 3 +

√
(n+ 1)2 − 8p

2
.

By eigenvalue interlacing it follows that ρ(G) ≥ n−3+
√

(n+1)2−8p

2 and
equality happens if and only if H is a regular graph, that is, the Cocktail
Party graph on 2p vertices.

Vishal Gupta (Univ. of Delaware) Minimum Spectral Radius AGT Seminar 16 / 35



The case n(n−3)
2 ≤ e ≤ n(n−2)

2

n-1 n+1 n+2

(
n
2

)
n(n−2)

2
n(n−3)

2

For e =
(
n
2

)
− (n− 1) =

(
n−1
2

)
, Jack Koolen asked whether the join of the

complement of a 2-regular graph on n− 2 vertices and two isolated
vertices is a minimizer graph.

Theorem (Cioaba-Gupta-Marques, 2024)

For e =
(
n−1
2

)
, a spectral minimizer is of the form G3

n−2 ∨ (2K1).

Gr
n denotes a n− r regular graph on n vertices.
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When n(n−3)
2 ≤ e ≤ n(n−2)

2

Theorem (Cioaba-Gupta-Marques, 2024)

n e spectral minimizer

n ≥ 5 odd e =
(
n
2

)
− n+1

2 G2
n−3 ∨ (P2 ∪K1)

n ≥ 6 even e =
(
n
2

)
− n+2

2 G2
n−4 ∨ P4

n ≥ 5 is odd e =
(
n
2

)
− (n+3

2 + p),
1 ≤ p ≤ n−3

2

G2
n−2(p+1)+1∨G3

2(p+1)−1

n ≥ 6 is even e =
(
n
2

)
− (n+2

2 + p),
1 ≤ p ≤ n−4

2

G2
n−2(p+1) ∨G3

2(p+1)
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The case e =
(
n−1
2

)
− 2

Theorem (Cioaba-Gupta-Marques, 2024)

For n ≥ 6 and e =
(
n−1
2

)
− 2, G1 ∨G3

n−6 is a spectral minimizer, where
G1 is any of the graphs in Figure below.

v2

v1

v4

v3

v6

v5

v2

v1

v4

v3

v6

v5

Figure: Minimizers on 6 vertices and 8 edges.
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Sporadic cases

When e = dn
2 − 1, for d ∈ {2, n2 ,

2n
3 , n− 3, n− 2, n− 1}, a spectral

minimizer graph is a d-regular graph minus an edge. We believe the same
is true for any value of d. We note that it is not necessarily true that when
e = dn

2 + 1 for some 2 ≤ d ≤ n− 2, a minimizer is obtained from a
d-regular graph by adding an edge.

b c

a

d e f

g

d

f g

ba

c e

Figure: Bicyclic spectral minimizers on 7 vertices.
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Open problems

Q1 Is it true that for e = dn
2 − 1, a spectral minimizer is always a

d-regular graph minus an edge?

Q2 Spectral minimizers for tricyclic, or k-cyclic graphs?

Q3 Is it true for the remaining cases of e that a spectral minimizer G
satisfies ∆(G)− δ(G) = 1?

Kristina Kostić, Zorica Draz̆ic, Aleksandar Savić, Zoran Stanić (2023)

Verified for some special e values and n ≤ 100 that ∆(Ĝ)− δ(Ĝ) ≤ 1.
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Part II: fixing the order n and the dissociation number τ

Definition

A set of vertices in a graph G that induces a subgraph of maximum degree
at most 1 is called a dissociation set. The maximum order of a
dissociation set is called the dissociation number τ(G) of G.

Example: τ(Kn) = 2, τ(Pn) = ⌈2n3 ⌉, or τ(Petersen graph) = 6.

(τ(G) ≥ max{independence number, twice the size of maximum induced
matching of G}).
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Probabilistic lower bound on τ

Proposition (Desai-Gupta)

Let G = (V,E) be a connected graph. Its dissociation number

τ(G) ≥ 2


∑

e={u,v}∈E

1

(du + dv)∆(G)− 1

 .

Proof: Pick a total ordering < of E uniformly at random. Define

I = {e ∈ E : e < e′ for all e′ ∈ D2(e)},

D2(e) = set of all edges at distance at most 2 from e.
Let Xe be the indicator random variable for e ∈ I and
X =

∑
e∈E Xe = |I|.
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Probabilistic lower bound on τ

E[X] ≥
∑

e={u,v}∈E

1

(du + dv)∆(G)− 1
.

Therefore, there exists a total ordering for which

|I| ≥


∑

e={u,v}∈E

1

(du + dv)∆(G)− 1

 .

Note that the subgraph induced by the vertices incident to edges in I has
maximum degree 1, therefore τ(G) ≥ 2|I|.

Example: τ(Pn) ≥ 2⌈n7 ⌉, τ(Kn) ≥ 2, τ(C3) ≥ 2, τ(C4) ≥ 2, τ(C8) ≥ 4.
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Spectral Maximizer in Gn,τ

Gn,τ : the set of all simple connected graphs on n vertices with dissociation
number τ .

For τ = 2 , the spectral maximizer in Gn,2 is Kn.

For τ = 3, the spectral maximizer is Kn−3 ∨ (K2 ∪K1).

Kn−3
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Spectral Maximizer in Gn,τ

For τ = k, the spectral maximizer is Kn−k ∨ (k2K2) if k is even and

Kn−k ∨ (k−1
2 K2 ∪K1) if k is odd.

Kn−k
k
2
K2 Kn−k( k−1

2
K2 ∪ K1)
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Spectral Minimizer in Gn,τ

Theorem (Huang-Liu-Zhang, 2024)

Let G be a spectral minimizer in Gn,τ .

1. If τ = 2, then G is a Cocktail Party graph CPn when n is even, and
odd Cocktail Party graph Ln = CPn−1 ∨K1 when n is odd.

2. If τ = ⌊2n3 ⌋, n ̸= 0( mod 3), then G is the cycle Cn.

3. If τ = ⌈2n3 ⌉, then G is the path Pn.

4. If τ = n− 1, then G ∼= S(r, ⌊(n− 1)/2⌋), where r = 0 if n is odd and
r = 1 if n is even.

5. If τ = n− 2, n ≥ 10, then G ∼= H(n).
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Spectral Minimizer in Gn,τ

S(r, t): attaching t edges to the center of the star graph of order r + 1.
H(n) : attaching edges to the end vertices of P4.
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Spectral Minimizer in Gn,τ

Theorem (Huang-Liu-Zhang, 2024)

If τ > ⌈2n3 ⌉, then a spectral minimizer is a tree.

Theorem (Desai-Gupta)

If G is an edge maximizer for CPk (or Lk = CPk−1 ∨K1, if k is odd),
then τ(G) = k − 1.

Definition

Turán number ex(n, F ) of a graph F is the maximum number of edges in
a graph on n vertices that does not contain F as a subgraph.

EX(n, F ) denotes the set of all edge maximizers that does not contain F
as a subgraph.
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Turán number for Odd Cocktail Party graphs

Let k ≥ 2 be an integer and let Gn,2k be the set of graphs we get after
adding maximum matching in each part of the complete multipartite graph
Kn1,...,nk

, where
∑k

i=1 ni = n and for all distinct i, j ∈ [k], |ni − nj | ≤ 2
(with |ni − nj | = 2 only when ni, nj are both even).

Theorem (Desai-Gupta)

For any order n, an edge maximizer for L2k+1 is a graph is the set Gn,2k.
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Edge minimizer in Gn,τ for even τ

For 4 ≤ τ ≤ ⌊2n3 ⌋ and τ = 2k, let Mn,2k be a set of graphs obtained by
adding k − 1 edges between k non-adjacent pairs- taking one pair from
each of the k parts of the complement of graphs in Gn,2k in which
|ni − nj | ≤ 1.

Theorem (Desai-Gupta)

Any graph in Mn,2k is an edge minimizer in Gn,2k of size
e =

(
n
2

)
− ex(n,L2k+1) + k − 1.
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Spectral minimizer in Gn,4

Theorem (Desai-Gupta)

The graphs we get by adding an edge between the two parts of the
complement of graphs in Gn,4 are the only edge minimizers in Gn,4.

Theorem (Desai-Gupta)

Mn,4 is the unique spectral minimizer in Gn,4.

n (mod 4) spectral minimizer

0 CPn
2
− CPn

2

1 CPn−1
2

− Ln+1
2

2 Ln
2
− Ln

2

3 CPn+1
2

− Ln−1
2
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Edge minimizer in Gn,τ for odd τ

Let Km(r1, r2, . . . , rm) denote the complete m-partite graph with parts of
sizes ri for 1 ≤ i ≤ m.

Theorem (Erdős-Simonovits, 1971)

Let r1, 1, 2 or 3, r1 ≤ r2,≤ . . . , rd+1 be given integers. If n is large
enough, then each extremal graph Gn in (n,Kd+1(r1, . . . , rd+1)) is a
graph product:

Gn =

d∨
i=1

Ni

where

1 ni = v(Ni) =
n
d + o(n);

2 N1 is an extremal graph for K2(r1, r2);

3 N2, . . . , Nd are extremal graphs for K2(1, r2).
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Edge minimizers in Gn,τ for odd τ

Theorem (Desai-Gupta)

Let r2 ≥ r21 − r1 + 2, r1 ≤ r2,≤ . . . , rd+1 be given integers. If n is large
enough, then each edge extremal graph Gn in EX(n,Kd+1(r1, . . . , rd+1))
is a graph product:

Gn =

d∨
i=1

Ni

where

1 ni = v(Ni) =
n
d + o(n);

2 N1 is an edge extremal graph for K2(r1, r2);

3 N2, . . . , Nd are edge extremal graphs for K2(1, r2).
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Questions

Q1 Is it true in general that a spectral minimizer in Gn,τ is also an edge
minimizer in Gn,τ?

For τ = 2, the cocktail party graph CPn or the odd cocktail party
graph Ln is an edge minimizer in Gn,2 depending on whether n is even
or odd, respectively.
For τ > ⌈ 2n

3 ⌉, an edge minimizer in Gn,τ is a tree.

Q2 What are the spectral minimizers in Gn,τ for the remaining cases of τ?

Thank you for your attention!
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