Minimum Spectral Radius

Vishal Gupta

(joint work with Sebastian Cioabă, Dheer Noal Desai, and Celso Marques) Department of Mathematical Sciences University of Delaware

AGT Seminar, University of Waterloo

ほん メラメ

4 0 8

A graph G is a pair of sets (V, E) , where V is a non-empty set of elements called vertices, and E is a set of unordered pairs of distinct vertices called edges.

Example

イロト イ部 トイヨ トイヨト

A graph G is a pair of sets (V, E) , where V is a non-empty set of elements called vertices, and E is a set of unordered pairs of distinct vertices called edges.

Example

Degree of a vertex $v \in V$ $\deg(v) = |\{u \in V \mid \{u, v\} \in E\}|$.

Left : $deg(a) = deg(b) = deg(c) = 2, deg(d) = 0.$ Right : $deg(1) = deg(2) = 3, deg(3) = deg(4) = 2.$

We can capture a graph $G = (V, E)$ on n vertices by a $n \times n$ matrix $A(G) = (a_{ij})$, where $a_{ij} = 1$ if $\{i, j\} \in E$, else $a_{ij} = 0$. This matrix is called *adjacency matrix of* G *.*

Example

The largest eigenvalue $\rho(G)$ of $A(G)$ is called the *spectral radius* or *index* of G .

In 1986, Brualdi and Solheid posed the following problem.

Let \mathcal{U}_n be the set of all $\{0,1\}$ matrices and let $\mathcal{P} \subset \mathbf{U}_n$. Determine

$$
\rho_{min} = \min\{\rho(A) : A \in \mathcal{P}\}, \text{ and}
$$

$$
\rho_{max} = \max\{\rho(A) : A \in \mathcal{P}\}.
$$

 $\rho(A)$ denotes the largest eigenvalue of A.

イロト イ押ト イヨト イヨト

Set of all simple connected graphs on n vertices with fixed-

- $\bullet \#$ edges e
- \bullet #edges e and minimum degree δ
- \bullet diameter D
- chromatic number χ
- maximum degree Δ
- independence number α
- **e** dissociation number τ
- **o** matching number
- **o** number of cut vertices
- **o** forbidden subgraph

э

Part I: fixing order n and size e

Discrete Mathematics 123 (1993) 65-74 North-Holland

Bounds of eigenvalues of graphs*

Yuan Hong

Department of Mathematics. East China Normal University. Shanghai 200062. China

Received 3 August 1990 Revised 27 November 1991

Abstract

The eigenvalues of a graph are the eigenvalues of its adjacency matrix. This paper presents an algebraically defined invariant system of a graph. We get some bounds of the eigenvalues of graphs and propose a few open problems.

Vishal Gupta (Univ. of Delaware) [Minimum Spectral Radius](#page-0-0) AGT Seminar 6/35

イロト イ押ト イヨト イヨト

65

э

 $\Delta(G)$: maximum degree in G.

 $\delta(G)$: minimum degree in G.

 $\mathcal{G}_{n,e}$: the set of all simple connected graphs on n vertices with e edges.

Yuan Hong (1993)

Problem 3: If $G \in \mathcal{G}_{n,e}$ has the minimum spectral radius among all graphs in $\mathcal{G}_{n,e}$, then is it true that $\Delta(G) - \delta(G) \leq 1$?

We call such graphs *spectral minimizers*.

First observation

Courant-Fischer Theorem

If G is a graph on n vertices, then

$$
\rho(G) = \max_{u \in \mathbb{R}^n, u \neq 0} \frac{u^T A u}{u^T u}
$$

If G has n vertices and e edges, then

$$
\rho(G) \geq \frac{\overrightarrow{\mathbf{1}}^T A \overrightarrow{\mathbf{1}}}{\overrightarrow{\mathbf{1}}^T \overrightarrow{\mathbf{1}}} = \frac{2e}{n} = \text{the average degree of } G.
$$

Equality happens if and only if $n|2e$ and G is a $\frac{2e}{n}$ -regular graph.

◆ロト → 何ト → ヨト → ヨト

The case $2e/n \in \mathbb{N}$

If $2e/n = k \in \mathbb{N}$, then a k-regular graph G is a spectral minimizer in $\mathcal{G}_{n,e}$; $\Delta(G) - \delta(G) = 0.$

Our work deals with the cases when $n \nvert 2e$. We measure the irregularity of a graph by

$$
Ir(G) = \Delta(G) - \delta(G).
$$

When $Ir(G) = 1$, $\Delta(G) = \lceil \frac{2e}{n} \rceil$ $\frac{2e}{n} \rceil$ and $\delta(G) = \lfloor \frac{2e}{n} \rfloor$ $\frac{2e}{n}$.

イロト イ押 トイヨ トイヨ トー ヨ

Known instances : $e = n - 1$ (trees)

Collatz and Sinogowitz (1957), Lovász and Pelikan (1973) If G is a tree of order n , then

$$
2\cos(\pi/(n+1)) = \rho(P_n) \le \rho(G) \le \rho(K_{1,n-1}) = \sqrt{n-1}.
$$

The lower bound occurs only when G is the path P_n and the upper bound occurs only when G is the star $K_{1,n-1}$.

イ何 ト イヨ ト イヨ トー

Known instances : $e = n - 1$ (trees)

Collatz and Sinogowitz (1957), Lovász and Pelikan (1973) If G is a tree of order n , then

$$
2\cos(\pi/(n+1)) = \rho(P_n) \le \rho(G) \le \rho(K_{1,n-1}) = \sqrt{n-1}.
$$

The lower bound occurs only when G is the path P_n and the upper bound occurs only when G is the star $K_{1,n-1}$.

 \implies Among all simple connected graphs P_n has the smallest spectral radius.

Figure: Path P_5 (left), Star $K_{1,4}$ (right).

$e = n$ and $e = n + 1$ (bicyclic graphs)

For $e = n$, by our previous observation for cases when $n|2e$, the cycle graph C_n is the spectral minimizer in $\mathcal{G}_{n,n}$.

Simić (1989)

Among bicyclic graphs, $B(k, n+1-2k, k)$ and $P(k, n+1-2k, k)$, where $k=\lceil \frac{n}{3} \rceil$ $\frac{n}{3}$], are the spectral minimizers.

 Ω

When $e = n + 2$ (tricyclic graphs) or when $e = n + k$ (*k*-cyclic graphs), for k some constant - still open.

KID KA KA SA KE KI E

Our results

Dense Graphs

\n- $$
e \geq \frac{n(n-2)}{2}
$$
\n- $e = \binom{n-1}{2}$
\n- $\binom{n-1}{2} < e \leq \frac{n(n-2)}{2}$
\n- $e = \frac{n(n-3)}{2} - 1$
\n

Sporadic Cases

\n- $$
e = \left(\frac{n-1}{2}\right) \left(\frac{n+1}{2}\right)
$$
\n- $e = \frac{n^2}{4} - 1$
\n- $e = \frac{n^2}{3} - 1$
\n

重

 299

イロト イ部 トイヨ トイヨト

Join of graphs

Join of two graphs

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. Their join $G = G_1 \vee G_2 = (V, E)$, where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2 \cup \{\{x, y\} : x \in V_1, y \in V_2\}.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

The case
$$
e \geq \frac{n(n-2)}{2}
$$

The Cocktail Party graph CP_{2m} is the complement of a perfect matching of K_{2m} .

Proposition (Cioaba-Gupta-Marques, 2024)

For $n \in \mathbb{N}$, let $1 \leq p \leq \lfloor \frac{n}{2} \rfloor$ and $e = \binom{n}{2}$ $\binom{n}{2} - p$. Then

$$
\rho_{min}(n,e) = \frac{n-3 + \sqrt{(n+1)^2 - 8p}}{2}.
$$

For $p < \frac{n}{2}$, the spectral minimizer is $K_{n-2p} \vee CP_{2p}$ and for $p = \frac{n}{2}$ $\frac{n}{2}$, the spectral minimizer is the Cocktail Party graph CP_n .

The case
$$
e \geq \frac{n(n-2)}{2}
$$

Proof.

For $e = \binom{n}{2}$ $\binom{n}{2}-2p$, we observe any graph G has at least $n-2p$ vertices of degree $n - 1$.

 $G = K_{n-2p} \vee H$, where $|V(H)| = 2p$ and $|E(H)| = 2p(p-1)$.

The case
$$
e \geq \frac{n(n-2)}{2}
$$

Proof.

For $e = \binom{n}{2}$ $\binom{n}{2}-2p$, we observe any graph G has at least $n-2p$ vertices of degree $n-1$.

 $G = K_{n-2p} \vee H$, where $|V(H)| = 2p$ and $|E(H)| = 2p(p-1)$.

$$
Q = \begin{bmatrix} n - 2p - 1 & 2p \\ n - 2p & 2(p - 1) \end{bmatrix}.
$$

$$
P_Q(x) = x^2 - x(n-3) + 2(p - n + 2),
$$

$$
\rho(Q) = \frac{n - 3 + \sqrt{(n+1)^2 - 8p}}{2}.
$$

By eigenvalue interlacing it follows that $\rho(G) \geq \frac{n-3+\sqrt{(n+1)^2-8p}}{2}$ $\frac{n+1}{2}$ and equality happens if and only if H is a regular graph, that is, the Cocktail Party graph on 2p vertices.

Vishal Gupta (Univ. of Delaware) [Minimum Spectral Radius](#page-0-0) AGT Seminar 16/35

The case
$$
\frac{n(n-3)}{2} \leq e \leq \frac{n(n-2)}{2}
$$

For $e = \binom{n}{2}$ $\binom{n}{2} - (n-1) = \binom{n-1}{2}$ $\binom{-1}{2}$, Jack Koolen asked whether the join of the complement of a 2-regular graph on $n-2$ vertices and two isolated vertices is a minimizer graph.

The case
$$
\frac{n(n-3)}{2} \leq e \leq \frac{n(n-2)}{2}
$$

For $e = \binom{n}{2}$ $\binom{n}{2} - (n-1) = \binom{n-1}{2}$ $\binom{-1}{2}$, Jack Koolen asked whether the join of the complement of a 2-regular graph on $n-2$ vertices and two isolated vertices is a minimizer graph.

Theorem (Cioaba-Gupta-Marques, 2024)

For $e = \binom{n-1}{2}$ $\binom{-1}{2}$, a spectral minimizer is of the form $G_{n-2}^3\vee(2K_1).$

 G_n^r denotes a $n-r$ regular graph on n vertices.

When
$$
\frac{n(n-3)}{2} \leq e \leq \frac{n(n-2)}{2}
$$

Theorem (Cioaba-Gupta-Marques, 2024)

重

 2990

イロメ イ部メ イヨメ イヨメー

The case
$$
e = \binom{n-1}{2} - 2
$$

Theorem (Cioaba-Gupta-Marques, 2024)

For $n\geq 6$ and $e = \binom{n-1}{2}$ $\binom{-1}{2}-2$, $G_1\vee G_{n-6}^3$ is a spectral minimizer, where G_1 is any of the graphs in Figure below.

Figure: Minimizers on 6 vertices and 8 edges.

Sporadic cases

When $e=\frac{dn}{2}-1$, for $d\in\{2,\frac{n}{2}\}$ $\frac{n}{2}, \frac{2n}{3}$ $\frac{2n}{3}, n-3, n-2, n-1\}$, a spectral minimizer graph is a d -regular graph minus an edge. We believe the same is true for any value of d . We note that it is not necessarily true that when $e=\frac{dn}{2}+1$ for some $2\leq d\leq n-2$, a minimizer is obtained from a d -regular graph by adding an edge.

Figure: Bicyclic spectral minimizers on 7 vertices.

Open problems

- Q1 Is it true that for $e = \frac{dn}{2} 1$, a spectral minimizer is always a d -regular graph minus an edge?
- $Q2$ Spectral minimizers for tricyclic, or k-cyclic graphs?
- $Q3$ Is it true for the remaining cases of e that a spectral minimizer G satisfies $\Delta(G) - \delta(G) = 1$?

Kristina Kostić, Zorica Dražic, Aleksandar Savić, Zoran Stanić (2023) Verified for some special e values and $n \leq 100$ that $\Delta(\hat{G}) - \delta(\hat{G}) \leq 1$.

Part II: fixing the order n and the dissociation number τ

Definition

A set of vertices in a graph G that induces a subgraph of maximum degree at most 1 is called a dissociation set. The maximum order of a dissociation set is called the dissociation number $\tau(G)$ of G.

Example: $\tau(K_n) = 2, \, \tau(P_n) = \lceil \frac{2n}{3} \rceil$ $\frac{2n}{3}$, or τ (Petersen graph) = 6.

 $(\tau(G) \ge \max\{\text{independence number}, \text{twice the size of maximum induced}\})$ matching of G . Ω

Vishal Gupta (Univ. of Delaware) [Minimum Spectral Radius](#page-0-0) AGT Seminar 22 / 35

Probabilistic lower bound on τ

Proposition (Desai-Gupta)

Let $G = (V, E)$ be a connected graph. Its dissociation number

$$
\tau(G) \ge 2 \left[\sum_{e = \{u, v\} \in E} \frac{1}{(d_u + d_v)\Delta(G) - 1} \right]
$$

 QQ

KID KA KA SA KE KI E

.

Probabilistic lower bound on τ

Proposition (Desai-Gupta)

Let $G = (V, E)$ be a connected graph. Its dissociation number

$$
\tau(G) \ge 2 \left[\sum_{e = \{u, v\} \in E} \frac{1}{(d_u + d_v)\Delta(G) - 1} \right]
$$

Proof: Pick a total ordering $<$ of E uniformly at random. Define

$$
I = \{ e \in E \ : \ e < e' \text{ for all } e' \in D_2(e) \},
$$

 $D_2(e)$ = set of all edges at distance at most 2 from e. Let X_e be the indicator random variable for $e \in I$ and $X = \sum_{e \in E} X_e = |I|.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

.

Probabilistic lower bound on τ

$$
\mathbf{E}[X] \ge \sum_{e=\{u,v\} \in E} \frac{1}{(d_u + d_v)\Delta(G) - 1}.
$$

Therefore, there exists a total ordering for which

$$
|I| \ge \left\lceil \sum_{e = \{u, v\} \in E} \frac{1}{(d_u + d_v)\Delta(G) - 1} \right\rceil
$$

Note that the subgraph induced by the vertices incident to edges in I has maximum degree 1, therefore $\tau(G) \geq 2|I|$.

Example: $\tau(P_n) \geq 2\lceil \frac{n}{7} \rceil$ $\frac{n}{7}, \tau(K_n) \geq 2, \tau(C_3) \geq 2, \tau(C_4) \geq 2, \tau(C_8) \geq 4.$

.

Spectral Maximizer in $\mathcal{G}_{n,\tau}$

 $\mathcal{G}_{n,\tau}$: the set of all simple connected graphs on n vertices with dissociation number τ .

- For $\tau = 2$, the spectral maximizer in $\mathcal{G}_{n,2}$ is K_n .
- For $\tau = 3$, the spectral maximizer is $K_{n-3} \vee (K_2 \cup K_1)$.

医前头骨的

For $\tau = k$, the spectral maximizer is $K_{n-k} \vee (\frac{k}{2}K_2)$ if k is even and $K_{n-k} \vee (\frac{k-1}{2} K_2 \cup K_1)$ if k is odd.

目

Theorem (Huang-Liu-Zhang, 2024)

Let G be a spectral minimizer in $\mathcal{G}_{n,\tau}$.

- 1. If $\tau = 2$, then G is a Cocktail Party graph CP_n when n is even, and odd Cocktail Party graph $L_n = CP_{n-1} \vee K_1$ when n is odd.
- 2. If $\tau = \frac{2n}{3}$ $\frac{2n}{3}$, $n \neq 0$ (mod 3), then G is the cycle C_n .

3. If
$$
\tau = \lceil \frac{2n}{3} \rceil
$$
, then *G* is the path P_n .

4. If $\tau = n - 1$, then $G \cong S(r, \lfloor (n-1)/2 \rfloor)$, where $r = 0$ if n is odd and $r = 1$ if n is even.

5. If
$$
\tau = n - 2, n \geq 10
$$
, then $G \cong H(n)$.

イロト イ押 トイヨ トイヨ トーヨ

Spectral Minimizer in $\mathcal{G}_{n,\tau}$

Figure 1: The graphs $S(r, t)$ and $H(n)$

 $S(r, t)$: attaching t edges to the center of the star graph of order $r + 1$. $H(n)$: attaching edges to the end vertices of P_4 .

イロト イ押ト イヨト イヨト

Spectral Minimizer in $\mathcal{G}_{n,\tau}$

Theorem (Huang-Liu-Zhang, 2024)

If $\tau > \lceil \frac{2n}{3} \rceil$ $\frac{2n}{3}$], then a spectral minimizer is a tree.

イロト イ押 トイヨ トイヨト

E

Spectral Minimizer in $\mathcal{G}_{n,\tau}$

Theorem (Huang-Liu-Zhang, 2024)

If $\tau > \lceil \frac{2n}{3} \rceil$ $\frac{2n}{3}$], then a spectral minimizer is a tree.

Theorem (Desai-Gupta)

If G is an edge maximizer for CP_k (or $L_k = CP_{k-1} \vee K_1$, if k is odd), then $\tau(\overline{G}) = k - 1$.

Definition

Turán number $ex(n, F)$ of a graph F is the maximum number of edges in a graph on n vertices that does not contain F as a subgraph.

 $EX(n, F)$ denotes the set of all edge maximizers that does not contain F as a subgraph.

Turán number for Odd Cocktail Party graphs

Let $k \geq 2$ be an integer and let $G_{n,2k}$ be the set of graphs we get after adding maximum matching in each part of the complete multipartite graph $K_{n_1,...,n_k}$, where $\sum_{i=1}^k n_i=n$ and for all distinct $i,j\in [k]$, $|n_i-n_j|\leq 2$ (with $|n_i - n_j| = 2$ only when n_i, n_j are both even).

Theorem (Desai-Gupta)

For any order n, an edge maximizer for L_{2k+1} is a graph is the set G_n , \mathfrak{p}_k .

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

For $4 \leq \tau \leq \lfloor \frac{2n}{3} \rfloor$ and $\tau = 2k$, let $M_{n,2k}$ be a set of graphs obtained by adding $k-1$ edges between k non-adjacent pairs- taking one pair from each of the k parts of the complement of graphs in $G_{n,2k}$ in which $|n_i - n_j| \leq 1$.

Theorem (Desai-Gupta)

Any graph in $M_{n,2k}$ is an edge minimizer in $\mathcal{G}_{n,2k}$ of size $e = \binom{n}{2}$ $\binom{n}{2} - ex(n, L_{2k+1}) + k - 1.$

イロト イ何 トイヨト イヨト ニヨー

Spectral minimizer in $\mathcal{G}_{n,4}$

Theorem (Desai-Gupta)

The graphs we get by adding an edge between the two parts of the complement of graphs in $G_{n,4}$ are the only edge minimizers in $\mathcal{G}_{n,4}$.

Theorem (Desai-Gupta)

 $M_{n,4}$ is the unique spectral minimizer in $\mathcal{G}_{n,4}$.

イロト イ部 トイヨ トイヨト

э

Edge minimizer in $\mathcal{G}_{n,\tau}$ for odd τ

Let $K_m(r_1, r_2, \ldots, r_m)$ denote the complete m-partite graph with parts of sizes r_i for $1 \le i \le m$.

Theorem (Erdős-Simonovits, 1971)

Let $r_1, 1, 2$ or 3, $r_1 \leq r_2, \leq \ldots, r_{d+1}$ be given integers. If n is large enough, then each extremal graph G_n in $(n, K_{d+1}(r_1, \ldots, r_{d+1}))$ is a graph product:

$$
G_n = \bigvee_{i=1}^d N_i
$$

where

$$
\bullet \quad n_i = v(N_i) = \frac{n}{d} + o(n);
$$

- \bullet N₁ is an extremal graph for $K_2(r_1, r_2)$;
- \bullet N_2, \ldots, N_d are extremal graphs for $K_2(1, r_2)$.

イロメ イ部メ イヨメ イヨメー

G.

Edge minimizers in $\mathcal{G}_{n,\tau}$ for odd τ

Theorem (Desai-Gupta)

Let $r_2 \geq r_1^2 - r_1 + 2$, $r_1 \leq r_2 \leq \ldots, r_{d+1}$ be given integers. If n is large enough, then each edge extremal graph G_n in $EX(n, K_{d+1}(r_1, \ldots, r_{d+1}))$ is a graph product:

$$
G_n = \bigvee_{i=1}^d N_i
$$

where

•
$$
n_i = v(N_i) = \frac{n}{d} + o(n);
$$

 $2 N_1$ is an edge extremal graph for $K_2(r_1, r_2)$;

 \bullet N_2, \ldots, N_d are edge extremal graphs for $K_2(1, r_2)$.

Questions

- Q1 Is it true in general that a spectral minimizer in $\mathcal{G}_{n,\tau}$ is also an edge minimizer in $\mathcal{G}_{n,\tau}$?
	- For $\tau = 2$, the cocktail party graph CP_n or the odd cocktail party graph L_n is an edge minimizer in $\mathcal{G}_{n,2}$ depending on whether n is even or odd, respectively.
	- For $\tau > \lceil \frac{2n}{3} \rceil$, an edge minimizer in $\mathcal{G}_{n,\tau}$ is a tree.

Q2 What are the spectral minimizers in $\mathcal{G}_{n,\tau}$ for the remaining cases of τ ?

Thank you for your attention!

イロト イ何 トイヨト イヨト ニヨー