
Period symmetries Martin recurrence Other invariants Prüfer proof
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Feynman period

Define the first Symanzik or dual Kirchhoff polynomial to be

ΨG =
X

T
sp.tr.

Y

e ̸∈T
ae

and the period to be

PG =

Z

ae≥0

Q|E |−1
e=1 dae

Ψ2
G |a|E |=1

It converges if G = K − v , K 4-regular, internally
6-edge-connected.
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Why should I care?

physics . . . number theory . . . combinatorics?
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Period symmetries

duality (fourier transform)

completion

twist

product
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Martin recurrence

Take K 2k-regular. A key recurrence, for v ∈ V (K )

F (K ) =
X

τ matching
of nbhd of v

F (Kτ ) (1)

where
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Martin invariance

The Martin recurrence came from Erik Panzer’s Martin invariant
M:

M satisfies (1)

(parenthetically)

This satisfies the period symmetries (recursive proofs).
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From Martin polynomial

The Martin invariant can be obtained from the Martin polynomial.
Define

m(K , x) =
X

P

(x − 2)|P|−1

summing over result of resolving every vertex where |P | is number
of components.
Then for K 2k-regular

M(K ) =
4(−1)k

(k − 2)!(2k)!
m′(K , 4− 2k)
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Diagonal coefficients

Key is this diagonal coefficient:

[a
(k−1)r
1 · · · a(k−1)r

k(n−2)]Ψ
kr
K−v

It satisfies (1) so only differs from M by a normalization.

(r !)k(n−2)[a
(k−1)r
1 · · · a(k−1)r

k(n−2)]Ψ
kr
K−v = (kr)!M(K [r ])

where K [r ] means r -duplicate each edge.
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The c2 invariant

For a prime p, K 4-regular, G = K − v define

cp2 (G ) =
[ΨG ]p
p2

mod p

where [·]p is the point count.

Why should you care?
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c2 and diagonal coefficients

−3p2cp2 (G ) = [ap−1
1 · · · ap−1

2(n−2)]Ψ
2(p−1)
G mod p3

For p = 3 use a different more complicated polynomial that
Simone Hu and I have worked with a lot.

So

cp2 (K − v) =
M(K [p−1])

3p
mod p

(use the more complicated argument for p = 3)
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And so?

c2 was conjectured to have all period symmetries, but completion
was resisting proof. This finally proves it (and twist)

The graph permanent invariant also can be expressed as a diagonal
coefficient and so treated similarly.
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Recall classic Prüfer encoding

Eg:
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Trees partition neighbourhood into systems of
distinct representatives

Eg:
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Use Prüfer on the matchings

Eg (continued):

This works in general and proves the Martin recurrence for that
diagonal coefficient.
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