On the diameter and zero forcing number of some graph classes in the Johnson, Grassmann and Hamming association scheme

Sjanne Zeijlemaker Joint work with Aida Abiad and Robin Simoens 01-05-2023

Eindhoven University of Technology

Background and motivation

Johnson, Grassmann and Hamming graphs

Generalized Johnson and Grassmann graphs

Let
$$S \subseteq \{0, 1, ..., k - 1\}$$

Why (generalized) Johnson, Grassmann and Hamming graphs?

 $\begin{array}{ll} \textbf{Structure:} & \textbf{distance-regular} & \rightarrow & \textbf{very symmetric} \end{array}$

Applications: designs, codes, association schemes, ...

Why (generalized) Johnson, Grassmann and Hamming graphs?

(Chen, Lih 1987) Hamiltonicity generalized Johnson graphs

(Van Dam, Haemers, Koolen, Spence 2006) Johnson and Grassmann graphs not determined by their spectrum

(Meagher, Bailey 2012) Metric dimension of Grassmann graphs

(Alspach 2013) Johnson graphs Hamiltonian connected

(Balogh, Cherkashin, Kiselev 2019) Coloring of generalized Kneser graphs

...

Why (generalized) Johnson, Grassmann and Hamming graphs?

(Chen, Lih 1987) Hamiltonicity generalized Johnson graphs

(Van Dam, Haemers, Koolen, Spence 2006) Johnson and Grassmann graphs not determined by their spectrum

(Meagher, Bailey 2012) Metric dimension of Grassmann graphs

(Alspach 2013) Johnson graphs Hamiltonian connected

(Balogh, Cherkashin, Kiselev 2019) Coloring of generalized Kneser graphs

Diameter, zero forcing?

Graph diameter

Largest distance between two vertices

Polynomial-time computable, but

- · our graphs are large;
- finding a closed expression is hard

Graph G=(V,E) with set $B\subseteq V$ of orange vertices

Graph G=(V,E) with set $B\subseteq V$ of orange vertices

Graph G=(V,E) with set $B\subseteq V$ of orange vertices

Graph G=(V,E) with set $B\subseteq V$ of orange vertices

Graph G=(V,E) with set $B\subseteq V$ of orange vertices

Graph G=(V,E) with set $B\subseteq V$ of orange vertices

Zero forcing number $\mathbb{Z}(G)$: minimum |B| such that all of \mathbb{V} is forced

(Yang 2013) In general, this is NP-hard

History and applications

(Haynes, Hedetniemi, Hedetniemi, Henning 2002) Power domination (placing Phasor Measurement Units in electrical networks)

(Burgarth, Giovannetti 2007) Zero forcing for quantum system control

(AIM workshop 2008) Zero forcing as an upper bound for minimum rank

↑ ?

(Alon 2008) Zero forcing on Cayley graphs, relation minimum rank

 $\mathcal{S}^{\mathbb{F}}(G)$: symmetric matrices M over \mathbb{F} with $m_{ij}=0$ whenever vertices $i\neq j$ are not adjacent.

Maximum nullity $M^{\mathbb{F}}(G)$: largest multiplicity of eigenvalue zero for any $M \in \mathcal{S}^{\mathbb{F}}(G)$

7

 $a_{43}x_3 + a_{44}x_4 + a_{45}x_5 = 0$ $a_{52}x_2 + a_{54}x_4 + a_{55}x_5 = 0$

 $a_{43}x_3 + a_{44}x_4 + a_{45}x_5 = 0$ $a_{52}x_2 + a_{54}x_4 + a_{55}x_5 = 0$

 $x_4 = 0$

$$\begin{aligned} a_{11}x_1 + a_{\overline{21}}x_{\overline{2}} &= 0 \\ a_{21}x_1 + a_{\overline{22}}x_{\overline{2}} + a_{\overline{23}}x_{\overline{3}} + a_{\overline{25}}x_{\overline{5}} &= 0 \\ &\Rightarrow & a_{\overline{32}}x_{\overline{2}} + a_{\overline{33}}x_{\overline{3}} + a_{\overline{34}}x_{\overline{4}} &= 0 \\ &a_{\overline{43}}x_{\overline{3}} + a_{\overline{44}}x_{\overline{4}} + a_{\overline{45}}x_{\overline{5}} &= 0 \\ &a_{\overline{52}}x_{\overline{2}} + a_{\overline{54}}x_{\overline{4}} + a_{\overline{55}}x_{\overline{5}} &= 0 \end{aligned}$$

$$x_5 = 0$$

 $x_1 = 0$

Lemma (AIM workshop 2008)

For any graph ${\cal G}$ and field ${\mathbb F}$,

$$M^{\mathbb{F}}(G) \leq Z(G).$$

Variations of zero forcing

Connected zero forcing (Z_c) : G[B] is connected

Skew zero forcing (Z^+):

$$Z^+(G) \leq Z(G) \leq Z_c(G)$$

Some known cases

(AIM 2008), (Benson, Ferrero, Flagg, Hogben, Furst, Vasilevska, Wissman 2018) Paths, cycles, complete graphs and their products

Our contribution

- · Diameter: generalized Grassmann graphs
- Zero forcing: Hamming graphs and generalized Johnson, Grassmann graphs

Zero forcing in generalized

Johnson graphs

Generalized Johnson graphs

Let
$$S \subseteq \{0, 1, ..., k-1\}$$

Important subfamilies

Johnson graphs

$$S = \{k-1\}$$

Kneser graphs

$$S = \{0\}$$

Known results

(Fallat, Meagher, Soltani, Yang 2016)

$$Z^+(J(n,2)) = Z(J(n,2)) = \binom{n}{2} - n + 2$$

(Brešar, Gologranc, Kos 2016)

$$Z(K(n,k)) = \binom{n}{k} - \binom{2k}{k}$$

if $n \ge 3k + 1$; upper bound for $n \le 3k$

Extensions of Johnson and Kneser graphs

Natural generalizations:

Johnson
$$S=\{k-1\} \quad \to \quad S=\{s,s+1,\dots,k-1\}$$
 Kneser
$$S=\{0\} \quad \to \quad S=\{0,1,\dots,s\}$$

We study the more general cases $\min(S) = s$ and $\max(S) = s$.

The case min(S) = s

Theorem

Let $S \subseteq \{0,1,\ldots,k-1\}$ with $s := \min(S)$ and $n \geq 2k-s$. Then

$$Z(J_S(n,k)) \le Z_c(J_S(n,k)) \le \binom{n}{k} - \binom{n-2(k-s)}{s}.$$

If $S = \{s, s+1, \dots, k-1\}$, equality holds throughout.

Proof sketch for Johnson graphs

- · Upper bounds are 'easy': find a construction
- · Lower bounds are hard: maximum nullity, etc.

We use Grundy domination

Upper bound

$$B = V \setminus \{v \in V \mid 1 \in v, \ 2 \notin v\} \quad \rightarrow \quad Z(J(n,k)) \le |B| = \binom{n}{k} - \binom{n-2}{k-1}$$

Force v with $(v \setminus 1) \cup 2$: $24 \rightarrow 14$, $23 \rightarrow 13$

Upper bound

Johnson
$$V \setminus \{A \in V \mid \underline{1} \in A, \ \underline{2} \notin A\}$$

$$\downarrow$$

$$\text{gen. Johnson} \quad V \setminus \{A \in V \mid \underline{[k-s]} \subset A, \ \underline{k-s+1, \dots, 2(k-s)} \notin A\}$$

Grundy domination

Grundy domination number (γ_{gr}): longest sequence of vertices such that every element dominates something new

 \rightarrow How bad can a greedy algorithm be for the dominating set problem?

Grundy domination

Dual:

Z-Grundy domination number (γ^Z_{gr}) : longest sequence of vertices such that every element dominates something new *other than itself*

Theorem (Brešar et al. 2017)

$$Z(G) \geq |V| - \gamma_{gr}(G), \quad Z(G) = |V| - \gamma_{gr}^Z(G)$$

If a vertex is dominated for the first time, it is footprinted

Pair element u_i in Grundy dominating sequence with v_i footprinted by it

$$\{1,3\} - \{1,2\}, \{1,4\} - \{2,4\}$$
 \downarrow
 $\{1,3\} - \{3,4\}, \{1,4\} - \{1,3\}$

Sequence
$$\{(u_i,v_i)\}$$
 \rightarrow sets $A_i=u_i,\ B_i=[n]\backslash v_i$

If a vertex is dominated for the first time, it is footprinted

Pair element u_i in Grundy dominating sequence with v_i footprinted by it

$$\{1,3\} - \{1,2\}, \{1,4\} - \{2,4\}$$
 \downarrow
 $\{1,3\} - \{3,4\}, \{1,4\} - \{1,3\}$

 $\text{Sequence } \{(u_i,v_i)\} \quad \rightarrow \quad \text{sets } A_i = u_i, \ B_i = [n] \backslash v_i$

If a vertex is dominated for the first time, it is footprinted

Pair element u_i in Grundy dominating sequence with v_i footprinted by it

$$\{1,3\} - \{1,2\}, \{1,4\} - \{2,4\}$$
 \downarrow
 $\{1,3\} - \{3,4\}, \{1,4\} - \{1,3\}$

$$\text{Sequence } \{(u_i,v_i)\} \quad \rightarrow \quad \text{sets } A_i = u_i, \ B_i = [n] \backslash v_i$$

Sequence
$$\{(u_i,v_i)\}$$
 \rightarrow sets $A_i=u_i,\ B_i=[n]\backslash v_i$

$$\{1,3\} - \{1,2\}, \{1,4\} - \{2,4\}$$
 \downarrow
 $\{1,3\} - \{3,4\}, \{1,4\} - \{1,3\}$

- $|A_i \cap B_i| \le 1$
- $|A_i \cap B_j| \ge 2$ for j > i

Bollobás' theorem: $Z(J(n,k)) \ge |S| = \binom{n}{k} - \binom{n-2}{k-1}$

The case $\max(S) = s$

Theorem

Let $S\subseteq\{0,1,\dots,k-3\}$ and $n\geq \max(3k-2s,2k+1)$, where $s:=\max(S)$. Then

$$Z(J_S(n,k)) \leq Z_c(J_S(n,k)) \leq \binom{n}{k} - \binom{2k-2s}{k-s}.$$

If $S = \{0, 1, \dots, s\}$, equality holds throughout.

Note: independent of n

The case max(S) = s

Theorem

Let $S\subseteq\{0,1,\dots,k-3\}$ and $n\geq \max(3k-2s,2k+1)$, where $s:=\max(S)$. Then

$$Z(J_S(n,k)) \leq Z_c(J_S(n,k)) \leq \binom{n}{k} - \binom{2k-2s}{k-s}.$$

If $S=\{0,1,\dots,s\}$, equality holds throughout.

What about (n, k, s) = (9, 4, 1)?

Conjecture

Conjecture

Let $S \subseteq \{0, 1, \dots, k-3\}$ and $n \ge 2k+1$, where $s := \max(S)$. Then

$$Z(J_S(n,k)) \leq Z_c(J_S(n,k)) \leq \binom{n}{k} - \binom{2k-2s}{k-s}.$$

Computational evidence suggests this is true

Construction found for s = 1

Generalized Grassmann graphs

Generalized Grassmann graphs

Let
$$S \subseteq \{0, 1, \dots, k-1\}$$

		Grassmann			
Notation	$J_S(n,k)$	$J_{q,S}(n,k)$	H(n,q)		
Vertices	$\binom{[n]}{k}$	$k\text{-dim.}$ subspaces of \mathbb{F}_q^n	$\{0,1,\dots,q-1\}^n$		
Edges	$ u\cap v \in S$	$\dim u\cap v\in S$	q-1 entries same		
$J_{q,S}(n,k) \simeq J_{q,\{s+n-2k s \in S\}}(n,n-k) \ \to \ \text{assume} \ n \geq 2k$					

Diameter and girth

(Agong, Amarra, Caughman, Herman, Terada 2018) Diameter and girth of generalized Johnson graphs

(Caughman, Herman, Terada 2023) Distance function and odd girth of generalized Johnson graphs

Diameter and girth

Nice fact: #trivially intersecting k-subspaces of $\mathbb{F}_q^n >>$ #disjoint k-subsets of [n].

Lemma (Bose, Burton 1966)

Let $n\geq k+m$. Given at most $q^{n-k-m+1}$ k-spaces in \mathbb{F}_q^n , we can always find an m-space that intersects them trivially.

Diameter and girth

Theorem

Let $n \ge 2k$ and $s = \min S$. Then

$$\operatorname{diam}\left(J_{q,S}(n,k)\right) = \begin{cases} 2 & \text{if } s = 0\\ \left\lceil \frac{k}{k-s} \right\rceil & \text{if } s \neq 0. \end{cases}$$

Theorem

Every generalized Grassmann graph with $S \neq \emptyset$ has girth 3.

Zero forcing number

Theorem

Let $S\subseteq\{0,1,\dots,k-3\}$ with $s:=\max(S)$, and $n\geq \max(3k-2s+1,2k+1)$. Then

$$Z(J_{q,S}(n,k)) \leq Z_c(J_{q,S}(n,k)) = \begin{bmatrix} n \\ k \end{bmatrix}_q - \binom{2k-2s}{k-s}.$$

If $S = \{0, 1, \dots, s\}$, equality holds throughout.

Proof similar to generalized Johnson, with set elements replaced by basis vectors

The case $s := \min(S)$?

What about classic Grassmann graphs?

Sets:
$$u \cap v = x \Rightarrow u \cap [n] \backslash v = k - x$$

Subspaces: $\dim u \cap v = x \Rightarrow \dim u \cap v^{\perp} = k - x$

We need new proof techniques

Zero forcing in Hamming graphs

Hamming graphs

Let
$$S \subseteq \{0, 1, \dots, k-1\}$$

			Hamming
Notation	$J_S(n,k)$	$J_{q,S}(n,k)$	H(n,q)
Vertices	$\binom{[n]}{k}$	k -dim. subspaces of \mathbb{F}_q^n	$\{0,1,\dots,q-1\}^n$
Edges	$ u\cap v \in S$	$\dim u\cap v\in S$	q-1 entries same
			100 010

Main result

(AIM workshop 2008)
$$Z(H(2,q)) = q^2 - 2q + 2$$
.

(AIM workshop, Alon 2008)
$$Z(H(n,2))=2^{n-1}$$

Theorem

For any $n,q\geq 2$,

$$Z(H(n,q)) = \frac{1}{2} \left(q^n + (q-2)^n \right).$$

A constructive upper bound

If n = 2, the following is a zero forcing set:

A constructive upper bound

$$H(n,q) = H(n-1,q) \square K_q$$

 \rightarrow take q copies of the zero forcing set of H(n-1,q), remove core vertices from one

Maximum nullity lower bound

Over
$$\mathbb{F}_2$$
, consider $B_n = A(H(n,q)) + I$

$$B_n = \underbrace{J \otimes I \otimes \cdots \otimes I}_n + \cdots + \underbrace{I \otimes \cdots \otimes I \otimes J}_n \qquad \quad B_n = J \otimes I^{\otimes (n-1)} + I \otimes B_{n-1},$$

$$B_1 = J$$

$$B_n = J \otimes I^{\otimes (n-1)} + I \otimes B_{n-1},$$

$$B_1 = J$$

Odd q

Even q

(Key difference: eigenvectors of J)

$$n = 3$$
:

J has eigenvectors $\mathbf{1}, x_2, x_3$ with eigenvalues 1,0,0

Let
$$x = \mathbf{1} \otimes x_2 \otimes \mathbf{1}$$

$$\begin{split} Bx &= (J \otimes I \otimes I + I \otimes J \otimes I + I \otimes I \otimes J) (\mathbf{1} \otimes x_2 \otimes \mathbf{1}) \\ &= (J\mathbf{1}) \otimes (Ix_2) \otimes (I\mathbf{1}) + (I\mathbf{1}) \otimes (Jx_2) \otimes (I\mathbf{1}) + (I\mathbf{1}) \otimes (Ix_2) \otimes (J\mathbf{1}) \\ &= \mathbf{1} \otimes x_2 \otimes \mathbf{1} + \mathbf{1} \otimes 0 \otimes \mathbf{1} + \mathbf{1} \otimes x_2 \otimes \mathbf{1} \\ &= 0 \cdot (\mathbf{1} \otimes x_2 \otimes \mathbf{1}) \end{split}$$

$$n = 3$$
:

J has eigenvectors $\mathbf{1}, x_2, x_3$ with eigenvalues 1,0,0

Let
$$x = \mathbf{1} \otimes x_2 \otimes \mathbf{1}$$

$$\begin{split} Bx &= (J \otimes I \otimes I + I \otimes J \otimes I + I \otimes I \otimes J) (\mathbf{1} \otimes x_2 \otimes \mathbf{1}) \\ &= (J\mathbf{1}) \otimes (Ix_2) \otimes (I\mathbf{1}) + (I\mathbf{1}) \otimes (Jx_2) \otimes (I\mathbf{1}) + (I\mathbf{1}) \otimes (Ix_2) \otimes (J\mathbf{1}) \\ &= \mathbf{1} \otimes x_2 \otimes \mathbf{1} + \mathbf{1} \otimes 0 \otimes \mathbf{1} + \mathbf{1} \otimes x_2 \otimes \mathbf{1} \\ &= 0 \cdot (\mathbf{1} \otimes x_2 \otimes \mathbf{1}) \end{split}$$

1 remains 1

$$n = 3$$
:

J has eigenvectors $\mathbf{1}, x_2, x_3$ with eigenvalues 1,0,0

Let
$$x = 1 \otimes x_2 \otimes 1$$

$$\begin{split} Bx &= (J \otimes I \otimes I + I \otimes \textcolor{red}{J} \otimes I + I \otimes I \otimes \textcolor{blue}{J}) (\mathbf{1} \otimes \textcolor{red}{x_2} \otimes \mathbf{1}) \\ &= (J\mathbf{1}) \otimes (Ix_2) \otimes (I\mathbf{1}) + (I\mathbf{1}) \otimes (Jx_2) \otimes (I\mathbf{1}) + (I\mathbf{1}) \otimes (Ix_2) \otimes (J\mathbf{1}) \\ &= \mathbf{1} \otimes x_2 \otimes \mathbf{1} + \mathbf{1} \otimes \textcolor{blue}{0} \otimes \mathbf{1} + \mathbf{1} \otimes x_2 \otimes \mathbf{1} \\ &= 0 \cdot (\mathbf{1} \otimes x_2 \otimes \mathbf{1}) \end{split}$$

x_2 vanishes

$$n = 3$$
:

J has eigenvectors $\mathbf{1}, x_2, x_3$ with eigenvalues 1,0,0

Let
$$x = 1 \otimes x_2 \otimes 1$$

$$\begin{split} Bx &= (J \otimes I \otimes I + I \otimes J \otimes I + I \otimes I \otimes J) (\mathbf{1} \otimes x_2 \otimes \mathbf{1}) \\ &= (J\mathbf{1}) \otimes (Ix_2) \otimes (I\mathbf{1}) + (I\mathbf{1}) \otimes (Jx_2) \otimes (I\mathbf{1}) + (I\mathbf{1}) \otimes (Ix_2) \otimes (J\mathbf{1}) \\ &= \mathbf{1} \otimes x_2 \otimes \mathbf{1} + \mathbf{1} \otimes 0 \otimes \mathbf{1} + \mathbf{1} \otimes x_2 \otimes \mathbf{1} \\ &= 0 \cdot (\mathbf{1} \otimes x_2 \otimes \mathbf{1}) \end{split}$$

 \rightarrow Even number of 1's

Maximum nullity lower bound: even q

Problem: now $J\mathbf{1} = 0$

$$B_n = J \otimes I^{\otimes (n-1)} + I \otimes B_{n-1}, \quad B_1 = J$$

Induction: if X_{n-1} nullifies B_{n-1} , take

$$\cdot \ \, \boldsymbol{x}_i \otimes \boldsymbol{v}\text{,} \quad \boldsymbol{v} \in X_{n-1}$$

$$\bullet \ \mathbf{1} \otimes \mathbf{w} + \mathbf{e}_1 \otimes (B_{n-1}\mathbf{w}), \quad \mathbf{w} \in \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_q\}^{\otimes (n-1)}$$

Closing remarks

Open problems

 \cdot Get rid of lower bound on n for generalized Johnson graphs;

Theorem

Let $S\subseteq\{0,1,\dots,k-3\}$ and $n\geq \max(3k-2s,2k+1)$, where $s:=\max(S)$. Then

$$Z(J_S(n,k)) \leq Z_c(J_S(n,k)) \leq \binom{n}{k} - \binom{2k-2s}{k-s}.$$

If $S = \{0, 1, \dots, s\}$, equality holds throughout.

Open problems

- Get rid of lower bound on n for generalized Johnson graphs;
- · Zero forcing number of Grassmann graphs;
- · Zero forcing on distance-regular graphs in general.