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Background and motivation



Johnson, Grassmann and Hamming graphs

Johnson Grassmann Hamming
Notation J(n, k) J,(n, k) H(n,q)
o n 2
Vertices <[k]> k-dim. subspaces of 7 {0,1,...,¢g—1}"
Edges lunuvl=k—1 dimunov=~k—1 g — 1 entries same
15 e o
1 1
000
/ e

J(4,2



Let S C {0,1,...,k—1}

Johnson
Notation Jg(n, k)
. [n]
Vertices
| ("
Edges lunv| e S

Generalized Johnson and Grassmann graphs

Grassmann

qus(n, k)

k-dim. subspaces of F7

dimunove S




Why (generalized) Johnson, Grassmann and Hamming graphs?

Structure: distance-regular — very symmetric

Applications: designs, codes, association schemes, ...
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Why (generalized) Johnson, Grassmann and Hamming graphs?

(Chen, Lih 1987) Hamiltonicity generalized Johnson graphs

(Van Dam, Haemers, Koolen, Spence 2006) Johnson and Grassmann
graphs not determined by their spectrum

(Meagher, Bailey 2012) Metric dimension of Grassmann graphs

(Alspach 2013) Johnson graphs Hamiltonian connected

(Balogh, Cherkashin, Kiselev 2019) Coloring of generalized Kneser
graphs
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Diameter, zero forcing?



Graph diameter

Largest distance between two
vertices

Polynomial-time computable, but

- our graphs are large;
- finding a closed expression is hard



Zero forcing on graphs

Graph G = (V, E) with set B C V of orange vertices

Force: unique uncolored neighbor of a orange vertex is colored
orange
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Zero forcing on graphs

Graph G = (V, E) with set B C V of orange vertices

Zero forcing number Z(G): minimum |B| such that all of V' is forced

(Yang 2013) In general, this is NP-hard



History and applications

(Haynes, Hedetniemi, Hedetniemi, Henning 2002) Power domination
(placing Phasor Measurement Units in electrical networks)

(Burgarth, Giovannetti 2007) Zero forcing for quantum system control

(AIM workshop 2008) Zero forcing as an upper bound for minimum
rank
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(Alon 2008) Zero forcing on Cayley graphs, relation minimum rank



Relation of Z to maximum nullity

8"(G): symmetric matrices M over F with m,; = 0 whenever
vertices i # j are not adjacent.

0O 1 0 0 O 0 3 0 0 0
1 0 1 0 1 3 6 1 0 1
0O 1 0 1 0 0 1 0 -2

o o0 1 0 1 0o 0 -2 0.7 1.1
o 1 0 1 0 0 1 0 1.1 -1.4

Maximum nullity M"(G): largest multiplicity of eigenvalue zero for
any M € 8'(G)



Relation of Z to maximum nullity
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Relation of Z to maximum nullity
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Relation of Z to maximum nullity
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Relation of Z to maximum nullity

a;; Qg 0 0 0 T4
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Relation of Z to maximum nullity
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Relation of Z to maximum nullity

Lemma (AIM workshop 2008)
For any graph G and field F,

MF(G) < Z(Q).



Variations of zero forcing

Connected zero forcing (Z,): G[B] is connected

Skew zero forcing (Z+):

o=



Some known cases

(AIM 2008), (Benson, Ferrero, Flagg, Hogben, Furst, Vasilevska,
Wissman 2018) Paths, cycles, complete graphs and their products

(Brimkov, Hicks 2017) (Bresar, Gologranc, Kos 2016)

e

Unicyclic Cactus Interval Sierpinski



Our contribution

- Diameter: generalized Grassmann graphs

- Zero forcing: Hamming graphs and generalized Johnson,
Grassmann graphs



Zero forcing in generalized
Johnson graphs



Generalized Johnson graphs

Let S C {0,1,....k—1}

Johnson
Notation Jg(n, k)
: [n]
V
ertices ( )
Edges lunv| €S

13

| JS(”’ k) = J{s+n72k’\s€S} (TL, n— k)

— assumen > 2k
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Important subfamilies

Johnson graphs Kneser graphs
12 13
23/ \U _1—)
i~ 7
24 14
S\ N
34
S={k—-1} S =10}



Known results

(Fallat, Meagher, Soltani, Yang 2016)

ZH(J(n,2)) = Z(J(n,2)) = (Z) —n+42

(Bresar, Gologranc, Kos 2016)

s (1) ()

if n >3k + 1; upper bound for n < 3k



Extensions of Johnson and Kneser graphs

Natural generalizations:

Johnson S={k—-1} —> S={s,s+1,..,k—1}

Kneser S={0} — S={0,1,...,s}

We study the more general cases min(S) = s and max(S) = s.
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The case min(S) = s

Theorem
Let S C€{0,1,...,k—1} with s := min(S) and n > 2k — s. Then

25t ) < 255 < () = ("),

S

IfS={s,s+1,..,k—1}, equality holds throughout.



Proof sketch for Johnson graphs

- Upper bounds are ‘easy”: find a construction

- Lower bounds are hard: maximum nullity, etc.

We use Grundy domination

16



Upper bound

B=V\{fveV|lev, 2¢v} — Z(J(nk))<|B|= (n)_<n—2)

k k—1
12
23/ \13

34

Force v with (v\1) U2: 24 — 14, 23 — 13



Upper bound

Johnson V\{AeV|1le€A 2¢ A}

gen.Johnson V\{AeV |[k—s|CA k—s+1,..,2(k—s) ¢ A}




Grundy domination

Grundy domination number (v,,): longest sequence of vertices such
that every element dominates something new

— How bad can a greedy algorithm be for the dominating set
problem?



Grundy domination

Dual:

/-Grundy domination number (yj): longest sequence of vertices
such that every element dominates something new other than itself

Theorem (Bresar et al. 2017)
Z(G) =2 VI =7,(G), Z(@G)=I|V|-~+Z(G)



Lower bound using Grundy domination

If a vertex is dominated for the first time, it is footprinted

Pair element u, in Grundy dominating sequence with v, footprinted
by it

12

PTARN

| {13} = {12}, {14} —{2,4}
3
{13} — {34}, {14} —1{1,3}

Sequence {(u;,v;)} — sets A, =u,;, B, = [n]\vy;

K
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Lower bound using Grundy domination

If a vertex is dominated for the first time, it is footprinted

Pair element u, in Grundy dominating sequence with v, footprinted

AN

23

{13} = {12}, {14} —{2,4}
3
{13} — {34}, {14} —1{1,3}

Re—

1

Sequence {(u;,v;)} — sets A, =u;, B; =[n]\v;

K2
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Lower bound using Grundy domination

If a vertex is dominated for the first time, it is footprinted

Pair element u, in Grundy dominating sequence with v, footprinted

by it
/

12

2
’I\
5 13

5/ (13— 12}, (14} — 4}
:
(13) = B4}, (4] — [13)

Sequence {(u;,v;)} — sets A, =u,, B; = [n]\v;
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Lower bound using Grundy domination

Sequence {(u;,v;)} — sets A, =u,;, B, = [n]\y;

i) Y

12

PTANRN

J {13} —{1,2}, {14} — {24}
)
{13} — {34}, {14} —1{1,3}

24 14

NN

34
- A, NB;| <1
“|A;NB;| >2forj>i

Bollobas’ theorem: Z(J(n,k)) = |S| = () — (323)
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The case max(S) = s

Theorem
Let S € {0,1,...,k—3} and n > max(3k — 25,2k + 1), where
s :=max(S). Then

n 2k — 28
2sstn.) < 205sm0) < () = (2 0).
If S ={0,1,..., s}, equality holds throughout.

Note: independent of n

20



The case max(S) = s

Theorem
Let S € {0,1,...,k—3} and n > max(3k — 25,2k + 1), where
s :=max(S). Then

Z(Jg(n, k) < Z(Jg(n,k)) < (TL) B (215_23)
k k—s
If S ={0,1,..., s}, equality holds throughout.

What about (n, k,s) = (9,4,1)?
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Conjecture
Let S C€{0,1,...,k—3} and n > 2k + 1, where s := max(S). Then

205 ) < 2,050 < (1) = (2 2)

Computational evidence suggests this is true

Construction found for s =1

21



Generalized Grassmann graphs




Generalized Grassmann graphs

Let S C {0,1,...,k—1}

Grassmann
Notation J, 5(n, k)
Vertices k-dim. subspaces of [}
Edges dimunvesS

g5, k) 2 Jy roin_oksesy(n,n—k) — assumen > 2k
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Diameter and girth

(Agong, Amarra, Caughman, Herman, Terada 2018) Diameter and girth
of generalized Johnson graphs

(Caughman, Herman, Terada 2023) Distance function and odd girth of
generalized Johnson graphs
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Diameter and girth

Nice fact: #trivially intersecting k-subspaces of 7 >> #disjoint
k-subsets of [n].

Lemma (Bose, Burton 1966)

Let n > k +m. Given at most ¢"~*~™+! k-spaces in F?, we can always
find an m-space that intersects them trivially.
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Diameter and girth

Theorem
Let n > 2k and s = min S. Then

s s ={ 2y 1220

k—s

Theorem
Every generalized Grassmann graph with S = () has girth 3.
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Zero forcing number

Theorem
Let S C€{0,1,...,k — 3} with s := max(S),
and n > max(3k — 2s + 1,2k + 1). Then

n 2k — 2s
200,090 < 2,580 =[] = (3 27)
If S ={0,1,..., s}, equality holds throughout.

Proof similar to generalized Johnson, with set elements replaced by
basis vectors
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The case s := min(S5)?

What about classic Grassmann graphs?

Sets: uNv=ux = unNn\v==Fk—xa

Subspaces: dimunNov=ux - dimunNvt =k—x

We need new proof techniques

25



Zero forcing in Hamming graphs




Hamming graphs

Notation

Vertices

Edges

Hamming

H(n,q)

{07 17 e @ — 1}”

q— 1 entries same
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(AIM workshop 2008) Z(H (2,q)) = ¢* — 2q + 2.

(AIM workshop, Alon 2008) Z(H(n,2)) = 2™~1

Theorem
Forany n,q > 2,

Z(H(n,q)) = 3 (a" + (g~ 2)").

27



A constructive upper bound

If n = 2, the following is a zero forcing set:
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A constructive upper bound

H(n,q) = H(n—1,q)UK,

— take ¢ copies of the zero forcing set of H(n — 1,q),
remove core vertices from one

(4,0,0)

(0,0,4)




Maximum nullity lower bound

Over [F,, consider B, = A(H(n,q)) + I

4 hY

B,=JQI® QI+ -+IQ--QI)J B,=JI?"V4iI®B, ,
n n BIZJ

0dd q Even q

(Key difference: eigenvectors of J)
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Maximum nullity lower bound: odd ¢

n 3:

J has eigenvectors 1, z,, 25 with eigenvalues 1,0,0

letz =1Q@2,81

Br=(JQIQI+I®JRI+IQIQJ)(1Qx,®1)
=J1)® (Izy) @ (1) + (I11) @ (Jzo) ® (I11) + (I1) @ (Iz5) ® (J1)
=1Q2,01+10001+1Qz,®1
=0-(1®z,®1)
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Maximum nullity lower bound: odd ¢

n 3:

J has eigenvectors 1, z,, 25 with eigenvalues 1,0,0

letz =1Q@2,81

Br=(JQIRI+I®JRI+I®I®J)(1®z,®1)
=J1)® (Izy) @ (1) + (I11) @ (Jzo) ® (I11) + (I1) @ (Iz5) ® (J1)
=1Q2,®1+1Q9001+1®z,Q1
=0-1®r,®1)

1 remains 1
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Maximum nullity lower bound: odd ¢

n 3:

J has eigenvectors 1, z,, 25 with eigenvalues 1,0,0

letz =1Q@2,81

Br=(JQIQI+I®/RI+IQI®J)(1®1,®1)
=J1)® (Izy) @ (1) + (I11) @ (Jzo) ® (I11) + (I1) @ (Iz5) ® (J1)
=1z2,81+100®1+1®7,81
=0-(1®z,®1)

x4 Vanishes
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Maximum nullity lower bound: odd ¢

n 3:

J has eigenvectors 1, z,, 25 with eigenvalues 1,0,0

letz =1Q@2,81

Br=(JQIQI+I®JRI+IQIQJ)(1Qx,®1)
=J1)® (Izy) @ (1) + (I11) @ (Jzo) ® (I11) + (I1) @ (Iz5) ® (J1)
=1Q2,01+10001+1Qz,®1
=0-(1®z,®1)

— Even number of 1's
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Maximum nullity lower bound: even ¢

Problem: now J1 =0

B,=J®I°"V 4+ 1B, ,

=
I
.

Induction: if X,,_, nullifies B,,_,, take

n—11
T, Qv, ve X,
c1lw+e ®(B, ;w), we{e,e,,.., eq}®("*1)
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Closing remarks




Open problems

- Get rid of lower bound on n for generalized Johnson graphs;

Theorem
Let S € {0,1,...,k—3} and n > max(3k — 25,2k 4+ 1), where
s :=max(S). Then

205 < 2,005 < (1) = (2 2)

If S ={0,1,..., s}, equality holds throughout.
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Open problems

- Get rid of lower bound on n for generalized Johnson graphs;
- Zero forcing number of Grassmann graphs;

- Zero forcing on distance-regular graphs in general.
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