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Objects

We discuss the characteristics of partial geometric designs whose
concurrence matrices are circulant. If time permits we examine
such partial geometric designs arising from association schemes.

Finite Incidence Structures & t-Designs

Characterization of Partial Geometric Designs (PGDs)

Association Schemes and PGDs

PGDs from Association Schemes



Links of incidence structures and graphs

partial geometries ←→ (directed) strongly regular graphs

partial geometric designs ←→ (directed) strongly regular
graphs

partial geometric designs ←→ relation graphs of association
schemes

Study the characteristics of partial geometric designs and related
incidence structures and combinatorial objects.



Finite incidence structure

A finite incidence structure is a triple (P,B, I) consisting of

a finite set P of points,

a finite set B of blocks, and

an incidence relation I ⊆ P × B.

t-design

In particular, when
B ⊆ {B : ∅ 6= B ⊂ P} and (p,B) ∈ I ⇔ p ∈ B,

(P,B, I) is called a (non-trivial, simple) design denoted by (P,B).

A design (P,B) with |P| = v and |B| = b is called a 1-(v , b, k , r)
design if ∀B ∈ B, |B| = k and ∀p ∈ P, |{B ∈ B : B 3 p}| = r .

For t ≥ 2, a t-(v , b, k , r , λ) design is a 1-(v , b, k , r) design such
that every set of t points is contained in λ blocks.
Denote it by t-(v , k , λ) design: λ

(v
t

)
= b

(k
t

)
.



Partial geometry

A partial geometry pg(r , k , α) for α ≥ 1, is a 1-(v , b, k, r) design
such that

1 it is geometric; i.e., any two points have at most one common
incident block, and

2 for any antiflag (p,B) of the design there exist α blocks
containing p and intersecting B.

A pg(r , k , α) has

v = k + 1
αk(k − 1)(r − 1)

b = r + 1
α r(r − 1)(k − 1).

A pg(r , k , α) is a 2-(v , k , 1) design if and only if α = k.



Partial geometric design (PGD)

Given a 1-(v , b, k , r) design (P,B), ∀(p,B) ∈ P × B, let

s(p,B) := |{(q,C ) : q ∈ B ∩ C , C 3 p}|.

PGD(v , b, k , r ;α, β)

A PGD with parameters (v , b, k , r ;α, β) is a 1-(v , b, k , r) design
(P,B) satisfying the property:

∀(p,B) ∈ P ×B, there exist constants α and β such that

s(p,B) =

{
β if p ∈ B,
α if p /∈ B.



Parameters of a PGD

Given a PGD(v , b, k , r ;α, β), let n = β − α,

1 (v − k)α + kβ = k2r

2 v = 1
αk(kr − n); b = 1

α r(kr − n)

3 k + r ≤ n + α + 1 = β + 1 ≤ kr .

Incidence matrix

Let N be the incidence matrix of a PGD(v , b, k , r ;α, β).
Let J denote the all-1 matrix (not necessarily square).
Then we have

1 JN = kJ, NJ = rJ, and

2 NN>N = βN + α(J − N).



Concurrence λpq of points p and q (Neumaier)

Given a PGD(v , b, k , r ;α, β) and for p, q ∈ P, let

λpq := |{B ∈ B : p, q ∈ B}| =
[
NNT

]
pq
.

1 ∀p ∈ P,
∑

q∈P−{p}

λpq = r (k − 1) , NNT J = rkJ = JNNT .

2

s (p,B) =
∑
q∈B

λpq =
[
NNTN

]
pB

=
[
βN + α(J − N)

]
pB
.

3 ∀p, q ∈ P,
∑
z∈P

λpzλqz =
[(
NNT

)2]
pq

=
[(
NNTN

)
NT
]
pq

=
[
(nN + αJ)NT

]
pq

=
∑

B:B3q

s (p,B) =

{
βr if p = q
nλpq + αr if p 6= q



Concurrence profiles of a PGD

A PGD(v , b, k , r ;α, β) holds one, two or three concurrences:

λpq ∈ {λ1, (λ2), ((λ3))}, r ≥ λ1 > λ2 > λ3 ≥ 0;

2-(v , k , λ) ≡ PGD
(
v , λv(v−1)

k−1 , k , λ(v−1)
k−1 ; λk , λ(k − 1) + r

)
:

λpq ∈ {λ}.

pg(k , r , α) ≡ PGD(v , b, k , r ;α, β): λpq ∈ {1, 0}.

A transversal design TDλ(k , u), (where u = v
k ) is a

PGD(ku, λu2, k, λu; λ(k − 1), λ(k − 1) + λu).

λpq =

{
0 if p, q belong to the same group
λ else



Concurrences of a PGD and spectrum of NNT (Neumaier)

Let (P,B) be a PGD(v , b, k, r ;α, β) and let N be its incidence
matrix.

1 NNT has two or three distinct eigenvalues; namely,

Spec(NNT ) =
[
(kr)1, nσ, 0v−1−σ

]

2 If λpq ∈ {λ1, λ2} for ∀p, q, (p 6= q) ∈ P with
r ≥ λ1 > λ2 ≥ 0, then for each p,

k1 := |{q ∈ P : λpq = λ1}| =
r(k − 1)− (v − 1)λ2

λ1 − λ2
.



Partitioning P × P for a PGD (Lei-Qu-Shan)

Let (P,B) be a PGD(v , b, k, r ;α, β). Suppose λxy ∈ {λ1, λ2, λ3}
for x , y ∈ P, x 6= y . If relations Ri , for i = 1, 2, 3, are given by

Ri := {(x , y) ∈ P × P : λxy = λi}

then R0 ∪ R1 ∪ R2 ∪ R3 = P × P where R0 = {(x , x) : x ∈ P}.

For i ∈ {1, 2, 3}, with {h, j} = {1, 2, 3} − {i},

ki = |Ri (x)| := |{y ∈ P : λxy = λi}|

=
(n + α− r)r − r(k − 1)(λh + λj) + (v − 1)λhλj

(λi − λh)(λi − λj)
.

For ki , use v − 1 = k1 + k2 + k3 and

k1λ1 + k2λ2 + k3λ3 =
∑

y∈P−{x}

λxy = r(k − 1),

k1λ
2
1 + k2λ

2
2 + k3λ

2
3 =

∑
y∈P−{x}

λ2xy = (n + α− r)r .



Association scheme from a PGD (Lei-Qu-Shan)

Let (P,B) be a PGD(v , b, k, r ;α, β). Suppose λxy ∈ {λ1, λ2, λ3}
for any x 6= y and λ3 = r − n. Let Ri be given by

Ri := {(x , y) ∈ P × P : λxy = λi} for i = 1, 2, 3.

Then (P, {Ri}[3]) becomes an association scheme.

Q. Find such PGDs! (i) λ1 > λ2 > λ3 ≥ 0 and (ii) λ3 = r − n

Qu-Lei’s examples: PGD(3r , 3
4
r 2, 4, r ; 4, r + 4), for r even

For example, when r = 4, take V = Z12, B consists of:

{0, 1, 3, 4} {0, 1, 5, 6} {0, 2, 7, 8} {0, 2, 9, 10}
{1, 7, 8, 11} {1, 9, 10, 11} {2, 3, 4, 11} {2, 5, 6, 11}
{3, 5, 7, 9} {3, 5, 8, 10} {4, 6, 7, 9} {4, 6, 8, 10}



Example (Tranel-S.): PGD(8, 8, 4, 4; 6, 10)

P = {1, 2, . . . , 8}

B =

{
{1, 2, 3, 4}, {1, 2, 5, 6}, {1, 3, 5, 7}, {1, 4, 5, 8}
{5, 6, 7, 8}, {3, 4, 7, 8}, {2, 4, 6, 8}, {2, 3, 6, 7}

}

NNT =

[
2I + 2J 2I + J

2I + J 2I + 2J

]
=



4 2 2 2 3 1 1 1
2 4 2 2 1 3 1 1
2 2 4 2 1 1 3 1
2 2 2 4 1 1 1 3
3 1 1 1 4 2 2 2
1 3 1 1 2 4 2 2
1 1 3 1 2 2 4 2
1 1 1 3 2 2 2 4


Observe that:
NNT is recognized as an association relation table for a scheme.
Notice that NNT is not a circulant matrix



PGDs having circulant concurrence matrices (Tranel-S.)

1 PGD(8, 10, 4, 5; 8, 12) with NNT = C [5, 2, 3, 2, 1, 2, 3, 2] and B:
{1, 2, 3, 4}, {1, 2, 3, 8}, {1, 3, 5, 7}, {1, 4, 6, 7}, {1, 6, 7, 8}
{2, 4, 5, 7}, {2, 4, 6, 8}, {2, 5, 7, 8}, {3, 4, 5, 6}, {3, 5, 6, 8}.

(N is found by a computer search.)

2 PGD(12, 12, 4, 4; 4, 8) with NNT = C [4, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1]:
P = {0, 1, 2, . . . , 9, a, b} and
B :=
{0, 1, 3, 4}, {0, 2, 3, 5}, {0, 7, 9, a}, {0, 8, 9, b}, {1, 2, a, b}, {1, 4, 6, 9},
{1, 5, 8, a}, {2, 4, 7, b}, {2, 5, 6, 9}, {3, 6, 7, a}, {3, 6, 8, b}, {4, 5, 7, 8}.

3 PGD(12, 14, 6, 7; 18, 24) with NNT = C [7, 3, 4, 3, 4, 3, 1, 3, 4, 3, 4, 3]
Via computer search we have the following blocks:
{0, 1, 2, 3, 4, 5}, {0, 1, 2, 3, 4, b}, {0, 1, 5, 8, 9, a}, {0, 2, 4, 6, 8, a},
{0, 2, 5, 7, 9, a}, {0, 3, 7, 8, a, b}, {0, 4, 7, 8, 9, b}, {1, 2, 6, 9, a, b},
{1, 3, 5, 6, 8, a}, {1, 3, 5, 7, 9, b}, {1, 4, 6, 8, 9, b}, {2, 3, 6, 7, a, b},
{2, 4, 5, 6, 7, 9}, {3, 4, 5, 6, 7, 8}.



Circulant matrix

An n × n matrix of the form

C =



c0 c1 c2 . . . cn−2 cn−1
cn−1 c0 c1 c2 . . . cn−2
cn−2 cn−1 c0 c1 . . . cn−3

...
...

. . .
. . .

. . .
...

c2
...

...
. . .

. . . c1
c1 c2 c3 . . . cn−1 c0


where c0, c1, c2, . . . , cn−1 are complex numbers, is called a
circulant matrix.

The eigenvalues of C are given by f (ωk) for k = 0, 1, . . . , n − 1
where ω is an nth-root of unity and

f (λ) = c0 + c1λ+ c2λ
2 + · · ·+ cn−2λ

n−2 + cn−1λ
n−1.



Example

Let P = {1, 2, 3, 4, 5, 6} and
B = {{1, 2, 3}, {1, 5, 6}, {2, 4, 6}, {3, 4, 5}}. Then (P,B) is a PGD
with parameters (6, 4, 3, 2; 2, 4). The incidence and concurrence
matrices are, respectively:

N =



1 1 0 0
1 0 1 0
1 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0

 and NNT =



2 1 1 0 1 1
1 2 1 1 0 1
1 1 2 1 1 0
0 1 1 2 1 1
1 0 1 1 2 1
1 1 0 1 1 2

 .

More specifically, the PGD is a TD1(3, 2).



Proposition: Tranel-S

For any v ≡ 0 mod 2 with v ≥ 6, there is a

PGD(v , 1
8v(v -2), 4, 1

2v -1; 4, v)

whose concurrence matrix is the circulant

NNT = C
[
1
2v -1, 1, . . . , 1︸ ︷︷ ︸

1
2 v−1

, 1
2v -1, 1, . . . , 1︸ ︷︷ ︸

1
2 v−1

]

with the spectrum{
(2v − 4)1, (v − 4)

1
2
v−1, 0

1
2
v
}
.



Examples: Tranel-S.

There are at least 11 infinite families of PGDs of order 12 whose
concurrence matrices are circulant.

A circulant matrix C = C [c0, c1, c2, c3, c4, c5, c6, c5, c4, c3, c2, c1] is
feasible to be recognized as the concurrence matrix, NNT , of a

PGD
(

12, 12rk , k, r ; k(kr−n)
12 , n + (kr−n)

12

)
when

Spec(NNT ) = {kr1, nσ, 011−σ} where σ =
r(12− k)

n
.

Using the spectrum of NNT along with the conditions on the
eigenvalues of a circulant matrix, we use a linear program to find
all PGDs arise for k = 3, 4, and 6 as in the following table.



PGDs of order 12 having circulant concurrence matrices

σ b k r (α, β) NNT Description # IDs in [SvD]

9 4r 3 r ( r
2
, 3
2
r) C [r, r

4
, r
4
, 0, r

4
, r
4
, 0]

4⊎
i=1

riTDi (3, 4) * N37

4 3r 4 r ( 2
3
r, 8

3
r) C [r, r

3
, 0, r

3
, 0, r

3
, r ] TD1(2, 3) ⊗ J2, r

3
1 N48

5 3r 4 r ( 4
5
r, 12

5
r) C [r, r

5
, r
5
, r
5
, r
5
, r
5
, r ] 2-(6, 2, 1) ⊗ J2, r

5
1 N33

8 3r 4 r (r, 2r) C [r, r
4
, r
4
, r
2
, r
4
, r
4
, 0] N ⊗ J1, r

4
≥ 1 N19

8 3r 4 r (r, 2r) C [r, r
3
, r
3
, r
3
, 0, r

3
, r
3
] TD1(4, 3) ⊗ J1, r

3
≥ 1 N47

3 2r 6 r (2r, 4r) C [r, r
2
, r
2
, 0, r

2
, r
2
, r ] D1,6,r ⊗ J2,1 * N22, N41, N62

3 2r 6 r (2r, 4r) C [r, r
3
, r
3
, r
3
, r, r

3
, r
3
] 2-(4, 2, 1) ⊗ J3, r

3
1 N22, N50

5 2r 6 r ( 12
5
r, 18

5
r) C [r, 2

5
r, 2

5
r, 2

5
r, 2

5
r, 2

5
r, r ] 2-(6, 3, 2) ⊗ J2, r

5
1 N61

6 2r 6 r ( 5
2
r, 7

2
r) C [r, r

2
, r
2
, r
2
, r
2
, r
2
, 0] TD r

2
(6, 2) ≥ 1 N21, N39, N60

7 2r 6 r ( 18
7
r, 24

7
r) C [r, 3

7
r, 4

7
r, 3

7
r, 4

7
r, 3

7
r, r

7
] N ⊗ J1, r

7
≥ 1 N27

9 2r 6 r ( 8
3
r, 10

3
r) C [r, r

2
, r
2
, r
3
, r
2
, r
2
, r
3
] N ⊗ J1, r

6
≥ 1 N20

*SvD: Labels of the designs listed in “van Dam, E. R., Spence, E.: Combinatorial designs with two singular values
II. Partial geometric designs. Linear Alg. Appl., 396, 303–316 (2005).”



Q. So far all known PGDs have at most 3 distinct concurrences
(aside from c0 = r). Show that all PGDs have at most 3 distinct
concurrences!

Q. Characterize PGDs that having circulant concurrence matrices!

Q. Classify all PGDs having circulant concurrence matrices!



PGDs from 3-class fusion of Hamming schemes H(d , 3), d ≥ 3

Let X be the ternary linear [7, 5]-code with generating matrix.
1 0 0 0 0 1 1
0 1 0 0 0 0 1
0 0 1 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0


Define relations Ri s on X according to the (Hamming) distance δ.

R0 = {(x , x) | x ∈ X}
R1 = {(x , y) | δ(x , y) ∈ {1, 4, 7}}
R2 = {(x , y) | δ(x , y) ∈ {2, 5}}
R3 = {(x , y) | δ(x , y) ∈ {3, 6}},

Then X = (X , {Ri}0≤i≤3) is a 3-class association scheme.



1 The intersection matrices B1,B2, and B3 of X are given by
0 1 0 0

72 21 24 18
0 30 24 27
0 20 24 27




0 0 1 0
0 30 24 27

90 30 33 36
0 30 32 27




0 0 0 1
0 20 24 27
0 30 32 27

80 30 24 25

 .
2 We have the following identities in its Bose-Mesner algebra:

A3
1 = 1593A1 + 1512(J − A1),

A3
2 = 3051A2 + 2970(J − A2),

(A3 + I )3 = 2241(A3 + I ) + 2160(J − A3 − I ).

3 If we take N = A1, N becomes the incidence matrix of a PGD.



Nowak-Olmez-S, 2015

Let Z be a 3-class association scheme. Suppose that the character
table P of Z is given by

P =


1 m(m − 1) m(m + 1) (m − 1)(m + 1)
1 m 0 −m − 1
1 0 −m m − 1
1 −m m −1

 .
Then the relation graphs A1, A2, and A3 + A0 of Z give rise to
three PGDs with parameters v = b and (v , k;α, β):

(3m2, m(m − 1);
1

3
m2(m2 − 3m + 2),

1

3
m2(m2 − 3m + 5)),

(3m2, m(m + 1);
1

3
m2(m2 + 3m + 2),

1

3
m2(m2 + 3m + 5)),

(3m2, m2;
1

3
m2(m2 − 1),

1

3
m2(m2 + 2)).



A PGD induced from a set of associate relations

Let X = (X , {Ri}[d ]) be an association scheme and let
RM =

⋃
i∈M Ri where ∅ 6= M ⊂ [d ]− {0}. For each x ∈ X define

Bx = {y : (x , y) ∈ RM}

Suppose X has a fusion scheme containing a relation RM . Then
(X , {Bx : x ∈ X}) becomes a 1-(v , b, k, r)-design with
v = b = |X |, k = r =

∑
i∈M ki .

Xu, ’22

Suppose an association scheme X = (X , {Ri}[d ]) contains a
‘block’ of relations {Ri : i ∈ M} where ∅ 6= M ⊂ [d ]− {0} such
that for each x ∈ X , |Bx | = |{y : (x , y) ∈ ∪i∈MRi}| = k. Then
(X , {Bx : x ∈ X}) is a PGD(|X |, |X |, k , k ;α, β) if and only if
AMAT

MAM = βAM + α(J − AM) where AM = ∪i∈MAi .



Theorem (Xu, ’23)
Let X = (X , {Ri}0≤i≤3) be a self-dual association scheme such
that R1, R2, and R0 ∪ R3 give three partial geometric designs.
Then either (i) or (2) holds:
(i) X is primitive and there exists an integer m such that
m ≡ 0 mod 3 and the character table of X is

1 m(m − 1) m(m + 1) (m − 1)(m + 1)
1 m 0 −m − 1
1 0 −m m − 1
1 −m m −1

 .
(ii) X is imprimitive and there exists an odd integer m such that
the character table is either

1 m(m+1)
2

m(m+1)
2 m

1 m+1
2

−m−1
2 −1

1 −m−1
2

m+1
2 −1

1 −m−1
2

−m−1
2 m

 or


1 m(m+1)

2
m(m+1)

2 m
1 m+1

−2i
m+1
2i −1

1 m+1
2i

m+1
−2i −1

1 −m−1
2

−m−1
2 m

 .
Conversely, if the character table of X is one of the above, then
R1,R2, and R0 ∪ R3 of X induce partial geometric designs.



Q. Is there such a primitive association schemes of order 3m where
m 6= 3p?

Q. Find all such imprimitive association schemes!
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