Association Schemes, Directed Strongly Regular Graphs and Partial Geometric Designs

Sung Y. Song

(based on works of O. Olmez, K. Nowak and T. Tranel)

Iowa State University

Waterloo Seminar on Algebraic Graph Theory June 19, 2023

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Objects

We discuss the characteristics of partial geometric designs whose concurrence matrices are circulant. If time permits we examine such partial geometric designs arising from association schemes.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Finite Incidence Structures & t-Designs

Characterization of Partial Geometric Designs (PGDs)

Association Schemes and PGDs

PGDs from Association Schemes

Links of incidence structures and graphs

- partial geometries \longleftrightarrow (directed) strongly regular graphs
- partial geometric designs \longleftrightarrow (directed) strongly regular graphs
- \bullet partial geometric designs \longleftrightarrow relation graphs of association schemes

Study the characteristics of partial geometric designs and related incidence structures and combinatorial objects.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Finite incidence structure

A finite incidence structure is a triple $(P, \mathcal{B}, \mathcal{I})$ consisting of

- a finite set P of points,
- \bullet a finite set ${\cal B}$ of *blocks*, and
- an *incidence* relation $\mathcal{I} \subseteq P \times \mathcal{B}$.

t-design

In particular, when

 $\mathcal{B} \subseteq \{B : \ \emptyset \neq B \subset P\} \quad \text{and} \quad (p,B) \in \mathcal{I} \iff p \in B, \\ (P,\mathcal{B},\mathcal{I}) \text{ is called a (non-trivial, simple) } design \text{ denoted by } (P,\mathcal{B}).$

A design (P, \mathcal{B}) with |P| = v and $|\mathcal{B}| = b$ is called a 1-(v, b, k, r)design if $\forall B \in \mathcal{B}, |B| = k$ and $\forall p \in P, |\{B \in \mathcal{B} : B \ni p\}| = r$.

For $t \ge 2$, a t- (v, b, k, r, λ) design is a 1-(v, b, k, r) design such that every set of t points is contained in λ blocks. Denote it by t- (v, k, λ) design: $\lambda {v \choose t} = b {k \choose t}$.

Partial geometry

A partial geometry $pg(r, k, \alpha)$ for $\alpha \ge 1$, is a 1-(v, b, k, r) design such that

- it is geometric; i.e., any two points have at most one common incident block, and
- for any antiflag (p, B) of the design there exist α blocks containing p and intersecting B.
 - A $pg(r, k, \alpha)$ has

$$v = k + \frac{1}{\alpha}k(k-1)(r-1)$$

$$b = r + \frac{1}{\alpha}r(r-1)(k-1).$$

• A $pg(r, k, \alpha)$ is a 2-(v, k, 1) design if and only if $\alpha = k$.

シック・ 川 ・ 山・ ・ 川・ ・ 四・ ・ ロ・

Partial geometric design (PGD)

Given a 1-(v, b, k, r) design (P, \mathcal{B}) , $\forall (p, B) \in P \times \mathcal{B}$, let

$$s(p,B):=|\{(q,C): q\in B\cap C, C\ni p\}|.$$

$\mathsf{PGD}(v, b, k, r; \alpha, \beta)$

A PGD with parameters $(v, b, k, r; \alpha, \beta)$ is a 1-(v, b, k, r) design (P, B) satisfying the property:

 $^{\forall}(p,B) \in P \times \mathcal{B}$, there exist constants α and β such that

$$s(p,B) = \begin{cases} \beta & \text{if } p \in B, \\ \alpha & \text{if } p \notin B. \end{cases}$$

Parameters of a PGD

Given a PGD $(v, b, k, r; \alpha, \beta)$, let $n = \beta - \alpha$, (v - k) $\alpha + k\beta = k^2 r$ ($v = \frac{1}{\alpha}k(kr - n)$; $b = \frac{1}{\alpha}r(kr - n)$ ($k + r \leq n + \alpha + 1 = \beta + 1 \leq kr$.

Incidence matrix

Let N be the incidence matrix of a PGD($v, b, k, r; \alpha, \beta$). Let J denote the all-1 matrix (not necessarily square). Then we have

$$IN = kJ, \quad NJ = rJ, \quad and$$

$$NN^{\top}N = \beta N + \alpha (J - N).$$

Concurrence λ_{pq} of points p and q (Neumaier) Given a PGD($v, b, k, r; \alpha, \beta$) and for $p, q \in P$, let

(2)

$$\lambda_{pq} := |\{B \in \mathcal{B} : p, q \in B\}| = \left\lfloor NN^T \right\rfloor_{pq}.$$

$$s(p,B) = \sum_{q \in B} \lambda_{pq} = [NN^T N]_{pB} = [\beta N + \alpha (J - N)]_{pB}.$$

$$= \left[(nN + \alpha J) N^T \right]_{pq} = \sum_{B:B \ni q} s(p, B) = \begin{cases} \beta r & \text{if } p = q \\ n\lambda_{pq} + \alpha r & \text{if } p \neq q \end{cases}$$

Concurrence profiles of a PGD

A PGD($v, b, k, r; \alpha, \beta$) holds one, two or three concurrences:

 $\lambda_{pq} \in \{\lambda_1, (\lambda_2), ((\lambda_3))\}, \quad r \ge \lambda_1 > \lambda_2 > \lambda_3 \ge 0;$

• 2-
$$(v, k, \lambda) \equiv \mathsf{PGD}\left(v, \frac{\lambda v(v-1)}{k-1}, k, \frac{\lambda(v-1)}{k-1}; \lambda k, \lambda(k-1)+r\right)$$
:
 $\lambda_{pq} \in \{\lambda\}.$

•
$$pg(k, r, \alpha) \equiv PGD(v, b, k, r; \alpha, \beta): \lambda_{pq} \in \{1, 0\}.$$

• A transversal design $TD_{\lambda}(k, u)$, (where $u = \frac{v}{k}$) is a PGD($ku, \lambda u^2, k, \lambda u; \lambda(k-1), \lambda(k-1) + \lambda u$).

$$\lambda_{pq} = \begin{cases} 0 & \text{if } p, q \text{ belong to the same group} \\ \lambda & \text{else} \end{cases}$$

Concurrences of a PGD and spectrum of NN^{T} (Neumaier) Let (P, B) be a PGD $(v, b, k, r; \alpha, \beta)$ and let N be its incidence matrix.

• NN^{T} has two or three distinct eigenvalues; namely,

$$\operatorname{Spec}(NN^T) = [(kr)^1, n^{\sigma}, 0^{\nu-1-\sigma}]$$

If
$$\lambda_{pq} \in \{\lambda_1, \lambda_2\}$$
 for $\forall p, q, (p \neq q) \in P$ with
$$r \geq \lambda_1 > \lambda_2 \geq 0, \quad \text{then for each } p,$$

$$k_1 := |\{q \in P : \lambda_{pq} = \lambda_1\}| = \frac{r(k-1) - (v-1)\lambda_2}{\lambda_1 - \lambda_2}.$$

Partitioning $P \times P$ for a PGD (Lei-Qu-Shan)

Let (P, \mathcal{B}) be a PGD $(v, b, k, r; \alpha, \beta)$. Suppose $\lambda_{xy} \in \{\lambda_1, \lambda_2, \lambda_3\}$ for $x, y \in P, x \neq y$. If relations R_i , for i = 1, 2, 3, are given by

$$R_i := \{(x, y) \in P \times P : \lambda_{xy} = \lambda_i\}$$

then $R_0 \cup R_1 \cup R_2 \cup R_3 = P \times P$ where $R_0 = \{(x, x) : x \in P\}$. For $i \in \{1, 2, 3\}$, with $\{h, j\} = \{1, 2, 3\} - \{i\}$,

$$k_i = |R_i(x)| := |\{y \in P : \lambda_{xy} = \lambda_i\}|$$
$$= \frac{(n + \alpha - r)r - r(k - 1)(\lambda_h + \lambda_j) + (v - 1)\lambda_h\lambda_j}{(\lambda_i - \lambda_h)(\lambda_i - \lambda_j)}.$$

For k_i , use $v - 1 = k_1 + k_2 + k_3$ and

$$k_1\lambda_1 + k_2\lambda_2 + k_3\lambda_3 = \sum_{y \in P - \{x\}} \lambda_{xy} = r(k-1),$$

$$k_1\lambda_1^2 + k_2\lambda_2^2 + k_3\lambda_3^2 = \sum_{y \in P - \{x\}} \lambda_{xy}^2 = (n+\alpha-r)r.$$

Association scheme from a PGD (Lei-Qu-Shan)

Let (P, \mathcal{B}) be a PGD $(v, b, k, r; \alpha, \beta)$. Suppose $\lambda_{xy} \in \{\lambda_1, \lambda_2, \lambda_3\}$ for any $x \neq y$ and $\lambda_3 = r - n$. Let R_i be given by

$$R_i := \{(x, y) \in P \times P : \lambda_{xy} = \lambda_i\} \text{ for } i = 1, 2, 3.$$

Then $(P, \{R_i\}_{[3]})$ becomes an association scheme.

Q. Find such PGDs! (i) $\lambda_1 > \lambda_2 > \lambda_3 \ge 0$ and (ii) $\lambda_3 = r - n$

Qu-Lei's examples: PGD(3r, $\frac{3}{4}r^2$, 4, r; 4, r+4), for r even For example, when r = 4, take $V = \mathbb{Z}_{12}$, \mathcal{B} consists of:

$\{0, 1, 3, 4\}$	$\{0, 1, 5, 6\}$	$\{0, 2, 7, 8\}$	$\{0, 2, 9, 10\}$
$\{1, 7, 8, 11\}$	$\{1,9,10,11\}$	$\{2, 3, 4, 11\}$	$\{2, 5, 6, 11\}$
$\{3, 5, 7, 9\}$	$\{3, 5, 8, 10\}$	$\{4, 6, 7, 9\}$	$\{4,6,8,10\}$

Example (Tranel-S.): PGD(8, 8, 4, 4; 6, 10)

Observe that:

 NN^{T} is recognized as an association relation table for a scheme. Notice that NN^{T} is not a circulant matrix PGDs having circulant concurrence matrices (Tranel-S.)

- PGD(8,10,4,5;8,12) with $NN^T = C[5,2,3,2,1,2,3,2]$ and \mathcal{B} : {1,2,3,4}, {1,2,3,8}, {1,3,5,7}, {1,4,6,7}, {1,6,7,8} {2,4,5,7}, {2,4,6,8}, {2,5,7,8}, {3,4,5,6}, {3,5,6,8}. (*N* is found by a computer search.)
- **PGD**(12, 12, 4, 4; 4, 8) with *NN^T* = *C*[4, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1]: *P* = {0, 1, 2, ..., 9, *a*, *b*} and *B* := {0, 1, 3, 4}, {0, 2, 3, 5}, {0, 7, 9, *a*}, {0, 8, 9, *b*}, {1, 2, *a*, *b*}, {1, 4, 6, 9}, {1, 5, 8, *a*}, {2, 4, 7, *b*}, {2, 5, 6, 9}, {3, 6, 7, *a*}, {3, 6, 8, *b*}, {4, 5, 7, 8}.
- PGD(12, 14, 6, 7; 18, 24) with $NN^T = C[7, 3, 4, 3, 4, 3, 1, 3, 4, 3, 4, 3]$ Via computer search we have the following blocks: {0, 1, 2, 3, 4, 5}, {0, 1, 2, 3, 4, b}, {0, 1, 5, 8, 9, a}, {0, 2, 4, 6, 8, a}, {0, 2, 5, 7, 9, a}, {0, 3, 7, 8, a, b}, {0, 4, 7, 8, 9, b}, {1, 2, 6, 9, a, b}, {1, 3, 5, 6, 8, a}, {1, 3, 5, 7, 9, b}, {1, 4, 6, 8, 9, b}, {2, 3, 6, 7, a, b}, {2, 4, 5, 6, 7, 9}, {3, 4, 5, 6, 7, 8}.

Circulant matrix

An $n \times n$ matrix of the form

$$C = \begin{bmatrix} c_0 & c_1 & c_2 & \dots & c_{n-2} & c_{n-1} \\ c_{n-1} & c_0 & c_1 & c_2 & \dots & c_{n-2} \\ c_{n-2} & c_{n-1} & c_0 & c_1 & \dots & c_{n-3} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ c_2 & \vdots & \vdots & \ddots & \ddots & c_1 \\ c_1 & c_2 & c_3 & \dots & c_{n-1} & c_0 \end{bmatrix}$$

where $c_0, c_1, c_2, \ldots, c_{n-1}$ are complex numbers, is called a circulant matrix.

The eigenvalues of C are given by $f(\omega^k)$ for k = 0, 1, ..., n-1where ω is an n^{th} -root of unity and

$$f(\lambda) = c_0 + c_1\lambda + c_2\lambda^2 + \cdots + c_{n-2}\lambda^{n-2} + c_{n-1}\lambda^{n-1}$$

Example

Let $P = \{1, 2, 3, 4, 5, 6\}$ and $\mathcal{B} = \{\{1, 2, 3\}, \{1, 5, 6\}, \{2, 4, 6\}, \{3, 4, 5\}\}$. Then (P, \mathcal{B}) is a PGD with parameters (6, 4, 3, 2; 2, 4). The incidence and concurrence matrices are, respectively:

ロ ト 4 目 ト 4 目 ト 4 目 - りへつ

More specifically, the PGD is a $TD_1(3,2)$.

Proposition: Tranel-S

For any $v \equiv 0 \mod 2$ with $v \ge 6$, there is a

$$PGD(v, \frac{1}{8}v(v-2), 4, \frac{1}{2}v-1; 4, v)$$

whose concurrence matrix is the circulant

$$NN^{T} = C[\frac{1}{2}v-1, \underbrace{1, \ldots, 1}_{\frac{1}{2}v-1}, \frac{1}{2}v-1, \underbrace{1, \ldots, 1}_{\frac{1}{2}v-1}]$$

with the spectrum

$$\left\{(2\nu-4)^1, (\nu-4)^{\frac{1}{2}\nu-1}, 0^{\frac{1}{2}\nu}\right\}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへ⊙

Examples: Tranel-S.

There are at least 11 infinite families of PGDs of order 12 whose concurrence matrices are circulant.

A circulant matrix $C = C[c_0, c_1, c_2, c_3, c_4, c_5, c_6, c_5, c_4, c_3, c_2, c_1]$ is feasible to be recognized as the concurrence matrix, NN^T , of a $PGD\left(12, \frac{12r}{k}, k, r; \frac{k(kr-n)}{12}, n + \frac{(kr-n)}{12}\right)$ when

Spec(
$$NN^T$$
) = { kr^1 , n^σ , $0^{11-\sigma}$ } where $\sigma = \frac{r(12-k)}{n}$.

Using the spectrum of NN^T along with the conditions on the eigenvalues of a circulant matrix, we use a linear program to find all PGDs arise for k = 3, 4, and 6 as in the following table.

PGDs of order 12 having circulant concurrence matrices

σ	b	k	r	(α, β)	NN ^T	Description	#	IDs in [SvD]
9	4r	3	r	$\left(\frac{r}{2},\frac{3}{2}r\right)$	$C[r, \frac{r}{4}, \frac{r}{4}, 0, \frac{r}{4}, \frac{r}{4}, 0]$	$\underset{i=1}{\overset{4}{\biguplus}} r_i TD_i(3, 4)$	*	N37
4	3r	4	r	$(\frac{2}{3}r, \frac{8}{3}r)$	$C[r, \frac{r}{3}, 0, \frac{r}{3}, 0, \frac{r}{3}, r]$	$TD_1(2,3)\otimes J_{2,\frac{r}{2}}$	1	N48
5	3r	4	r	$(\frac{4}{5}r, \frac{12}{5}r)$	$C[r, \frac{r}{5}, \frac{r}{5}, \frac{r}{5}, \frac{r}{5}, \frac{r}{5}, \frac{r}{5}, r]$	2-(6, 2, 1) $\otimes J_{2, \frac{r}{E}}$	1	N33
8	3r	4	r	(r, 2r)	$C[r, \frac{r}{4}, \frac{r}{4}, \frac{r}{2}, \frac{r}{4}, \frac{r}{4}, 0]$	$N \otimes J_{1,\frac{r}{4}}$	≥ 1	N19
8	3r	4	r	(r, 2r)	$C[r, \frac{r}{3}, \frac{r}{3}, \frac{r}{3}, 0, \frac{r}{3}, \frac{r}{3}]$	$TD_1(4,3) \otimes J_{1,\frac{r}{2}}$	≥ 1	N47
3	2r	6	r	(2r, 4r)	$C[r, \frac{r}{2}, \frac{r}{2}, 0, \frac{r}{2}, \frac{r}{2}, r]$	$D_{1,6,r} \otimes J_{2,1}^{3}$	*	N22, N41, N62
3	2 <i>r</i>	6	r	(2r, 4r)	$C[r, \frac{r}{3}, \frac{r}{3}, \frac{r}{3}, \frac{r}{3}, \frac{r}{7}, \frac{r}{3}, \frac{r}{3}]$	$2-(4, 2, 1) \otimes J_{3, \frac{r}{2}}$	1	N22, N50
5	2r	6	r	$(\frac{12}{5}r, \frac{18}{5}r)$	$C[r, \frac{2}{5}r, \frac{2}{5}r, \frac{2}{5}r, \frac{2}{5}r, \frac{2}{5}r, \frac{2}{5}r, r]$	$2-(6,3,2) \otimes J_{2,\frac{r}{5}}$	1	N61
6	2 <i>r</i>	6	r	$(\frac{5}{2}r, \frac{7}{2}r)$	$C[r, \frac{r}{2}, \frac{r}{2}, \frac{r}{2}, \frac{r}{2}, \frac{r}{2}, \frac{r}{2}, 0]$	TD <u>r</u> (6, 2)	≥ 1	N21, N39, N60
7	2r	6	r	$(\frac{18}{7}r, \frac{24}{7}r)$	$C[r, \frac{3}{7}r, \frac{4}{7}r, \frac{3}{7}r, \frac{4}{7}r, \frac{3}{7}r, \frac{7}{7}r]$	$N \otimes J_{1,\frac{r}{2}}$	≥ 1	N27
9	2 <i>r</i>	6	r	$(\frac{8}{3}r, \frac{10}{3}r)$	$C[r, \frac{r}{2}, \frac{r}{2}, \frac{r}{3}, \frac{r}{2}, \frac{r}{2}, \frac{r}{3}]$	$N \otimes J_{1,\frac{r}{6}}$	≥ 1	N20

*SvD: Labels of the designs listed in "van Dam, E. R., Spence, E.: Combinatorial designs with two singular values II. Partial geometric designs. *Linear Alg. Appl.*, **396**, 303–316 (2005)."

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

- Q. So far all known PGDs have at most 3 distinct concurrences (aside from $c_0 = r$). Show that all PGDs have at most 3 distinct concurrences!
- Q. Characterize PGDs that having circulant concurrence matrices!

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Q. Classify all PGDs having circulant concurrence matrices!

PGDs from 3-class fusion of Hamming schemes H(d, 3), $d \ge 3$ Let X be the ternary linear [7,5]-code with generating matrix.

Define relations R_i s on X according to the (Hamming) distance δ .

$$\begin{array}{rcl} R_0 &=& \{(x,x) \mid x \in X\} \\ R_1 &=& \{(x,y) \mid \delta(x,y) \in \{1,4,7\}\} \\ R_2 &=& \{(x,y) \mid \delta(x,y) \in \{2,5\}\} \\ R_3 &=& \{(x,y) \mid \delta(x,y) \in \{3,6\}\}, \end{array}$$

Then $\mathcal{X} = (X, \{R_i\}_{0 \le i \le 3})$ is a 3-class association scheme.

① The intersection matrices B_1, B_2 , and B_3 of \mathcal{X} are given by

0	1	0	0	0	0	1	0		0	0	0	1]
72	21	24	18	0	30	24	27		0	20	24	27
0	30	24	27	90	30	33	36		0	30	32	27
0	20	24	27	0	30	32	27		80	30	24	25

2 We have the following identities in its Bose-Mesner algebra:

$$\begin{array}{rcl} A_1^3 &=& 1593A_1 + 1512(J-A_1), \\ A_2^3 &=& 3051A_2 + 2970(J-A_2), \\ A_3 + I)^3 &=& 2241(A_3 + I) + 2160(J-A_3 - I). \end{array}$$

• If we take $N = A_1$, N becomes the incidence matrix of a PGD.

Nowak-Olmez-S, 2015

Let \mathcal{Z} be a 3-class association scheme. Suppose that the character table P of \mathcal{Z} is given by

$$P = \begin{bmatrix} 1 & m(m-1) & m(m+1) & (m-1)(m+1) \\ 1 & m & 0 & -m-1 \\ 1 & 0 & -m & m-1 \\ 1 & -m & m & -1 \end{bmatrix}$$

Then the relation graphs A_1 , A_2 , and $A_3 + A_0$ of \mathcal{Z} give rise to three PGDs with parameters v = b and $(v, k; \alpha, \beta)$:

$$(3m^2, m(m-1); \frac{1}{3}m^2(m^2-3m+2), \frac{1}{3}m^2(m^2-3m+5)),$$

$$(3m^2, m(m+1); \frac{1}{3}m^2(m^2+3m+2), \frac{1}{3}m^2(m^2+3m+5)),$$
$$(3m^2, m^2; \frac{1}{3}m^2(m^2-1), \frac{1}{3}m^2(m^2+2)).$$

A PGD induced from a set of associate relations

Let $\mathcal{X} = (X, \{R_i\}_{[d]})$ be an association scheme and let $R_M = \bigcup_{i \in M} R_i$ where $\emptyset \neq M \subset [d] - \{0\}$. For each $x \in X$ define

$$B_x = \{y : (x, y) \in R_M\}$$

Suppose \mathcal{X} has a fusion scheme containing a relation R_M . Then $(X, \{B_x : x \in X\})$ becomes a 1-(v, b, k, r)-design with $v = b = |X|, k = r = \sum_{i \in M} k_i$.

Xu, '22

Suppose an association scheme $\mathcal{X} = (X, \{R_i\}_{[d]})$ contains a 'block' of relations $\{R_i : i \in M\}$ where $\emptyset \neq M \subset [d] - \{0\}$ such that for each $x \in X$, $|B_x| = |\{y : (x, y) \in \bigcup_{i \in M} R_i\}| = k$. Then $(X, \{B_x : x \in X\})$ is a PGD $(|X|, |X|, k, k; \alpha, \beta)$ if and only if $A_M A_M^T A_M = \beta A_M + \alpha (J - A_M)$ where $A_M = \bigcup_{i \in M} A_i$.

Theorem (Xu, '23)

Let $\mathcal{X} = (X, \{R_i\}_{0 \le i \le 3})$ be a self-dual association scheme such that R_1 , R_2 , and $R_0 \cup R_3$ give three partial geometric designs. Then either (i) or (2) holds:

(i) \mathcal{X} is primitive and there exists an integer *m* such that $m \equiv 0 \mod 3$ and the character table of \mathcal{X} is

[1	m(m-1)	m(m+1)	(m-1)(m+1)
1	т	0	-m - 1
1	0	-m	m-1
1	-m	т	-1

(ii) \mathcal{X} is imprimitive and there exists an odd integer m such that the character table is either

$$\begin{bmatrix} 1 & \frac{m(m+1)}{2} & \frac{m(m+1)}{2} & m\\ 1 & \frac{m+1}{2} & \frac{-m-1}{2} & -1\\ 1 & \frac{-m-1}{2} & \frac{m+1}{2} & -1\\ 1 & \frac{-m-1}{2} & \frac{-m-1}{2} & m \end{bmatrix} \text{ or } \begin{bmatrix} 1 & \frac{m(m+1)}{2} & \frac{m(m+1)}{2} & m\\ 1 & \frac{m+1}{2i} & \frac{m+1}{2i} & -1\\ 1 & \frac{m+1}{2i} & \frac{m+1}{-2i} & -1\\ 1 & \frac{-m-1}{2} & \frac{-m-1}{2} & m \end{bmatrix}$$

Conversely, if the character table of \mathcal{X} is one of the above, then R_1, R_2 , and $R_0 \cup R_3$ of \mathcal{X} induce partial geometric designs.

Q. Is there such a primitive association schemes of order 3m where $m \neq 3^p$?

Q. Find all such imprimitive association schemes!

References

- Brouwer, A. E., Olmez, O., Song, S. Y.: Directed strongly regular graphs from 1¹/₂-designs. *European J. Combin.* 33, no. 6, 1174–1177 (2012).
- Lei, J., Qu, J., Shan, X.: Partial geometric designs with block sizes three & four. J. Combin. Designs. 29 (5), 271–306 (2021).
- Neumaier, A.: t¹/₂-Designs. J. Combin. Thry., (A) 28, 226–248 (1980).
- Nowak, K., Olmez, O., Song, S.Y.: Partial geometric difference families. J. Combin. Designs. 24(3), 112–131 (2015).
- Olmez, O., Song, S. Y.: Some families of directed strongly regular graphs obtained from certain finite incidence structures. *Graphs Combin.*, 30, 1529–1549 (2014).
- van Dam, E. R., Spence, E.: Combinatorial designs with two singular values II. Partial geometric designs. *Linear Alg. Appl.*, 396, 303–316 (2005).
- Song, S. Y., Tranel, T.: Partial geometric designs having circulant concurrence matrices *J. Combin. Designs*, 30 (2022), no. 6, 420–460.