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Can all information be recovered from spectrum?



Some history: spectral determinacy of graphs

1957 (Collatz and Sinogowitz) 
No, non-isomorphic graphs can have the same adjacency spectrum.

1973 (Schwenk)
Almost all trees are cospectral!
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Almost all trees are cospectral!

1993 (From Godsil’s book)
“It is an open question whether almost all graphs are characterized by their characteristic 
polynomials. It is not even clear if we should seek to prove this, or to disprove it.”

2003 (van Dam and Haemers)
Conjecture: almost all graphs are determined by spectrum.      
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Some history: spectral determinacy of graphs

1957 (Collatz and Sinogowitz) 
No, non-isomorphic graphs can have the same adjacency spectrum.

2023 (Koval and Kwan) 
At least exp 𝑐𝑛 graphs are determined by spectrum. 

1973 (Schwenk)
Almost all trees are cospectral!

1993 (From Godsil’s book)
“It is an open question whether almost all graphs are characterized by their characteristic 
polynomials. It is not even clear if we should seek to prove this, or to disprove it.”

2003 (van Dam and Haemers)
Conjecture: almost all graphs are determined by spectrum.      
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Some history: generalized spectral determinacy
1980 (Johnson and Newman) 

“It is our view, however, that to some extent these examples are algebraic accidents 
due to the interpretation of the formal symbols 0 and 1 as real numbers.”

Definition. (Generalized cospectral) 
Graphs 𝐺,𝐻 are said to be generalized cospectral if 

spec AG
𝑥,𝑦

= spec AH
𝑥,𝑦

∀𝑥, 𝑦 ∈ ℝ.

where 𝐴𝐺
𝑥,𝑦

is the variant on the adjacency matrix with 1 → 𝑥 and 0 → 𝑦.
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2006 (Wang and Xu)
Sufficient condition for generalized spectral determinacy. 

2017 (Wang) – 2023 (Qui, Wang, Zhang) 
Improved and rephrased the conditions. 

8 Cokernel statistics of walk matrices: Towards generalized spectral determinacy of random graphs   - Alexander Van Werde

Definition. (Generalized cospectral) 
Graphs 𝐺,𝐻 are said to be generalized cospectral if 

spec AG
𝑥,𝑦

= spec AH
𝑥,𝑦

∀𝑥, 𝑦 ∈ ℝ.

where 𝐴𝐺
𝑥,𝑦

is the variant on the adjacency matrix with 1 → 𝑥 and 0 → 𝑦.



Some history: generalized spectral determinacy
1980 (Johnson and Newman) 

“It is our view, however, that to some extent these examples are algebraic accidents 
due to the interpretation of the formal symbols 0 and 1 as real numbers.”

2006 (Wang and Xu)
Sufficient condition for generalized spectral determinacy. 

2017 (Wang) – 2023 (Qui, Wang, Zhang) 
Improved and rephrased the conditions. 

9 Cokernel statistics of walk matrices: Towards generalized spectral determinacy of random graphs   - Alexander Van Werde

Definition. (Generalized cospectral) 
Graphs 𝐺,𝐻 are said to be generalized cospectral if 

spec AG
𝑥,𝑦

= spec AH
𝑥,𝑦

∀𝑥, 𝑦 ∈ ℝ.

where 𝐴𝐺
𝑥,𝑦

is the variant on the adjacency matrix with 1 → 𝑥 and 0 → 𝑦.

Conjecture (Wang): 
Satisfied with non-

vanishing probability! 



Sufficient condition for generalized spectral determinacy
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Definition (Walk matrix)
Given an integer matrix 𝑿 ∈ ℤ𝑛×𝑛, consider the matrix 

𝑾≔ 𝑒,𝑿𝑒, , 𝑿2𝑒, … , 𝑿𝑛−1𝑒

where 𝑒 = 1,… , 1 T.
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Definition (Walk matrix)
Given an integer matrix 𝑿 ∈ ℤ𝑛×𝑛, consider the matrix 

𝑾≔ 𝑒,𝑿𝑒, , 𝑿2𝑒, … , 𝑿𝑛−1𝑒

where 𝑒 = 1,… , 1 T.

Interpret 𝑿𝑖,𝑗 as edge multiplicity.

Then, 𝑾𝑖,𝑗 counts walks of length 𝑗 − 1 ending in 𝑖.

Example.

𝑾5,3 = 3 ⋅ 1 = 3
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Definition (Walk matrix)
Given an integer matrix 𝑿 ∈ ℤ𝑛×𝑛, consider the matrix 

𝑾≔ 𝑒,𝑿𝑒, , 𝑿2𝑒, … , 𝑿𝑛−1𝑒

where 𝑒 = 1,… , 1 T.

Notation
𝑾 ℤ𝑛 ≔ 𝑾𝑣 ∶ 𝑣 ∈ ℤ𝑛 and coker 𝑾 ≔ ℤ𝑛/𝑾(ℤ𝑛)

= {𝑝 𝑿 𝑒: 𝑝 ∈ ℤ[𝑥]},

Given an Abelian group 𝐺 and a prime power 𝑝𝑚, let 𝐺𝑝𝑚 ≔ 𝐺/𝑝𝑚𝐺.



Sufficient condition for generalized spectral determinacy

14 Cokernel statistics of walk matrices: Towards generalized spectral determinacy of random graphs   - Alexander Van Werde

Definition (Walk matrix)
Given an integer matrix 𝑿 ∈ ℤ𝑛×𝑛, consider the matrix 

𝑾≔ 𝑒,𝑿𝑒, , 𝑿2𝑒, … , 𝑿𝑛−1𝑒

where 𝑒 = 1,… , 1 T.

Theorem. (Wang 2017; see also Qui, Wang, and Zhang 2023)

Consider a simple graph 𝐺 and set 𝑿 ≔ 𝑨𝐺 . Assume that coker 𝐖 22 ≅ ℤ/2ℤ ⌊𝑛/2⌋

and coker 𝐖 𝑝2 ∈ {0, ℤ/𝑝ℤ} for odd primes 𝑝. 

Then, 𝐺 is determined by generalized spectrum.

Notation
𝑾 ℤ𝑛 ≔ 𝑾𝑣 ∶ 𝑣 ∈ ℤ𝑛 and coker 𝑾 ≔ ℤ𝑛/𝑾(ℤ𝑛)

= {𝑝 𝑿 𝑒: 𝑝 ∈ ℤ[𝑥]},

Given an Abelian group 𝐺 and a prime power 𝑝𝑚, let 𝐺𝑝𝑚 ≔ 𝐺/𝑝𝑚𝐺.



Suppose 𝑿 is random. 

How can we study the distribution of 𝐜𝐨𝐤𝐞𝐫(𝑾)?
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Results
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Disclaimer. 
For technical reasons, all results in this talk assume that 𝑿 has independent entries.

This implies that we can not (yet) deal with the adjacency matrices of simple random graphs: 
those have dependent entries due to the symmetry constraint 𝑿 = 𝑿T.
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Results

Assumption 1st result 

𝑿 has independent Unif 0,1, … , 𝑝𝑚 − 1 -distributed entries. 

Theorem 1. 
We have 

lim
𝑛→∞

ℙ coker 𝑾 𝑝𝑚 ≅⊕𝑖=1
ℓ ℤ

𝑝𝜆𝑖ℤ
= Π𝑖=𝑖0

∞ 1 − 𝑝− 𝑖+1 Π𝑗=1
ℓ 𝑝−𝑗𝛿𝑗

for every 0 = 𝜆0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆ℓ ≤ 𝑚.

Here, 𝑖0 ≔ #{1 ≤ 𝑖 ≤ ℓ: 𝜆𝑖 = 𝑚 } and 𝛿𝑗 = 𝜆ℓ−𝑗+1 − 𝜆ℓ−𝑗 .
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Proof idea

There is dependence!
Observe that if

𝑿𝑗𝑒 ∈ spanℤ 𝑒, 𝑿𝑒, … , 𝑿𝑗−1𝑒 + 𝑝𝑘ℤ𝑛

then also

𝑿𝑗+1𝑒 ∈ spanℤ 𝑒, 𝑿𝑒, … , 𝑿𝑗−1𝑒, 𝑿𝑗𝑒 + 𝑝𝑘ℤ𝑛.

Key observation. (Informally)
Aside from the obstruction above, there is independence.
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Interpretable proof! 
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Interpretable proof! 

Sadly, the technique is not robust.



Interpretable proof! 

Sadly, the technique is not robust.

How can we study unweighted graphs? 

24 Cokernel statistics of walk matrices: Towards generalized spectral determinacy of random graphs   - Alexander Van Werde



Results

Assumption simplified 2nd result 

Suppose 𝑿 has independent {0,1}-valued   
entries.  (Not necessarily identically 
distributed.)

Further, consider a sparse setting: 

ℙ 𝑿𝑖,𝑗 = 1 ≤ ℙ 𝑿𝑖,𝑗 = 0

But not too sparse:

ℙ 𝑿𝑖,𝑗 = 1 ≫ ln(𝑛)/𝑛
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Results

Technical condition. 
Additionally assume tightness:

lim
𝐶→∞

liminf
𝑛→∞

ℙ #coker 𝑾 𝑝𝑚 ≤ 𝐶 = 1.
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Assumption simplified 2nd result 
𝑿 has independent {0,1}-valued entries with ℙ(𝑿𝑖,𝑗 = 1) ≤ ℙ(𝑿𝑖,𝑗 = 0) and

ℙ 𝑿𝑖,𝑗 = 1 ≫ ln(𝑛)/𝑛

Theorem 2. (Simplified)
Fix a finite collection of primes 𝒫.

Then, given the conditions above,

1. The same limiting law applies to coker 𝑾 𝑝𝑚 for every 𝑝 ∈ 𝒫.

2. We have asymptotic independence for different primes 𝑝 ∈ 𝒫. 



Robust proof technique: 

category-theoretic moment method. 
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Category-theoretic moment method

Definition. (Category-theoretic moment)
Consider a ring 𝑅, a deterministic 𝑅-module 𝑁, and a random 𝑅-module 𝑌.

Then, the 𝑁-moment of 𝑌 is  𝔼[#Sur𝑅(𝑌, 𝑁)]. 

Theorem. (Sawin and Wood, 2022)
Consider a random 𝑅-module 𝑌 and a sequence of random 𝑅-modules 𝑌𝑛.

Then, under certain conditions, to prove that 𝑌𝑛 → 𝑌 in distribution it suffices to show that
lim
𝑛→∞

𝔼 #Sur𝑅 𝑌𝑛, 𝑁 = 𝔼 #Sur𝑅 𝑌, 𝑁

for every fixed finite 𝑅-module 𝑁. 
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Category-theoretic moment method

We show that 𝔼 #Surℤ 𝑥 coker 𝑾 ,𝑁 = #𝑁 −1 for every finite ℤ[𝑥]-module 𝑁.

Related problems were studied by e.g., Nguyen and Wood (2022) and Cheong and Yu (2023).

30 Cokernel statistics of walk matrices: Towards generalized spectral determinacy of random graphs   - Alexander Van Werde



Category-theoretic moment method

We show that 𝔼 #Surℤ 𝑥 coker 𝑾 ,𝑁 = #𝑁 −1 for every finite ℤ[𝑥]-module 𝑁.

Related problems were studied by e.g., Nguyen and Wood (2022) and Cheong and Yu (2023).

Proof sketch.
Using that group morphism 𝐹: ℤ𝑛 → 𝑁 descends to ℤ 𝑥 -module morphism from coker(𝑾)
if and only if 𝐹 𝑒 = 0 and 𝐹𝑿 = 𝑥𝐹,

𝔼[#Surℤ 𝑥 (coker 𝑾 ,𝑁)] = σ𝐹∈Surℤ ℤ𝑛,𝑁 : 𝐹 𝑒 =0ℙ 𝐹𝑿 = 𝑥𝐹 .

There are approximately #𝑁 𝑛−1 summands since
#{𝐹 ∈ Surℤ ℤ𝑛 , 𝑁 : 𝐹 𝑒 = 0} ≈ #{𝐹 ∈ Homℤ ℤ𝑛, 𝑁 : 𝐹 𝑒 = 0}. 

For typical 𝐹, one has ℙ 𝐹𝑿 = 𝑥𝐹 ≈ #𝑁 −𝑛.
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Thank you! 
Key reference related to this talk are as follows:

Generalized spectral determinacy:
W. Wang and C.-X. Xu. A sufficient condition for a 
family of graphs being determined by their generalized 
spectra. European Journal of Combinatorics, 2006. 

W. Wang. A simple arithmetic criterion for graphs
being determined by their generalized spectra. Journal 
of Combinatorial Theory, Series B, 2017.

L. Qiu, W. Wang, and H. Zhang. Smith normal form and 
the generalized spectral characterization of graphs.   

Discrete Mathematics, 2023

Category-theoretic moment method:
W. Sawin and M.M. Wood. The moment problem 
for random objects in a category. 
arXiv:2210.06279v1, 2022.

The current work: 
A. Van Werde. Cokernel statistics for walk matrices 
of directed and weighted random graphs. 
Combinatorics, Probability and Computing, 2025

Feel free to contact me! a.van.werde@tue.nl
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