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Non-backtracking walks on graphs
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Non-backtracking walk, Non-Backtracking Random Walk (NBRW)
Directed edges E - each undirected edge is a pair of directed edges
Edges connect e — f if h(e) = t(f) and e is not inverse of f

Non-backtracking adjacency operator B 0-1 E x E matrix, 1 if e - f

1
outdeg(e)  indeg(f)

Transition matrix P where P, ; = if e - f, zero otherwise

Stationary distribution v, - uniform on E

Graph G - undirected, connected, no degree one vertices, not a cycle

e f_»en(f)
t(e) 2

h(e) = t(f)

B and P are irreducible




p - Growth Rate of the Universal Cover

» G denotes the universal cover of G
» Infinite tree covering G:
» Choose some vertex v, in G
» V(@) - the set of all NB-walks from v,

» E(G) - NB-walks are adjacent
if one extends the other by one step

» Rate of growth -
p(G) = limsup|B, (v)|*/"

T—00

» p = Perron eigenvalue of B

The universal cover of
any 3-regular graph is the
3-regular tree




A - Rate of entropy growth

deg(v)

A= H(deg(v) —1) [El = 1_[ outdeg(e)|
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E, [log, outdeg(e)] = log, A

Expected number of random bits per NBRW step.
Rate of entropy growth.

e

te)  h(e) = t(f)

h(f)

outdeg(e) = deg(h(e) — 1) = the number of choices for f
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» Q; - set of length [ nb-walks w = (e, ..., €;)
» Probability space of length [ NBRW walks from v,

|E| 1_[ outdeg(el)

» Number of randomness bits: R(w) = YZSlog, outdeg(e;)
» E[R] =1-E,_[log, outdeg(e)] =[-log, A

— 1 -
» v, B'1 = B Q| = Xp=(e,,...epeq, PTlw] [1:Z3 outdeg(e;)
= Y, Prlw] 2R@) = Eq [2R] > 2Eq[Rl _ AL

1
> p(G) = p(B) = lim (vs B' 1)t > A




Some known results about p, A

» Ben-Hamou and Salez 2017
< Mixing time of NBRW on a random graph with given degrees is log, n (1 + 0

» Conchon-Kerjan 2022

J/
0’0

Mixing time of NBRW on a random n-lift of G is logyn (1 + 0(1)) whp

o

- Diameter of a random n-lift of G is log, n (1 + o(1)) whp

» The Moore bound - best-known upper bound on the girth g of a graph with n verti
< Alon, Hoory and Linial 2002 - Given the degree distribution, g < 2logan (1 +

% Hoory 2023 - For an n-lift of G, g < 2log,n(1+ 0(1))




Graphs with p = A?

7. d-regular-p=A=d—-1
2. Bipartite d;, dg bi-regular - p =A=,/(d, — 1)(dg — 1)

3. As above with edges replaced by length k paths
p=A=3d—1orp=A=7%%/(d,—1)(dg — 1)

o O O
Length 3 path

4. and infinitely more graphs...

such as this one with p = A =+/2




A Graph W]th p > /\ K4 minus an edge

» A=206=151...

0 0 1
» p=1.52... is the Perron eigenvalue of (2 0 0)

Length I=1000 NBRW on K4 minus an edge

« Observed
—— Normal distribution
—— Log2[A\]=0.6
— Log2[p]=0.605...

probability

0.58 0.59 0.60 0.61 0.62 log, p = llim TIOgZ E[27]

Num random bits / |



Theorem 1

A suspended path is a nb-path where all internal vertices have
degree 2 and the end vertices have larger degree.

The following conditions are equivalent:
. p=A
2. For every nb-cycle C in G

1_[ outdeg(e) = AlC!

eeC

3. For every suspended path P in G
outdeg(P) indeg(P) = A?PI




Theorem 2: The Variance Dichotomy

Random variable R; denoting the number of random bits
consumed by the length [ NBRW from the stationary distribution.

_{0(@) ifp=A
Var|R,| = {@(l) if p > A




Proof of Theorem 1

Suspended
Path
Condition

> p=A
Cycle
Condition




Suspended path condition — p = A

» nb-walk w = (ey, ...,e;) = PyP; -+ P._{ P, where P; are suspended paths
except possibly for Py, P, that may be partial suspended paths.
-1 s—1

> flw) = 1_[ outdeg(e;) = 1_[ outdeg(P;)

i=0 i i=0
s—1

1 — 1 1 1
= outdeg(P,)2 indeg(P;)2 outdeg(P;)2 | indeg(P,)?2
i=1

[s—1

= 0(1) - HAIPiI = 0(1) - A

i=1

1

1 T
» p=p(B) = }grglo(vs -BH-1)! = lim ( z Pr[w]f(m)) = A

wE




p = A — cycle condition (1/5)

» M, interpolation between Pand Bfor0 <t <1
(

1— t
Mp)er = (Pes t(B)e,f = joutdeg(e)l-t
\ 0 otherwise

ife—- f

Theorem (Kingman 1961):
p(My) < p(P)p(B)*




p = A — cycle condition (2/5)

Lemma: If p = Athen p(M,) =pt forall0<t<1
Proof:
Since p(B) = p and p(P) = 1. By Kingman p(M,) < pt.

v (M) 1

-1
Pr{w] 1_[ outdeg(e;)*
i=0

w=(eg,..,e])EN

— ZPT[&)](ZR(w))t — Eﬂl[ztR] > ZtE_Ql[R] — Atl
w

1
p(M) = lim (ve M)'T)L = At = pt




p = A — cycle condition (3/5)

Theorem (Nussbaum 1986):

If p(M,) = p(P)!"tp(B)t forsome 0 <t < 1andP, B are
non-negative irreducible matrices then:

1. Equality holds forall0 <t <1

2 P=kD™'BD
For a scalar k > 0 and positive diagonal matrix D




p = A — cycle condition (4/5)

Theorem:
If p = A then the cycle condition holds

Proof:

» By the Lemma, p(M,) =ptfor0<t<1
» By Nussbaum, P = kD~ 'BD

» Foralle - f, B,s =1,P, ; = outdeg(e)™*

» There are 1 € R, ¢: E — R so that for every e - f:
—log outdeg(e) = 1 — @(e) + o(f)




p = A — cycle condition (5/5)

» There are 1 € R, ¢: E — R so that for every e - f:
—logoutdeg(e) = 1 — ¢(e) + o(f) (*)
» Summing on all e - f with weights outdeg(e) ™!
—|E| -log A = |E| A
» Therefore, 1 = —logA.
» For any nb-cycle C:
z log outdeg(e) = |C]| - log A

eeC




— suspended path condition

— — cycle condition (1/3)

» g(P) = [outdeg(P) indeg(P)]ﬁ

» Suspended path condition: g(P) = A for all P

1
> A= Houtdeg(e n[outdeg(P) indeg(P)]>? —E 1_[

e€E p p
» Given a suspended path P, with g(Py) < A

ﬂi|*-‘

» Need to find cycle C with: 1_[ outdeg(e) > Al

eeC




— suspended path condition
— — cycle condition (2/3)

» f(e) = %log(outdeg(e) indeg(e))
» Ey [f] =logA and log g(Py) = Ey [f|Po] <logA
» Denote u, = vs and u; as uy conditioned on e ¢ P,

» E, [f] >logA




— suspended path condition
— — cycle condition (3/3)

» Define u,, us, ... each time reducing the support either by:

- excluding a connected component U of supp(y;) with small E,, [f|U

- excluding a suspended path P with small E,, [f|P]

» Process ends when supp(u;) is a cycle C

A< mz f(e) = C] Z log(outdeg(e) )

eeC eeC

» Violating the cycle condition.




Theorem 2: The Variance Dichotomy

_[{0(@) ifp=A
Var|R,| = {@(l) if p > A

R, is a random variable counting the number
of bits consumed by a length [ NBRW
starting from the stationary distribution.




Proof of Theorem 2 - the p = A case

» Suspended Path Condition holds

» NB-walk w = (ey, ..., ¢;) satisfies [[:Z5 outdeg(e;) = 0(1) - Al

» (R;(w) — E[R;]) (Z Slog(outdeg(e) ) — llog, A)2 < const

» Var[R;] < const




Proof of Theorem 2 - variance upper bound when p > A

» Var|R;] < cl for some constant c is a consequence of CLT for

Markov chains.

Var|R;]
l

» One may directly compute lim;_ given the graph G.




Proof of Theorem 2 - variance lower bound when p > A

» Cycle condition is violated

» Cycles Cy, C, with |C4| = |C,| = 1y, a common edge f and

different geometric out-degree average

» Probability space ,_  r of length [, NBRW conditioned on start
and end edges being f

lo—1
» Ry rr(w) =32, log, outdeg(e;) where w = (eg, -+, ;) € Oy 5 ¢

» Then Var[Rlo,f,fmlO,f,f] >0




Proof of Theorem 2 - variance lower bound when p > A

» Given a length [ NBRW w = (e, ..., €;)

Perform a partial exposure y of the edges and write R, = };; R;;

R0 R4 R,
\ |
le [ [
/0’ \/' NSNS V\/ ~N NN \/'\

» Var[R;|x] = X; Var|Ry;| x|
» W.h.p. for ¢;1 of the segments, R;;|y are i.i.d. R; r ¢ variables

> Var[Rl] > Czl



. What is the Minimal p possible, given the degree distribution?

A=2%6=151...,

Questions and Thoughts p=152....

Is there a quantitative version of our result?

G is §-close to satisfying the suspended path condition iff p < A + &

Prove that p(K, — edge) has the minimal possible p for a graph wit
50% deg 2 and 50% deg 3 vertices?

Prove that any girth g graph with 50% deg 2 and 50% deg 3 vertices,
g <2log,n (1 + 0(1)) where p = p(K, — edge).



More graphs with p = A

Questions?
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