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Non-backtracking walks on graphs

 Non-backtracking walk, Non-Backtracking Random Walk (NBRW)

 Directed edges 𝐸 – each undirected edge is a pair of directed edges

 Edges connect 𝑒 → 𝑓 if ℎ 𝑒 = 𝑡(𝑓) and 𝑒 is not inverse of 𝑓

 Non-backtracking adjacency operator 𝐵 0-1 𝐸 × 𝐸 matrix, 1 if 𝑒 → 𝑓

 Transition matrix 𝑃 where 𝑃𝑒,𝑓 =
1

outdeg(𝑒)
=

1

indeg(𝑓)
if 𝑒 → 𝑓, zero otherwise

 Stationary distribution 𝜈𝑠 – uniform on 𝐸

 Graph 𝐺 – undirected, connected, no degree one vertices, not a cycle

 𝐵 and 𝑃 are irreducible
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𝑒 𝑓

ℎ 𝑒 = 𝑡(𝑓)𝑡(𝑒)

ℎ(𝑓)



𝜌 - Growth Rate of the Universal Cover

 ෨𝐺 denotes the universal cover of 𝐺

 Infinite tree covering 𝐺:

➢ Choose some vertex 𝑣0 in 𝐺

➢ 𝑉( ෨𝐺) – the set of all NB-walks from 𝑣0

➢ 𝐸( ෨𝐺) – NB-walks are adjacent 

           if one extends the other by one step

 Rate of growth – 

 𝜌 = Perron eigenvalue of 𝐵
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𝜌 ෨𝐺 = limsup
𝑟→∞

𝐵𝑟(𝑣) 1/𝑟

The universal cover of 

any 3-regular graph is the 

3-regular tree



Λ – Rate of entropy growth
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Λ = ෑ

𝑣∈𝑉

deg(𝑣) − 1

deg(𝑣)

𝐸 = ෑ

𝑒∈𝐸

outdeg(𝑒)

1

𝐸

𝐸𝜈𝑠
log2 outdeg 𝑒 = log2 Λ

Expected number of random bits per NBRW step.

Rate of entropy growth.

𝑒 𝑓

ℎ 𝑒 = 𝑡(𝑓)𝑡(𝑒)
ℎ(𝑓)

outdeg 𝑒 = deg ℎ 𝑒 − 1 = the number of choices for 𝑓



ρ ≥ Λ

 Ω𝑙 – set of length 𝑙 nb-walks 𝜔 = 𝑒0, … , 𝑒𝑙

 Probability space of length 𝑙 NBRW walks from 𝜈𝑠

𝑃𝑟 𝜔 =
1

𝐸
ෑ

𝑖=0

𝑙−1
1

outdeg(𝑒𝑖)

 Number of randomness bits: 𝑅 𝜔 = σ𝑖=0
𝑙−1 log2 outdeg(𝑒𝑖)

 𝐸 𝑅 = 𝑙 ∙ 𝐸𝜈𝑠
log2 outdeg 𝑒 = 𝑙 ∙ log2 Λ

 𝜈𝑠 𝐵𝑙  ത1 =
1

𝐸
Ω𝑙 = σ𝜔= 𝑒0,…,𝑒𝑙 ∈Ω𝑙

𝑃𝑟 𝜔 ς𝑖=0
𝑙−1 outdeg 𝑒𝑖

              = σ𝜔 𝑃𝑟 𝜔 2𝑅 𝜔 = 𝐸Ω𝑙
2𝑅 ≥ 2𝐸Ω𝑙

𝑅 = Λ𝑙

 𝜌 ෨𝐺 = 𝜌(𝐵) = lim
𝑙→∞

𝜈𝑠 𝐵𝑙  ത1
1

𝑙 ≥ Λ
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Some known results about ρ, Λ

 Ben-Hamou and Salez 2017

❖ Mixing time of NBRW on a random graph with given degrees is logΛ 𝑛 1 + 𝑜 1  whp  

 Conchon-Kerjan 2022

❖ Mixing time of NBRW on a random 𝑛-lift of 𝐺 is logΛ 𝑛 1 + 𝑜 1  whp

❖ Diameter of a random 𝑛-lift of 𝐺 is log𝜌 𝑛 1 + 𝑜 1  whp

 The Moore bound – best-known upper bound on the girth 𝑔 of a graph with 𝑛 vertices

❖ Alon, Hoory and Linial 2002 – Given the degree distribution,  𝑔 ≤ 2 logΛ 𝑛 1 + 𝑜 1

❖ Hoory 2023 – For an 𝑛-lift of 𝐺,  𝑔 ≤ 2 log𝜌 𝑛 1 + 𝑜 1
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Graphs with ρ = Λ? 

1. 𝑑-regular – 𝜌 = Λ = 𝑑 − 1

2. Bipartite 𝑑𝐿, 𝑑𝑅 bi-regular – 𝜌 = Λ = (𝑑𝐿 − 1)(𝑑𝑅 − 1)

3. As above with edges replaced by length 𝑘 paths

𝜌 = Λ =
𝑘

𝑑 − 1 or 𝜌 = Λ = 2𝑘 (𝑑𝐿 − 1)(𝑑𝑅 − 1)

4. and infinitely more graphs...
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such as this one with 𝜌 = Λ = 2

Length 3 path



A Graph with ρ > Λ

 Λ = 20.6 = 1.51...

 𝜌 = 1.52... is the Perron eigenvalue of 
0 0 1
2 0 0
1 1 0
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K4 minus an edge 

log2 𝜌 = lim
𝑙→∞

1

𝑙
log2 E[2𝑅]



Theorem 1

A suspended path is a nb-path where all internal vertices have 

degree 2 and the end vertices have larger degree.
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The following conditions are equivalent:

1. 𝜌 = Λ

2. For every nb-cycle 𝐶 in 𝐺

ෑ

𝑒∈𝐶

outdeg(𝑒) = Λ|𝐶|

3. For every suspended path 𝑃 in 𝐺
outdeg 𝑃  indeg(𝑃) = Λ2|𝑃|



Theorem 2: The Variance Dichotomy

Var 𝑅𝑙 = ቊ
O(1) if 𝜌 = Λ
Θ(𝑙) if 𝜌 > Λ
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Random variable 𝑅𝑙 denoting the number of random bits 

consumed by the length 𝑙 NBRW from the stationary distribution.



Proof of Theorem 1

11

𝜌 = Λ
Suspended 

Path 

Condition

Cycle 

Condition



Suspended path condition → ρ = Λ 

 nb-walk 𝜔 = 𝑒0, … , 𝑒𝑙 = 𝑃0𝑃1 ⋯ 𝑃𝑠−1𝑃𝑠 where 𝑃𝑖 are suspended paths 

except possibly for 𝑃0, 𝑃𝑠 that may be partial suspended paths.
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𝑓 𝜔 = ෑ

𝑖=0

𝑙−1

outdeg 𝑒𝑖 = ෑ

𝑖=0

𝑠−1

outdeg 𝑃𝑖

 = outdeg 𝑃0

1
2 ෑ

𝑖=1

𝑠−1

indeg 𝑃𝑖

1
2 outdeg 𝑃𝑖

1
2 indeg 𝑃𝑠

1
2

 =  Θ(1) ∙ ෑ

𝑖=1

𝑠−1

Λ|𝑃𝑖| =  Θ(1) ∙ Λ𝑙

𝜌 = 𝜌 𝐵 = lim
𝑙→∞

𝜈𝑠 ∙ 𝐵𝑙 ∙ ത1
1
𝑙 = lim

𝑙→∞


𝜔∈Ω𝑙

𝑃𝑟 𝜔 𝑓(𝜔)

1
𝑙

= Λ



ρ = Λ → cycle condition (1/5)

 𝑀𝑡 interpolation between 𝑃 and 𝐵 for 0 ≤ 𝑡 ≤ 1

𝑀𝑡 𝑒,𝑓 = 𝑃 𝑒,𝑓
1−𝑡

𝐵 𝑒,𝑓
𝑡

    

    

Theorem (Kingman 1961):

𝜌 𝑀𝑡 ≤ 𝜌 𝑃 1−𝑡𝜌 𝐵 𝑡
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= ቐ

1

outdeg 𝑒 1−𝑡
if 𝑒 → 𝑓

0 otherwise



ρ = Λ → cycle condition (2/5)
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= 

𝜔

𝑃𝑟 𝜔 2𝑅 𝜔 𝑡
= 𝐸Ω𝑙

2𝑡𝑅 ≥ 2𝑡 𝐸Ω𝑙
𝑅 = Λ𝑡𝑙

𝜈𝑠 𝑀𝑡
𝑙  ത1  = 

𝜔= 𝑒0,…,𝑒𝑙 ∈Ω𝑙

𝑃𝑟 𝜔 ෑ

𝑖=0

𝑙−1

outdeg 𝑒𝑖
𝑡

𝜌 𝑀𝑡 = lim
𝑙→∞

𝜈𝑠 𝑀𝑡
𝑙  ത1

1
𝑙 ≥ Λ𝑡 = 𝜌𝑡

Lemma: If 𝜌 = Λ then 𝜌 𝑀𝑡 = 𝜌𝑡 for all 0 ≤ 𝑡 ≤ 1

Proof:

Since 𝜌 𝐵 = 𝜌 and 𝜌 𝑃 = 1. By Kingman 𝜌 𝑀𝑡 ≤ 𝜌𝑡.



ρ = Λ → cycle condition (3/5)

Theorem (Nussbaum 1986):

If 𝜌 𝑀𝑡 = 𝜌(𝑃)1−𝑡𝜌(𝐵)𝑡 for some 0 < 𝑡 < 1 and 𝑃, 𝐵 are 

non-negative irreducible matrices then:

1. Equality holds for all 0 ≤ 𝑡 ≤ 1

2. 𝑃 = 𝑘𝐷−1𝐵𝐷
For a scalar 𝑘 > 0 and positive diagonal matrix 𝐷
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ρ = Λ → cycle condition (4/5)

Theorem:

If 𝜌 = Λ then the cycle condition holds

Proof:

 By the Lemma, 𝜌 𝑀𝑡 = 𝜌𝑡 for 0 < 𝑡 < 1

 By Nussbaum, 𝑃 = 𝑘𝐷−1𝐵𝐷

 For all 𝑒 → 𝑓, 𝐵𝑒,𝑓 = 1,𝑃𝑒,𝑓 = outdeg 𝑒 −1

 There are 𝜆 ∈ ℝ, 𝜑: 𝐸 → ℝ so that for every 𝑒 → 𝑓:

− log outdeg 𝑒 = 𝜆 − 𝜑 e + 𝜑 𝑓
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ρ = Λ → cycle condition (5/5)

 There are 𝜆 ∈ ℝ, 𝜑: 𝐸 → ℝ so that for every 𝑒 → 𝑓:

− log outdeg 𝑒 = 𝜆 − 𝜑 e + 𝜑 𝑓  (∗)

 Summing on all 𝑒 → 𝑓 with weights outdeg 𝑒 −1

− 𝐸 ∙ log Λ = 𝐸 ∙ 𝜆

 Therefore, 𝜆 = − log Λ.

 For any nb-cycle 𝐶:



𝑒∈𝐶

log outdeg 𝑒 = |𝐶| ∙ log Λ
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¬ suspended path condition 

→ ¬ cycle condition (1/3)

  

 Suspended path condition: 𝑔 𝑃 = Λ for all 𝑃

  

 Given a suspended path 𝑃0 with 𝑔 𝑃0 < Λ 

 Need to find cycle 𝐶 with:
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𝑔 𝑃 = outdeg 𝑃  indeg(𝑃)
1

2|𝑃|

Λ = ෑ

𝑒∈𝐸

outdeg(𝑒)

1

𝐸 = ෑ

𝑃

outdeg 𝑃  indeg(𝑃)

1

2|𝐸| = ෑ

𝑃

𝑔(𝑃)

|𝑃|

|𝐸|

ෑ

𝑒∈𝐶

outdeg(𝑒) > Λ|𝐶|



 𝑓 𝑒 =
1

2
log outdeg 𝑒  indeg(𝑒)

 E𝜐𝑠
𝑓 = log Λ and log 𝑔(𝑃0) = E𝜐𝑠

𝑓|𝑃0 < log Λ

 Denote 𝜇0 = 𝜐𝑠 and 𝜇1 as 𝜇0 conditioned on 𝑒 ∉ 𝑃0

 E𝜇1
𝑓 > log Λ
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¬ suspended path condition 

→ ¬ cycle condition (2/3)



 Define 𝜇2, 𝜇3, … each time reducing the support either by:

▪ excluding a connected component 𝑈 of 𝑠𝑢𝑝𝑝(𝜇𝑖) with small E𝜇𝑖
𝑓|𝑈

▪ excluding a suspended path 𝑃 with small E𝜇𝑖
𝑓|𝑃

 Process ends when 𝑠𝑢𝑝𝑝(𝜇𝑖) is a cycle 𝐶

 Violating the cycle condition.
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Λ <
1

|𝐶|


𝑒∈𝐶

𝑓(𝑒) =
1

|𝐶|


𝑒∈𝐶

log outdeg 𝑒  

¬ suspended path condition 

→ ¬ cycle condition (3/3)



Theorem 2: The Variance Dichotomy
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𝑅𝑙 is a random variable counting the number 

of bits consumed by a length 𝑙 NBRW 

starting from the stationary distribution.

Var 𝑅𝑙 = ቊ
O(1) if 𝜌 = Λ
Θ(𝑙) if 𝜌 > Λ



Proof of Theorem 2 – the 𝜌 = Λ case
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 Suspended Path Condition holds

 NB-walk 𝜔 = 𝑒0, … , 𝑒𝑙  satisfies ς𝑖=0
𝑙−1 outdeg 𝑒𝑖 =  Θ 1 ∙ Λ𝑙

 𝑅𝑙 𝜔 − E 𝑅𝑙
2 = σ𝑖=0

𝑙−1 log outdeg 𝑒  − 𝑙 log2 Λ
2

≤ 𝑐𝑜𝑛𝑠𝑡

 Var 𝑅𝑙 ≤ 𝑐𝑜𝑛𝑠𝑡



Proof of Theorem 2 – variance upper bound when 𝜌 > Λ
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 Var 𝑅𝑙 ≤ 𝑐𝑙 for some constant 𝑐 is a consequence of CLT for 

Markov chains.

 One may directly compute lim𝑙→∞
Var 𝑅𝑙

𝑙
 given the graph 𝐺.



Proof of Theorem 2 – variance lower bound when 𝜌 > Λ
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 Cycle condition is violated

 Cycles 𝐶1, 𝐶2 with 𝐶1 = 𝐶2 = 𝑙0, a common edge 𝑓 and 

different geometric out-degree average 

 Probability space Ω𝑙0,𝑓,𝑓 of length 𝑙0 NBRW conditioned on start 

and end edges being 𝑓

 𝑅𝑙0,𝑓,𝑓 𝜔 = σ𝑖=0
𝑙0−1

log2 outdeg 𝑒𝑖  where ω = (𝑒0, ⋯ , 𝑒𝑙0
) ∈ Ω𝑙0,𝑓,𝑓

 Then Var 𝑅𝑙0,𝑓,𝑓|Ω𝑙0,𝑓,𝑓 > 0 



Proof of Theorem 2 – variance lower bound when 𝜌 > Λ
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 Given a length 𝑙 NBRW 𝜔 = 𝑒0, … , 𝑒𝑙

Perform a partial exposure 𝜒 of the edges and write 𝑅𝑙 = σ𝑖 𝑅𝑙,𝑖

 Var 𝑅𝑙|𝜒 = σ𝑖 Var 𝑅𝑙,𝑖|𝜒

 W.h.p. for 𝑐1𝑙 of the segments, 𝑅𝑙,𝑖|𝜒 are i.i.d. 𝑅𝑙0,𝑓,𝑓 variables

 Var 𝑅𝑙 ≥ 𝑐2𝑙

𝑒0 𝑒1 𝑒𝑙

𝑅𝑙,0 𝑅𝑙,1 𝑅𝑙,2



Questions and Thoughts

1. Is there a quantitative version of our result?

𝐺 is 𝛿-close to satisfying the suspended path condition iff 𝜌 < Λ + 𝜀.

2. What is the Minimal 𝜌 possible, given the degree distribution?

3. Prove that 𝜌(𝐾4 − 𝑒𝑑𝑔𝑒) has the minimal possible 𝜌 for a graph with

50% deg 2 and 50% deg 3 vertices?

4. Prove that any girth 𝑔 graph with 50% deg 2 and 50% deg 3 vertices, 

𝑔 ≤ 2 log𝜌 𝑛 1 + 𝑜 1  where 𝜌 = 𝜌(𝐾4 − 𝑒𝑑𝑔𝑒).
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Λ = 20.6 = 1.51...,

𝜌 = 1.52.... 



Questions?
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More graphs with ρ = Λ
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