Entropy and the growth rate of universal covering trees

Idan Eisner , Shlomo Hoory Tel-Hai College

Non-backtracking walks on graphs



h(f)

- Non-backtracking walk, Non-Backtracking Random Walk (NBRW)
- > Directed edges \vec{E} each undirected edge is a pair of directed edges
- Edges connect $e \to f$ if h(e) = t(f) and e is not inverse of f
- Non-backtracking adjacency operator B 0-1 $\vec{E} \times \vec{E}$ matrix, 1 if $e \to f$
- ► Transition matrix *P* where $P_{e,f} = \frac{1}{\text{outdeg}(e)} = \frac{1}{\text{indeg}(f)}$ if $e \to f$, zero otherwise

t(e)

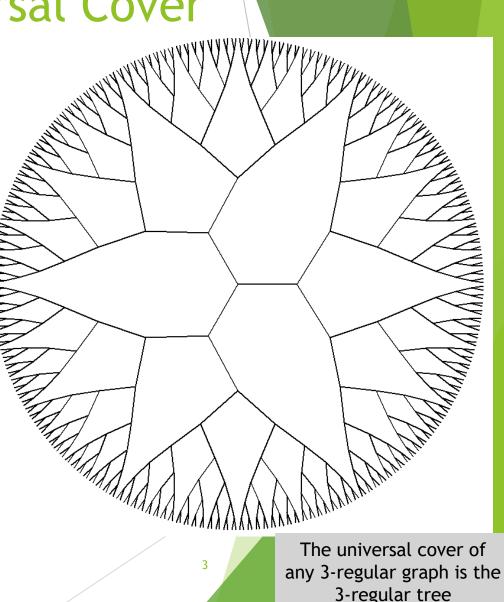
- Stationary distribution v_s uniform on \vec{E}
- Graph G undirected, connected, no degree one vertices, not a cycle
- ▶ *B* and *P* are irreducible

ρ - Growth Rate of the Universal Cover

- \blacktriangleright \tilde{G} denotes the universal cover of G
- Infinite tree covering G:
 - > Choose some vertex v_0 in G
 - > $V(\tilde{G})$ the set of all NB-walks from v_0
 - > $E(\tilde{G})$ NB-walks are adjacent if one extends the other by one step
- Rate of growth -

 $\rho(\tilde{G}) = \limsup_{r \to \infty} |B_r(v)|^{1/r}$

 $\triangleright \rho$ = Perron eigenvalue of *B*



Λ - Rate of entropy growth

$$\Lambda = \prod_{v \in V} (\deg(v) - 1)^{\frac{\deg(v)}{|\vec{E}|}} = \prod_{e \in \vec{E}} \operatorname{outdeg}(e)^{\frac{1}{|\vec{E}|}}$$

 $E_{\nu_s}[\log_2 \operatorname{outdeg}(e)] = \log_2 \Lambda$

Expected number of random bits per NBRW step. Rate of entropy growth.

$$e \qquad f \qquad h(f) \\ h(e) = t(f)$$

4

outdeg(e) = deg(h(e) - 1) = the number of choices for f

$\rho \ge \Lambda$

- ► Ω_l set of length *l* nb-walks $\omega = (e_0, ..., e_l)$
- Probability space of length l NBRW walks from v_s

$$Pr[\omega] = \frac{1}{|\vec{E}|} \prod_{i=0}^{l-1} \frac{1}{\text{outdeg}(e_i)}$$

5

- Number of randomness bits: $R(\omega) = \sum_{i=0}^{l-1} \log_2 \text{ outdeg}(e_i)$
- $\blacktriangleright E[R] = l \cdot E_{\nu_s}[\log_2 \text{ outdeg}(e)] = l \cdot \log_2 \Lambda$

$$\nu_{S} B^{l} \overline{1} = \frac{1}{|\vec{E}|} |\Omega_{l}| = \sum_{\omega = (e_{0}, \dots, e_{l}) \in \Omega_{l}} Pr[\omega] \prod_{i=0}^{l-1} \text{outdeg}(e_{i})$$

$$= \sum_{\omega} Pr[\omega] 2^{R(\omega)} = E_{\Omega_{l}}[2^{R}] \ge 2^{E_{\Omega_{l}}[R]} = \Lambda^{l}$$

$$\rho(\tilde{G}) = \rho(B) = \lim_{l \to \infty} (\nu_{S} B^{l} \overline{1})^{\frac{1}{l}} \ge \Lambda$$

Some known results about ρ , Λ

- Ben-Hamou and Salez 2017
 - * Mixing time of NBRW on a random graph with given degrees is $\log_{\Lambda} n (1 + o(1))$ whp
- Conchon-Kerjan 2022
 - Mixing time of NBRW on a random *n*-lift of *G* is $\log_{\Lambda} n (1 + o(1))$ whp
 - ♦ Diameter of a random *n*-lift of *G* is $\log_{\rho} n (1 + o(1))$ whp

The Moore bound - best-known upper bound on the girth g of a graph with n vertices

♦ Alon, Hoory and Linial 2002 - Given the degree distribution, $g \le 2 \log_{\Lambda} n (1 + o(1))$

6

♦ Hoory 2023 - For an *n*-lift of *G*, $g \le 2 \log_{\rho} n (1 + o(1))$

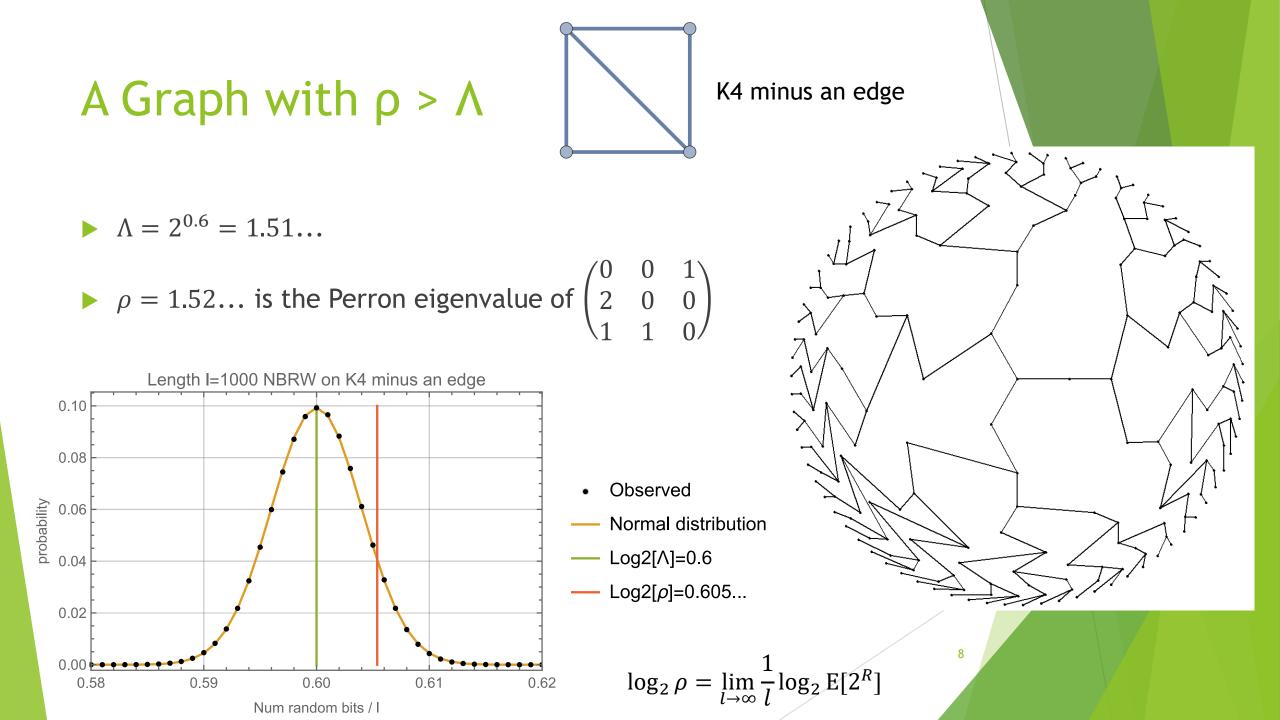
Graphs with $\rho = \Lambda$?

- 1. d-regular $\rho = \Lambda = d 1$
- 2. Bipartite d_L , d_R bi-regular $\rho = \Lambda = \sqrt{(d_L 1)(d_R 1)}$
- 3. As above with edges replaced by length k paths $\rho = \Lambda = \sqrt[k]{d-1}$ or $\rho = \Lambda = \sqrt[2k]{(d_L 1)(d_R 1)}$ Length 3 path

.

4. and infinitely more graphs...

such as this one with $\rho=\Lambda=\sqrt{2}$



Theorem 1

A suspended path is a nb-path where all internal vertices have degree 2 and the end vertices have larger degree.

The following conditions are equivalent:

1. $\rho = \Lambda$

2. For every nb-cycle *C* in *G*

$$\int_{e \in C} \text{outdeg}(e) = \Lambda^{|C|}$$

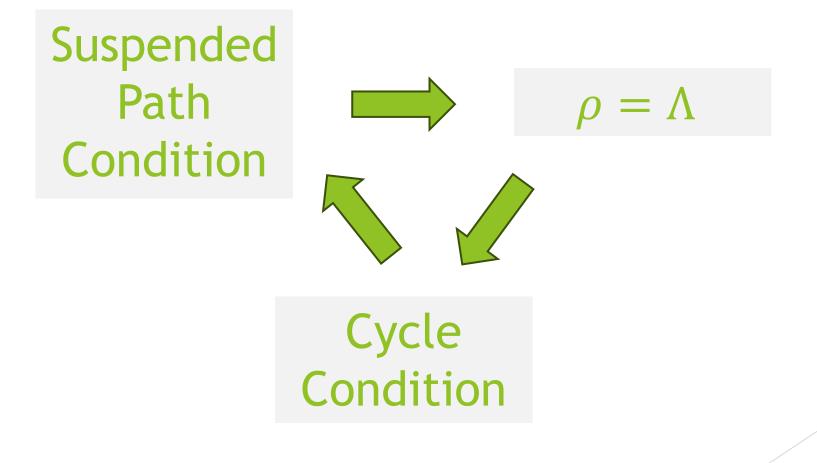
3. For every suspended path *P* in *G* outdeg(*P*) indeg(*P*) = $\Lambda^{2|P|}$

Theorem 2: The Variance Dichotomy

Random variable R_l denoting the number of random bits consumed by the length l NBRW from the stationary distribution.

$$\operatorname{Var}[R_l] = \begin{cases} 0(1) & \text{if } \rho = \Lambda\\ \Theta(l) & \text{if } \rho > \Lambda \end{cases}$$

Proof of Theorem 1



Suspended path condition $\rightarrow \rho = \Lambda$

▶ nb-walk $\omega = (e_0, ..., e_l) = P_0 P_1 \cdots P_{s-1} P_s$ where P_i are suspended paths except possibly for P_0, P_s that may be partial suspended paths.

$$f(\omega) = \prod_{i=0}^{l-1} \operatorname{outdeg}(e_i) = \prod_{i=0}^{s-1} \operatorname{outdeg}(P_i)$$
$$= \operatorname{outdeg}(P_0)^{\frac{1}{2}} \left[\prod_{i=1}^{s-1} \operatorname{indeg}(P_i)^{\frac{1}{2}} \operatorname{outdeg}(P_i)^{\frac{1}{2}} \right] \operatorname{indeg}(P_s)^{\frac{1}{2}}$$
$$= \Theta(1) \cdot \left[\prod_{i=1}^{s-1} \Lambda^{|P_i|} \right] = \Theta(1) \cdot \Lambda^l$$
$$\rho = \rho(B) = \lim_{l \to \infty} \left(v_s \cdot B^l \cdot \overline{1} \right)^{\frac{1}{l}} = \lim_{l \to \infty} \left(\sum_{\omega \in \Omega_l} \Pr[\omega] f(\omega) \right)^{\frac{1}{l}} = \Lambda$$

 $\rho = \Lambda \rightarrow$ cycle condition (1/5)

▶ M_t interpolation between P and B for $0 \le t \le 1$

$$(M_t)_{e,f} = (P)_{e,f}^{1-t}(B)_{e,f}^{t} = \begin{cases} \frac{1}{\operatorname{outdeg}(e)^{1-t}} & \text{if } e \to f \\ 0 & \text{otherwise} \end{cases}$$

Theorem (Kingman 1961): $\rho(M_t) \le \rho(P)^{1-t}\rho(B)^t$

$\rho = \Lambda \rightarrow$ cycle condition (2/5)

Lemma: If $\rho = \Lambda$ then $\rho(M_t) = \rho^t$ for all $0 \le t \le 1$ **Proof:**

Since
$$\rho(B) = \rho$$
 and $\rho(P) = 1$. By Kingman $\rho(M_t) \le \rho^t$.
 $v_s (M_t)^l \overline{1} = \sum_{\omega = (e_0, \dots, e_l) \in \Omega_l} Pr[\omega] \prod_{i=0}^{l-1} \text{outdeg}(e_i)^t$
 $= \sum_{\omega} Pr[\omega] (2^{R(\omega)})^t = E_{\Omega_l}[2^{tR}] \ge 2^{t E_{\Omega_l}[R]} = \Lambda^{th}$
 $\rho(M_t) = \lim_{l \to \infty} (v_s (M_t)^l \overline{1})^{\frac{1}{l}} \ge \Lambda^t = \rho^t$

$\rho = \Lambda \rightarrow$ cycle condition (3/5)

Theorem (Nussbaum 1986):

If $\rho(M_t) = \rho(P)^{1-t}\rho(B)^t$ for some 0 < t < 1 and P, B are non-negative irreducible matrices then:

- 1. Equality holds for all $0 \le t \le 1$
- $2. P = kD^{-1}BD$

For a scalar k > 0 and positive diagonal matrix D

$\rho = \Lambda \rightarrow$ cycle condition (4/5)

Theorem:

If $\rho = \Lambda$ then the cycle condition holds

Proof:

▶ By the Lemma,
$$\rho(M_t) = \rho^t$$
 for $0 < t < 1$

- ▶ By Nussbaum, $P = kD^{-1}BD$
- For all $e \to f$, $B_{e,f} = 1, P_{e,f} = \text{outdeg}(e)^{-1}$
- ► There are $\lambda \in \mathbb{R}$, $\varphi: \vec{E} \to \mathbb{R}$ so that for every $e \to f$: -log outdeg $(e) = \lambda - \varphi(e) + \varphi(f)$

$\rho = \Lambda \rightarrow$ cycle condition (5/5)

► There are
$$\lambda \in \mathbb{R}$$
, $\varphi: \vec{E} \to \mathbb{R}$ so that for every $e \to f$:
 $-\log \operatorname{outdeg}(e) = \lambda - \varphi(e) + \varphi(f)$ (*)

Summing on all $e \to f$ with weights $outdeg(e)^{-1}$ $-|\vec{E}| \cdot \log \Lambda = |\vec{E}| \cdot \lambda$

• Therefore, $\lambda = -\log \Lambda$.

► For any nb-cycle *C*:

$$\sum_{e \in C} \log \operatorname{outdeg}(e) = |C| \cdot \log \Lambda$$

17

→ suspended path condition → ¬ cycle condition (1/3) • $g(P) = [outdeg(P) indeg(P)]^{\frac{1}{2|P|}}$

Suspended path condition: $g(P) = \Lambda$ for all P

$$\Lambda = \prod_{e \in \vec{E}} \operatorname{outdeg}(e)^{\frac{1}{|\vec{E}|}} = \prod_{P} [\operatorname{outdeg}(P) \operatorname{indeg}(P)]^{\frac{1}{2|\vec{E}|}} = \prod_{P} g(P)^{\frac{|P|}{|\vec{E}|}}$$

► Given a suspended path P_0 with $g(P_0) < \Lambda$

Need to find cycle C with:

$$\int_{e \in C} \text{outdeg}(e) > \Lambda^{|C|}$$

¬ suspended path condition → ¬ cycle condition (2/3)

•
$$f(e) = \frac{1}{2}\log(\operatorname{outdeg}(e) \operatorname{indeg}(e))$$

•
$$E_{v_s}[f] = \log \Lambda$$
 and $\log g(P_0) = E_{v_s}[f|P_0] < \log \Lambda$

▶ Denote $\mu_0 = v_s$ and μ_1 as μ_0 conditioned on $e \notin P_0$

19

$\blacktriangleright \operatorname{E}_{\mu_1}[f] > \log \Lambda$

\neg suspended path condition $\rightarrow \neg$ cycle condition (3/3)

▶ Define μ_2, μ_3, \dots each time reducing the support either by:

- excluding a connected component U of $supp(\mu_i)$ with small $E_{\mu_i}[f|U]$
- excluding a suspended path P with small $E_{\mu_i}[f|P]$

▶ Process ends when $supp(\mu_i)$ is a cycle *C*

$$\Lambda < \frac{1}{|C|} \sum_{e \in C} f(e) = \frac{1}{|C|} \sum_{e \in C} \log(\operatorname{outdeg}(e))$$

Violating the cycle condition.

Theorem 2: The Variance Dichotomy

$$\operatorname{Var}[R_l] = \begin{cases} 0(1) & \text{if } \rho = \Lambda\\ \Theta(l) & \text{if } \rho > \Lambda \end{cases}$$

 R_l is a random variable counting the number of bits consumed by a length l NBRW starting from the stationary distribution. **Proof of Theorem 2** - the $\rho = \Lambda$ case

Suspended Path Condition holds

▶ NB-walk $\omega = (e_0, ..., e_l)$ satisfies $\prod_{i=0}^{l-1} \text{outdeg}(e_i) = \Theta(1) \cdot \Lambda^l$

 $(R_l(\omega) - E[R_l])^2 = \left(\sum_{i=0}^{l-1} \log(\operatorname{outdeg}(e)) - l \log_2 \Lambda\right)^2 \leq \operatorname{const}$

▶ $Var[R_l] \le const$

Proof of Theorem 2 - variance upper bound when $\rho > \Lambda$

Var[R_l] ≤ cl for some constant c is a consequence of CLT for Markov chains.

• One may directly compute $\lim_{l\to\infty} \frac{\operatorname{Var}[R_l]}{l}$ given the graph G.

Proof of Theorem 2 - variance lower bound when $\rho > \Lambda$

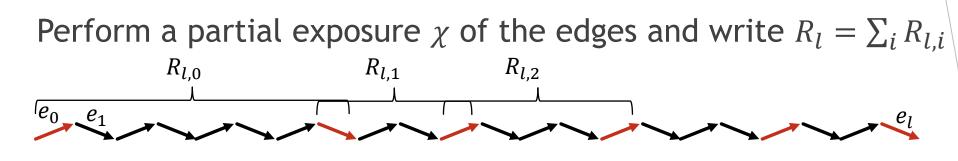
- Cycle condition is violated
- Cycles C₁, C₂ with |C₁| = |C₂| = l₀, a common edge f and different geometric out-degree average
- Probability space Ω_{l₀,f,f} of length l₀ NBRW conditioned on start and end edges being f

 $R_{l_0,f,f}(\omega) = \sum_{i=0}^{l_0-1} \log_2 \text{ outdeg}(e_i) \text{ where } \omega = (e_0, \cdots, e_{l_0}) \in \Omega_{l_0,f,f}$

• Then $Var[R_{l_0,f,f} | \Omega_{l_0,f,f}] > 0$

Proof of Theorem 2 - variance lower bound when $\rho > \Lambda$

• Given a length l NBRW $\omega = (e_0, ..., e_l)$



- $\blacktriangleright \operatorname{Var}[R_l|\chi] = \sum_i \operatorname{Var}[R_{l,i}|\chi]$
- ▶ W.h.p. for $c_1 l$ of the segments, $R_{l,i} | \chi$ are i.i.d. $R_{l_0,f,f}$ variables
- $\blacktriangleright \operatorname{Var}[R_l] \ge c_2 l$

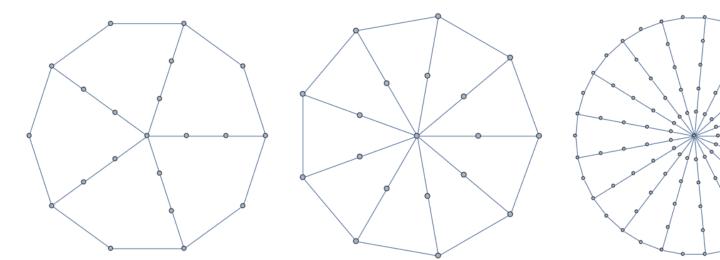
Questions and Thoughts

- 1. Is there a quantitative version of our result? *G* is δ -close to satisfying the suspended path condition iff $\rho < \Lambda + \varepsilon$.
- 2. What is the Minimal ρ possible, given the degree distribution?
- 3. Prove that $\rho(K_4 edge)$ has the minimal possible ρ for a graph with 50% deg 2 and 50% deg 3 vertices?
- 4. Prove that any girth g graph with 50% deg 2 and 50% deg 3 vertices, $g \le 2 \log_{\rho} n (1 + o(1))$ where $\rho = \rho(K_4 - edge)$.

 $\Lambda = 2^{0.6} = 1.51...,$

 $\rho = 1.52....$

More graphs with $\rho = \Lambda$



Questions?