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The isoperimetric constant of a graph [ measures how
“well-connected” a graph is.

Definition (lsoperimetric constant)

h(r) := min{% :Scv(n,0< |5 < |V(F)|}
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The isoperimetric constant of a graph [ measures how
“well-connected” a graph is.

Definition (lsoperimetric constant)

h(r) := min{% :Scv(n,0< |5 < |V(F)|}

L

S| =4, [E(5,59) =4 = EGTN =1,
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xpanders

Definition (Expanders)

An infinite family of k-regular finite graphs {I',} is called expander family
if there exists C := C(k) > 0 such that h(I',) > C for all n,

and |V([p)| — o0 as n— oo,
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Definition (Expanders)

An infinite family of k-regular finite graphs {I',} is called expander family
if there exists C := C(k) > 0 such that h(I',) > C for all n,

and |V([p)| — o0 as n— oo,

Importance: Sparse and highly connected graphs.

Expander graphs and their Applications - Hoory, Linial and
Wigderson 2006 Coding Theory, Probability theory, Computer
Science.
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al graph theory

The adjacency matrix A of a
graph G with n verticesisa nxn
matrix with

A(x,y) = the number of edges
between x and y.

Himanshu Gupta



al graph theory

The adjacency matrix A of a
graph G with n verticesisa nxn
matrix with

A(x,y) = the number of edges
between x and y.

Fact: For a connected, k-regular
graph G on n vertices

k=M>A>A3>--- >4, > —k.

—k 0 kT trivial” |
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spectral Expanders

Theorem (Alon-Milman 1985, Dodziuk 1984, and Mohar 1989)

Let I be a k-regular connected graph with second largest eigenvalue A;.
Then

k — A2
2

< h(N) <V (k—22)(k+22).
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Spectral Expanders

Theorem (Alon-Milman 1985, Dodziuk 1984, and Mohar 1989)

Let I be a k-regular connected graph with second largest eigenvalue A;.
Then

k — A2
2

< h(N) < V/(k—A)(k+22).

Definition (Spectral Expanders)

An infinite family of k-regular finite graphs {I',} is called spectral
expander family

if there exists C' := C’(k) > 0 such that k — A»(I",) > C’ for all n,

and |V([,)| = o0 as n— oo,

—k 0 k



Alon-Boppana Bound and Ramanujan Graphs

Theorem (Alon-Boppana 1986)

Let {I',} be a family of k-regular connected graphs, with |V,| —  as
n — . Then

Iiminflz(rn) >2vk—1

m 00
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Alon-Boppana Bound and Ramanujan Graphs

Theorem (Alon-Boppana 1986)

Let {I',} be a family of k-regular connected graphs, with |V,| —  as
n—co. Then

Iiminflz(rn) >2vk—1

m—>oo

Definition (Ramanujan Graph)

A k-regular connected graph I is a Ramanujan graph if Ax(I') <2vk—1.

—k 0 k
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Alon-Boppana Bound and Ramanujan Graphs

Theorem (Alon-Boppana 1986)

Let {I',} be a family of k-regular connected graphs, with |V,| —  as
n—co. Then

Iiminflz(rn) >2vk—1

m—>oo

Definition (Ramanujan Graph)
A k-regular connected graph I is a Ramanujan graph if Ax(I') <2vk—1.

—k 0 k
2vVk—1

Ramanujan graphs <— best possible expanders.
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constructions of Ramanujan graphs

Lubotzky, Phillips, & Sarnak 1988 and independently Margulis
1988 constructed an infinite families of (p+ 1)-regular graphs
where p is a prime.
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constructions of Ramanujan graphs

Lubotzky, Phillips, & Sarnak 1988 and independently Margulis
1988 constructed an infinite families of (p+ 1)-regular graphs
where p is a prime.

Morgenstern 1994 extended their constructions to prime powers.

Marcus, Spielman, & Srivastava 2015 showed there exist infinite
families of bipartite Ramanujan graphs for any degree greater than
2.
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s D(k,q) - Lazebnik and Ustimenko 1995

Let g be a prime power, k >2, P = L=Tk and V=PUL.
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s D(k,q) - Lazebnik and Ustimenko 1995

Let g be a prime power, k >2, P = L=Tk and V=PUL.

(P) = (P1:P2: P2, s PR) ~ [l = (1, Lo,

)

p2+{2 = p1/1

vl ]

= p1t2

ol ifj=0,1(mod 4
pl= (mod 4)
plfj,Q Ifj = 2,3 (mod 4)
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Letg=2and k=2, P=L=F3 V=PUL

(p1,p2) ~[h,k] <— p2tla=pils




Properties of Graphs D(k,q)

D(k,q) is g-regular, bipartite, and has 2g* vertices.
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D(k,q) is g-regular, bipartite, and has 2g* vertices.

Lazebnik, Ustimenko, and Woldar 1995 D(k,q) has ¢
isomorphic components, where j = [1+ %]
A component is denoted CD(k,q)
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operties of Graphs D(k,q)

D(k,q) is g-regular, bipartite, and has 2g* vertices.

Lazebnik, Ustimenko, and Woldar 1995 D(k,q) has ¢
isomorphic components, where j = [1+ %]
A component is denoted CD(k,q)

Lazebnik and Ustimenko 1995 The girth of D(k,q) is at
least k+4 when k is even, and k+5 when k is odd.

Thus gives asymptotically the best known general lower bound
(except for k =5) for ex(n,{ Cok+1,---,Ca, G3}), ie.,

_2
ex(n{Cokq1,---, G, G3}) > nltr3Te

where € is 1 if k is even, and 0 if k is odd.
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Main Problem

Ustimenko's Conjecture

2a(CD(k, ) < 2/
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Main Problem

Ustimenko's Conjecture

12(CD(k,)) <214 A

Progress so far!

For k =2,3 and all ¢ (Li, Lu, and Wang 2009, Cioab3, Lazebnik, and Li
2014).

For k=4 and all g (Moorhouse, Sun, and Williford 2017).
For k=5,6 and all odd g (G. and Taranchuk 2023+).
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Main Problem

Ustimenko's Conjecture

2a(CD(k, ) < 2/

Progress so far!

For k =2,3 and all g (Li, Lu, and Wang 2009,

2014).

For k=4 and all g (Moorhouse, Sun, and Williford 2017).
For k=5,6 and all odd g (G. and Taranchuk 2023+).

Cioabd, Lazebnik, and Li

C%@H %
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The Point collinearity
graph is a Cayley graph.
Make use of the
Representation theory.



ayley Graphs

Let G be a group, and let S be a nonempty, finite subset of G such
that S=Sland1¢S.

Definition (Cayley graph)
The Cayley graph 4(G,S) is the graph with vertex set V = G and
edge set E ={{x,y}| 3s€S:y=xs}.
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ayley Graphs

Let G be a group, and let S be a nonempty, finite subset of G such
that S=Sland1¢S.

Definition (Cayley graph)
The Cayley graph 4(G,S) is the graph with vertex set V = G and
edge set E ={{x,y}| 3s€S:y=xs}.

0 1
Examples: 5<:>2 %5
4 3 4 3

G=7/6Z, 5={1,-1} G=7/6Z, 5S=1{2,-2,3}
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sentation theory of finite groups

Let G be a finite group.

A representation of G is a group homomorphism
p: G — GL(V) where V is a finite dimensional vector space
over C.
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ntation theory of finite groups

Let G be a finite group.

A representation of G is a group homomorphism
p: G — GL(V) where V is a finite dimensional vector space
over C.

The degree of p to be the dimension of V as a vector space
over C. It is denoted by d,.

Two representations p : G — GL(V) and 0 : G — GL(W) are
said to be equivalent if there exists an isomorphism
T:V — W such that o(g) = Tp(g)T ' Vg€ G.
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ntation theory of finite groups

Let G be a finite group.

A representation of G is a group homomorphism
p: G — GL(V) where V is a finite dimensional vector space
over C.

The degree of p to be the dimension of V as a vector space
over C. It is denoted by d,.

Two representations p : G — GL(V) and 0 : G — GL(W) are
said to be equivalent if there exists an isomorphism
T:V — W such that o(g) = Tp(g)T ' Vg€ G.

A representation of degree n is a group homomorphism
p:G— GLy(C).
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Let G be a finite group.

Trivial Representation p: G — C*, g+— 1 Vg € G.
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Let G be a finite group.

Trivial Representation p: G — C*, g+— 1 Vg € G.

Regular Representation A : G — GLig|(C), g Ry Vg € G,

where Ry = [r)gﬁ,)])@yeg and

r(g)— {1, if y=xg

X,y — .
0, otherwise.
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cible representations

Let p: G — GL(V) be a representation of G.

A subspace W of V is G-invariant if Vg € G and w € W, one
has p(g)(w) € W.
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ible representations

Let p: G — GL(V) be a representation of G.

A subspace W of V is G-invariant if Vg € G and w € W, one
has p(g)(w) € W.

A representation p of a group G is irreducible if the only
G-invariant subspaces are trivial, i.e., {0} and V.
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ble representations

Let p: G — GL(V) be a representation of G.

A subspace W of V is G-invariant if Vg € G and w € W, one
has p(g)(w) € W.

A representation p of a group G is irreducible if the only
G-invariant subspaces are trivial, i.e., {0} and V.

If (p1, W1) and (p2, W>) are representations of a group G and
V=W & W,, then p = p1 & p> is their direct sum, that is

p(g)v = p1(g)wi + p2(g)wa where v = wi + ws.

Himanshu Gupta



Representation Theory

Maschke Theorem

Every representation of a group G is the direct sum of a finite
number of irreducible representation.
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epresentation Theory

Maschke Theorem

Every representation of a group G is the direct sum of a finite
number of irreducible representation.

We denote by E the dual of G, a complete set of irreducible
pairwise non-equivalent representations of G
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Representation Theory

Maschke Theorem

Every representation of a group G is the direct sum of a finite
number of irreducible representation.

We denote by E the dual of G, a complete set of irreducible
pairwise non-equivalent representations of G

Theorem
Let G be a finite group, A : G — GL/5/(C), g = Ry the regular
representation, and G = {p1,p2...,P¢}. Then

A > dp,p1® dp, 2D+ D dp, Pt

t
1Gl=Y d>.
i=1
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Spectra of Cayley Graphs

Definition (Recall)

The Cayley graph 4(G,S) is the graph with vertex set V = G and
edge set E={{x,y}| 3s€S:y=xs}.

Let A be the adjacency matrix of a Cayley graph 4(G,S). Then

A=Y R

seS
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pectra of Cayley Graphs

Let G = {p1.p2,...,pt}. For each i, let p;i(S) =) pi(s).

seS

A

Let A be the adjacency matrix of a Cayley graph ¢(G,S). The
characteristic polynomial of A is given by

CD(X) = det(X/|G‘ —A) = .I_t]ldet[XId"f —p,-(S)]dPi

Himanshu Gupta



Ustimenko's Conjecture

Let g = p®, where p is a prime number and e is a positive integer.
Then

A2(CD(k,q)) <2,/q
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Main Result

Ustimenko's Conjecture

Let g = p®, where p is a prime number and e is a positive integer.
Then

A2(CD(k,q)) <2,/q

G. and Taranchuk 2023+

Let g = p®, where p is an odd prime and e is a positive integer.
Then

42(D(5,9)) <2v/q
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irst Lemma

Let g be an odd prime power, P=L=F2 and V =PUL. Then

D(5,q) =T(5,q)

For D(5,q) For I'(5,q)

(pl,pz,p3,p4,p5) ~ [/1,/2,/3,/4,/5] (P15P2,P3,P47P5) ~ [/1al27l3)/4al5]

) ()
p2+bh=prh p2+h=p1h
p3+h=pih ps+h=pil}
pa+ls = p2h pa+ls = pih
ps+ s = p3h ps+ s = p3l?
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Let G = (F3,-), be a group, where
XY =(x1+y1, x2+y2, X3+y3, xa+ya+2x1y2, X5+ y5+2x1y3).

Let S = {(x,xa,xa% x?a,x%a%) : a,x € Fg,x # 0} be a subset of G.
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econd Lemma

Let G = (F3,-), be a group, where
XY =(x1+y1, xo+y2, x3+y3, Xa+ya+2x1y0, x5+ y5+2x1y3).

Let S = {(x,xa,xa% x?a,x%a%) : a,x € Fg,x # 0} be a subset of G.

The Point graph of I'(5,q) is isomorphic to the Cayley graph with
group G and generating set S.
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acond Lemma

Let G = (F3,-), be a group, where
XY =(x1+y1, xo+y2, x3+y3, Xa+ya+2x1y0, x5+ y5+2x1y3).

Let S = {(x,xa,xa% x?a,x%a%) : a,x € Fg,x # 0} be a subset of G.

The Point graph of I'(5,q) is isomorphic to the Cayley graph with
group G and generating set S.

p2—r2 = (p1—r)l1,

(P1,P2,P3,Pa,Ps) ~ (£1,02,03,04,05) ps—rs=(pr—n)t,
(r1,r2,13,13,15) ~ (€1,02, 03, L4, (s) pa—ra = (p} —r{)l1,
ps — 15 = (P% - 12)@
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Every eigenvalue A of the point graph with multiplicity m
corresponds to a pair of eigenvalues +/A + g of the graph (5, q)
each with multiplicity m.
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Every eigenvalue A of the point graph with multiplicity m
corresponds to a pair of eigenvalues +/A + g of the graph (5, q)
each with multiplicity m.

Recall Ustimenko's Conjecture is that the second largest
eigenvalue of graph CD(k,q) is at most 2,/q.

Aim To show second largest eigenvalue of the point graph (which
is Cayley) is at most 3q.
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cible representations of the group G

Group G = (IF;,-) where

XY =(x1+y1,x+y2, X3+ Y3, X+ ya+2x12, X5 + y5 + 2x1y3).

2mi

{=er tr:Fq—Fp tr(a):a+ap+~-~—|—ape71
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ible representations of the group G

Group G = (IF;,-) where

XY =(x1+y1,x+y2, X3+ Y3, X+ ya+2x12, X5 + y5 + 2x1y3).

Irreducible representations of G are:
Type 1 For a,B,Y€Fq, Xapy: G— GL1(C)

T f(X) 1= g atna),

Type 2 For a,f,y € Fq with a #0, My g, : G — GLy(C)
B .
Mo po(X) = [Ctr((xﬁ“X3)J+ax4+ﬁx5+yx3> 2 ot kljkeFg-
Type 3 For 7,u € Fg with 7#0, Ny : G — GLy(C)

Nr.,u (X) — [Ctr(x3j+rx5+ux2)62x1r+j,k]j,keJFq-

2mi

{=er tr:Fq—TFp tr(a)=a+aP+--+af""
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values from the irreducible representations

Generating set S = {(x,xa,xa’,x%a,x%a°) : a,x € Fg,x # 0}.
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values from the irreducible representations

Generating set S = {(x,xa,xa’,x%a,x%a°) : a,x € Fg,x # 0}.

Type 1 Z Xa BAy(X) = Z Ctr(aXl+ﬁX2+yX3)
Xes Xes
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alues from the irreducible representations

Generating set S = {(x,xa,xa’,x%a,x%a°) : a,x € Fg,x # 0}.

Type 1 Z Xap, 7/ Z Ctr(axl+[3><2+y><3)
Xes

Eigenvalues are g(¢—1), g, 0, and —q
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alues from the irreducible representations

Generating set S = {(x,xa,xa’,x%a,x%a°) : a,x € Fg,x # 0}.

Type 1 Z Xa.BAy(X) = Z Ctr(ax1+[3><2+y><3)
Xes XeSs

Eigenvalues are g(¢—1), g, 0, and —q

tr( (xet+Exs ) j+oxa+Bxs+
Type 2 Z Ma,ﬁA,y(X) _ Z ¢ r((xz aX3)J axg+Pxs an) 52x1a+j,k]j.k€]Fq
XeS XeS

Type 3 XZS Nq:,u (X) :XZS[Ctr(x3j+fx5+uxz)52x17+j,k]j,ke]1?q
€ €

Himanshu Gupta



alues from the irreducible representations

Generating set S = {(x,xa,xa’,x%a,x%a°) : a,x € Fg,x # 0}.
Type 1 Z Xap, 7/ Z Ctr(axl+[3><2+y><3)
Xes

Eigenvalues are g(¢—1), g, 0, and —q

tr( (xet+Exs ) j+oxa+Bxs+
Type 2 Z Ma,ﬁA,y(X) _ Z ¢ r((xz aX3)J axg+Pxs Vx3) 52x1a+j,k]j.k€]Fq
XeS XeS

Type 3 XZS Nq:,u (X) :XZS[Ctr(x3j+fx5+“xz)52x17+j,k]j,ke]1?q
€ €

Eigenvalues coming from Type 2 and Type 3 are sums involving
multiplicative and additive character of F;. We bound its absolute
value by using Weil's bound for character sums.
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Ustimenko's Conjecture

A2(CD(k,q)) <2/q
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Ustimenko's Conjecture

22(CD(k,q)) < 2/3

G. and Taranchuk 2023+
Let g be an odd prime power. Then A>(D(5,q)) <2,/q
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Ustimenko's Conjecture

22(CD(k,q)) < 2/3

G. and Taranchuk 2023+
Let g be an odd prime power. Then A>(D(5,q)) <2,/q

Corollary

Let g be an odd prime power. Then A>(CD(6,q)) < 2,/q

Future Work Prove the conjecture for other values of k.

On the eigenvalues of the graphs D(5,q),
arXiv:2207.04629 - July 2022,
G. and Taranchuk.
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