
On the eigenvalues of the graphs D(5,q)

Himanshu Gupta
joint work with Vladislav Taranchuk

Department of Mathematical Sciences
University of Delaware

sites.udel.edu/himanshu
himanshu@udel.edu

Algebraic Graph Theory Seminar
University of Waterloo

July 17, 2023

Himanshu Gupta On the eigenvalues of the graphs D(5,q) 1 / 25

sites.udel.edu/himanshu


Motivation

The isoperimetric constant of a graph Γ measures how
“well-connected” a graph is.

Definition (Isoperimetric constant)

h(Γ) := min
{
|E (S,Sc)|
|S| : S ⊂ V (Γ),0 < |S| ≤ |V (Γ)|

2

}

|S|= 4, |E (S,Sc)|= 4 =⇒ |E(S,Sc)|
|S| = 1.
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Expanders

Definition (Expanders)
An infinite family of k-regular finite graphs {Γn} is called expander family

if there exists C := C(k) > 0 such that h(Γn)≥ C for all n,

and |V (Γn)| → ∞ as n→ ∞.

Importance: Sparse and highly connected graphs.

Expander graphs and their Applications - Hoory, Linial and
Wigderson 2006 Coding Theory, Probability theory, Computer
Science.
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Spectral graph theory

The adjacency matrix A of a
graph G with n vertices is a n×n
matrix with
A(x ,y) = the number of edges
between x and y .

Fact: For a connected, k-regular
graph G on n vertices

k = λ1 > λ2 ≥ λ3 ≥ ·· · ≥ λn ≥−k.

0 k “trivial”−k

31, 15, −24

Himanshu Gupta On the eigenvalues of the graphs D(5,q) 4 / 25



Spectral graph theory

The adjacency matrix A of a
graph G with n vertices is a n×n
matrix with
A(x ,y) = the number of edges
between x and y .

Fact: For a connected, k-regular
graph G on n vertices

k = λ1 > λ2 ≥ λ3 ≥ ·· · ≥ λn ≥−k.

0 k “trivial”−k

31, 15, −24

Himanshu Gupta On the eigenvalues of the graphs D(5,q) 4 / 25



Spectral Expanders

Theorem (Alon-Milman 1985, Dodziuk 1984, and Mohar 1989)
Let Γ be a k-regular connected graph with second largest eigenvalue λ2.
Then

k−λ2
2 ≤ h(Γ)≤

√
(k−λ2)(k + λ2).

Definition (Spectral Expanders)
An infinite family of k-regular finite graphs {Γn} is called spectral
expander family

if there exists C ′ := C ′(k) > 0 such that k−λ2(Γn)≥ C ′ for all n,

and |V (Γn)| → ∞ as n→ ∞.

0 k−k

C ′
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Alon-Boppana Bound and Ramanujan Graphs

Theorem (Alon-Boppana 1986)
Let {Γn} be a family of k-regular connected graphs, with |Vn| → ∞ as
n→ ∞. Then

liminf
m→∞

λ2(Γn)≥ 2
√

k−1.

Definition (Ramanujan Graph)

A k-regular connected graph Γ is a Ramanujan graph if λ2(Γ)≤ 2
√

k−1.

0
2
√

k−1
k−k

Ramanujan graphs ←→ best possible expanders.
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Known constructions of Ramanujan graphs

Lubotzky, Phillips, & Sarnak 1988 and independently Margulis
1988 constructed an infinite families of (p + 1)-regular graphs
where p is a prime.

Morgenstern 1994 extended their constructions to prime powers.

Marcus, Spielman, & Srivastava 2015 showed there exist infinite
families of bipartite Ramanujan graphs for any degree greater than
2.
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Graphs D(k,q) - Lazebnik and Ustimenko 1995

Let q be a prime power, k ≥ 2, P = L = Fk
q, and V = P ∪L.

(p) = (p1,p2,p3, . . . ,pj , . . .pk)∼ [`] = [`1, `2, `3, . . . , `j , . . . , `k ]~�
p2 + `2 = p1`1

p3 + `3 = p1`2

pj + `j =
{

pj−2`1 if j = 0,1 (mod 4)
p1`j−2 if j = 2,3 (mod 4).
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An Example

Let q = 2 and k = 2, P = L = F2
2, V = P ∪L

(p1,p2)∼ [l1, l2] ←→ p2 + `2 = p1`1

(0,0)

(0,1)

(1,0)

(1,1)

[0,0]

[0,1]

[1,0]

[1,1]
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Some Properties of Graphs D(k,q)

D(k,q) is q-regular, bipartite, and has 2qk vertices.

Lazebnik, Ustimenko, and Woldar 1995 D(k,q) has qj

isomorphic components, where j = d1 + k−5
4 e.

A component is denoted CD(k,q)

Lazebnik and Ustimenko 1995 The girth of D(k,q) is at
least k + 4 when k is even, and k + 5 when k is odd.
Thus gives asymptotically the best known general lower bound
(except for k = 5) for ex(n,{C2k+1, . . . ,C4,C3}), i.e.,

ex(n,{C2k+1, . . . ,C4,C3})≥ n1+ 2
3k−3+ε

where ε is 1 if k is even, and 0 if k is odd.
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Main Problem

Ustimenko’s Conjecture

λ2(CD(k,q))≤ 2√q

Progress so far!
For k = 2,3 and all q (Li, Lu, and Wang 2009, Cioabă, Lazebnik, and Li
2014).
For k = 4 and all q (Moorhouse, Sun, and Williford 2017).
For k = 5,6 and all odd q (G. and Taranchuk 2023+).

−→ →

The Point collinearity
graph is a Cayley graph.
Make use of the
Representation theory.
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Cayley Graphs

Let G be a group, and let S be a nonempty, finite subset of G such
that S = S−1 and 1 /∈ S.

Definition (Cayley graph)
The Cayley graph G (G ,S) is the graph with vertex set V = G and
edge set E = {{x ,y}| ∃ s ∈ S : y = xs}.

Examples:

G = Z/6Z, S = {1,−1} G = Z/6Z, S = {2,−2,3}
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Representation theory of finite groups

Let G be a finite group.

A representation of G is a group homomorphism
ρ : G → GL(V ) where V is a finite dimensional vector space
over C.

The degree of ρ to be the dimension of V as a vector space
over C. It is denoted by dρ .

Two representations ρ : G → GL(V ) and σ : G → GL(W ) are
said to be equivalent if there exists an isomorphism
T : V →W such that σ(g) = T ρ(g)T−1 ∀g ∈ G .

A representation of degree n is a group homomorphism
ρ : G → GLn(C).
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Examples

Let G be a finite group.

Trivial Representation ρ : G → C∗, g 7→ 1 ∀g ∈ G .

Regular Representation λ : G → GL|G |(C), g 7→ Rg ∀g ∈ G ,
where Rg = [r (g)

x ,y ]x ,y∈G and

r (g)
x ,y =

{
1, if y = xg
0, otherwise.
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Irreducible representations

Let ρ : G → GL(V ) be a representation of G .

A subspace W of V is G-invariant if ∀g ∈ G and w ∈W , one
has ρ(g)(w) ∈W .

A representation ρ of a group G is irreducible if the only
G-invariant subspaces are trivial, i.e., {0} and V .

If (ρ1,W1) and (ρ2,W2) are representations of a group G and
V = W1⊕W2, then ρ = ρ1⊕ρ2 is their direct sum, that is

ρ(g)v = ρ1(g)w1 + ρ2(g)w2 where v = w1 + w2.
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Representation Theory

Maschke Theorem
Every representation of a group G is the direct sum of a finite
number of irreducible representation.

We denote by Ĝ , the dual of G , a complete set of irreducible
pairwise non-equivalent representations of G

Theorem
Let G be a finite group, λ : G → GL|G |(C), g 7→ Rg the regular
representation, and Ĝ = {ρ1,ρ2 . . . ,ρt}. Then

λ ' dρ1ρ1⊕dρ2ρ2⊕·· ·⊕dρt ρt

|G |=
t

∑
i=1

d2
ρi .
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Spectra of Cayley Graphs

Definition (Recall)
The Cayley graph G (G ,S) is the graph with vertex set V = G and
edge set E = {{x ,y}| ∃ s ∈ S : y = xs}.

Lemma
Let A be the adjacency matrix of a Cayley graph G (G ,S). Then

A = ∑
s∈S

Rs
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Spectra of Cayley Graphs

Let Ĝ = {ρ1,ρ2, . . . ,ρt}. For each i , let ρi (S) = ∑
s∈S

ρi (s).

Theorem
Let A be the adjacency matrix of a Cayley graph G (G ,S). The
characteristic polynomial of A is given by

Φ(x) = det(xI|G |−A) =
t

∏
i=1

det[xIdρi
−ρi (S)]dρi

∼
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Main Result

Ustimenko’s Conjecture
Let q = pe , where p is a prime number and e is a positive integer.
Then

λ2(CD(k,q))≤ 2√q

G. and Taranchuk 2023+
Let q = pe , where p is an odd prime and e is a positive integer.
Then

λ2(D(5,q))≤ 2√q
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First Lemma

Lemma 1
Let q be an odd prime power, P = L = F5

q, and V = P ∪L. Then

D(5,q)∼= Γ(5,q)

For D(5,q)

(p1,p2,p3,p4,p5)∼ [l1, l2, l3, l4, l5]~�
p2 + l2 = p1l1
p3 + l3 = p1l2
p4 + l4 = p2l1
p5 + l5 = p3l1

For Γ(5,q)

(p1,p2,p3,p4,p5)∼ [l1, l2, l3, l4, l5]~�
p2 + l2 = p1l1
p3 + l3 = p1l2

1

p4 + l4 = p2
1 l1

p5 + l5 = p2
1 l2

1
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Second Lemma

Let G = (F5
q, ·), be a group, where

X ·Y = (x1 + y1, x2 + y2, x3 + y3, x4 + y4 + 2x1y2, x5 + y5 + 2x1y3).

Let S = {(x ,xa,xa2,x2a,x2a2) : a,x ∈ Fq,x 6= 0} be a subset of G .

Lemma 2
The Point graph of Γ(5,q) is isomorphic to the Cayley graph with
group G and generating set S.

(p1,p2,p3,p4,p5)∼ (`1, `2, `3, `4, `5)
(r1, r2, r3, r4, r5)∼ (`1, `2, `3, `4, `5)

p2− r2 = (p1− r1)`1,

p3− r3 = (p1− r1)`2
1,

p4− r4 = (p2
1− r2

1 )`1,

p5− r5 = (p2
1− r2

1 )`2
1.
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Second Lemma
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Third Lemma

Lemma 3
Every eigenvalue λ of the point graph with multiplicity m
corresponds to a pair of eigenvalues ±

√
λ + q of the graph Γ(5,q)

each with multiplicity m.

Recall Ustimenko’s Conjecture is that the second largest
eigenvalue of graph CD(k,q) is at most 2√q.

Aim To show second largest eigenvalue of the point graph (which
is Cayley) is at most 3q.
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Irreducible representations of the group G

Group G = (F5
q, ·) where

X ·Y = (x1 + y1,x2 + y2,x3 + y3,x4 + y4 + 2x1y2,x5 + y5 + 2x1y3).

Irreducible representations of G are:
Type 1 For α,β ,γ ∈ Fq, χα,β ,γ : G → GL1(C)

χα,β ,γ (X ) := ζ
tr(αx1+βx2+γx3).

Type 2 For α,β ,γ ∈ Fq with α 6= 0, Mα,β ,γ : G → GLq(C)

Mα,β ,γ (X ) := [ζ tr
((

x2+ β

α
x3
)

j+αx4+βx5+γx3
)
δ2x1α+j,k ]j,k∈Fq .

Type 3 For τ,µ ∈ Fq with τ 6= 0, Nτ,µ : G → GLq(C)

Nτ,µ (X ) := [ζ tr(x3j+τx5+µx2)
δ2x1τ+j,k ]j,k∈Fq .

ζ = e
2π i
p tr : Fq → Fp tr(a) = a + ap + · · ·+ ape−1
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Eigenvalues from the irreducible representations

Generating set S = {(x ,xa,xa2,x2a,x2a2) : a,x ∈ Fq,x 6= 0}.

Type 1 ∑
X∈S

χα,β ,γ (X) = ∑
X∈S

ζ
tr(αx1+βx2+γx3)

Eigenvalues are q(q−1), q, 0, and −q

Type 2 ∑
X∈S

Mα,β ,γ (X) = ∑
X∈S

[ζ tr
((

x2+ β

α
x3

)
j+αx4+βx5+γx3

)
δ2x1α+j,k ]j,k∈Fq

Type 3 ∑
X∈S

Nτ,µ (X) = ∑
X∈S

[ζ tr(x3j+τx5+µx2)
δ2x1τ+j,k ]j,k∈Fq

Eigenvalues coming from Type 2 and Type 3 are sums involving
multiplicative and additive character of Fq. We bound its absolute
value by using Weil’s bound for character sums.
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Summary

Ustimenko’s Conjecture

λ2(CD(k,q))≤ 2√q

G. and Taranchuk 2023+
Let q be an odd prime power. Then λ2(D(5,q))≤ 2√q

Corollary
Let q be an odd prime power. Then λ2(CD(6,q))≤ 2√q

Future Work Prove the conjecture for other values of k.

On the eigenvalues of the graphs D(5,q),
arXiv:2207.04629 - July 2022,

G. and Taranchuk.
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