L-systems and the Lovász number

William Linz

University of South Carolina

Waterloo Algebraic Graph Theory Seminar June 12, 2023

4 17 18

4 A N

 Ω

Hoffman bound

Let G be a graph on n vertices. We label the eigenvalues of its adjacency matrix as $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

and the first

す 何 ト す ヨ ト す ヨ ト

∍

 Ω

Hoffman bound

Let G be a graph on n vertices. We label the eigenvalues of its adjacency matrix as $\lambda_1 > \lambda_2 > \cdots > \lambda_n$.

Hoffman bound

Let G be an *n*-vertex regular graph. Then,

$$
\alpha(G) \leq \frac{-\lambda_n}{\lambda_1 - \lambda_n} n,
$$

where $\alpha(G)$ is the maximum size of an independent set in G.

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Sketch of proof of Hoffman bound

• Define the matrix

$$
M=A-\lambda_nI-\frac{\lambda_1-\lambda_n}{n}J,
$$

where J is the $n \times n$ all 1s matrix.

4 17 18

4母 ト 4目 ト

ヨト ∍ 200

Sketch of proof of Hoffman bound

• Define the matrix

$$
M=A-\lambda_nI-\frac{\lambda_1-\lambda_n}{n}J,
$$

where J is the $n \times n$ all 1s matrix.

 \bullet Fact: M is positive semidefinite.

 \sim \sim

→ 手

 Ω

Sketch of proof of Hoffman bound

• Define the matrix

$$
M=A-\lambda_nI-\frac{\lambda_1-\lambda_n}{n}J,
$$

where J is the $n \times n$ all 1s matrix.

- \bullet Fact: M is positive semidefinite.
- Since M is positive semidefinite, for any vector x ,

$$
0 \leq x^T M x = x^T A x - \lambda_n x^T x - \frac{\lambda_1 - \lambda_n}{n} x^T J x.
$$

Sketch of proof continued

$$
0 \leq x^T M x = x^T A x - \lambda_n x^T x - \frac{\lambda_1 - \lambda_n}{n} x^T J x.
$$
 (1)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

E

 299

Sketch of proof continued

$$
0 \leq x^T M x = x^T A x - \lambda_n x^T x - \frac{\lambda_1 - \lambda_n}{n} x^T J x.
$$
 (1)

• Let s be the characteristic vector of the independent set S. Since S is an independent set, $\,s^{\mathcal{T}}As=\sum_{u,v}a_{uv}s_{u}s_{v}=0,$ so setting $x = s$ in [\(1\)](#page-6-0),

$$
0\leq -\lambda_n|S|-\frac{\lambda_1-\lambda_n}{n}|S|^2.
$$

Sketch of proof continued

$$
0 \leq x^T M x = x^T A x - \lambda_n x^T x - \frac{\lambda_1 - \lambda_n}{n} x^T J x.
$$
 (1)

• Let s be the characteristic vector of the independent set S. Since S is an independent set, $\,s^{\mathcal{T}}As=\sum_{u,v}a_{uv}s_{u}s_{v}=0,$ so setting $x = s$ in [\(1\)](#page-6-0),

$$
0\leq -\lambda_n|S|-\frac{\lambda_1-\lambda_n}{n}|S|^2.
$$

• Rearranging this inequality gives Hoffman's bound.

┌何 ▶ ((三) ((三)

Pseudoadjacency matrices

Two properties of the adjacency matrix A were used in the proof of the Hoffman bound:

 \overline{a}

 Ω

Pseudoadjacency matrices

Two properties of the adjacency matrix A were used in the proof of the Hoffman bound:

(Implicitly) A is symmetric and has constant row sums.

 QQ

Pseudoadjacency matrices

Two properties of the adjacency matrix A were used in the proof of the Hoffman bound:

- (Implicitly) A is symmetric and has constant row sums.
- $a_{uv} = 0$ whenever $u \nsim v$.

Pseudoadjacency matrices

Two properties of the adjacency matrix A were used in the proof of the Hoffman bound:

- (Implicitly) A is symmetric and has constant row sums.
- $a_{uv} = 0$ whenever $u \nsim v$.

We call any matrix which satisfies these two properties a pseudoadjacency matrix for the graph G.

Hoffman bound: pseudoadjaceny matrix version

Hoffman bound - pseudoadjacency matrix version

Let G be an *n*-vertex regular graph, and let A be a pseudoadjacency matrix for G with eigenvalues $\lambda_1 > \lambda_2 > \cdots > \lambda_n$. Then,

$$
\alpha(G) \leq \frac{-\lambda_n}{\lambda_1 - \lambda_n} n.
$$

How do we find the best possible bound for the independence number from pseudoadjacency matrices?

4 17 18

∍

 2990

∍

Lovász number definition

Lovász number

Let G be an *n*-vertex graph. For a matrix $A = (a_{ii})_{1 \le i, j \le n}$, denote the largest eigenvalue of A by lev(A). The Lovász number $\vartheta(G)$ is defined to be

 $\vartheta(G) = \min\{\text{lev}(A) : A \text{ is symmetric}, a_{ii} = 1 \text{ if } i = j \text{ or } i \not\sim j.\}$

Sandwich property of the Lovász number

Recall the Shannon capacity of a graph G is defined to be

$$
\Theta(G) = \sup \{ \alpha(G^k) \}^{\frac{1}{k}} = \lim_{k \to \infty} \{ \alpha(G^k) \}^{\frac{1}{k}}.
$$

Sandwich Theorem (Lovász)

 $\alpha(G) \leq \Theta(G) \leq \vartheta(G).$

∢ 何 ▶ (○ ▶ (○ ○

Alternate Lovász number characterization

The Lovász number can be written as a semidefinite program, so it can be computed in polynomial time up to arbitrary precision.

Theorem (Lovász)

Let G be an *n*-vertex graph, and let $B = (b_{ii})_{1 \le i, j \le n}$ range over all positive semidefinite matrices with $b_{ii} = 0$ whenever $i \sim j$ and $Tr(B) = 1$. Then,

$$
\vartheta(G)=\max_{B}\mathsf{Tr}(BJ).
$$

ഹൈ

Connection to pseudoadjacency matrices

The Lovász number is, in some sense, the best bound for the independence number that could be obtained by using pseudoadjacency matrices.

Theorem (Lovász)

Let G be a regular graph with eigenvalues $\lambda_1 > \lambda_2 > \cdots > \lambda_n$. Then,

$$
\vartheta(G)\leq \frac{-\lambda_n}{\lambda_1-\lambda_n}n.
$$

Sketch of proof

• Consider a matrix of the form $J - xA$, where x is chosen later.

∢ ロ ▶ (/ 何) → (日

 299

ヨト э

Inches

Sketch of proof

- Consider a matrix of the form $J xA$, where x is chosen later.
- \bullet J xA satisfies the conditions for the definition of the Lovász number, so

$$
\vartheta(G)\leq \mathsf{lev}(J-xA).
$$

4 17 18

K 何 ▶ 【三

∍

 Ω

Sketch of proof

- Consider a matrix of the form $J xA$, where x is chosen later.
- \bullet J xA satisfies the conditions for the definition of the Lovász number, so

$$
\vartheta(G)\leq \mathsf{lev}(J-xA).
$$

• The eigenvalues of $J - xA$ are $n - x\lambda_1, -x\lambda_2, \ldots, -x\lambda_n$, so

$$
lev(J - xA) = max\{n - x\lambda_1, -x\lambda_n\}.
$$

4母 ト 4回 ト

Sketch of proof

- Consider a matrix of the form $J xA$, where x is chosen later.
- \bullet J xA satisfies the conditions for the definition of the Lovász number, so

$$
\vartheta(G)\leq \mathsf{lev}(J-xA).
$$

• The eigenvalues of $J - xA$ are $n - x\lambda_1, -x\lambda_2, \ldots, -x\lambda_n$, so

$$
lev(J - xA) = max\{n - x\lambda_1, -x\lambda_n\}.
$$

• Choosing x so that $n - x\lambda_1 = -x\lambda_n$, i.e. $x = n/(\lambda_1 - \lambda_n)$ gives

$$
\vartheta(G) \leq \frac{-\lambda_n}{\lambda_1 - \lambda_n} n.
$$

Erdos-Ko-Rado theorem

A family of sets $\mathcal F$ is *intersecting* if any two sets in the family have a nonempty intersection.

Erdős-Ko-Rado

Let $n \geq 2k$. Then, if $\mathcal{F} \subset \binom{[n]}{k}$ $\binom{n}{k}$ is an intersecting family, we have

$$
|\mathcal{F}| \leq {n-1 \choose k-1}.
$$

Erdos-Ko-Rado theorem

A family of sets $\mathcal F$ is *intersecting* if any two sets in the family have a nonempty intersection.

Erd˝os-Ko-Rado

Let $n \geq 2k$. Then, if $\mathcal{F} \subset \binom{[n]}{k}$ $\binom{n}{k}$ is an intersecting family, we have $|\mathcal{F}| \leq {n-1 \choose k}$ $k-1$.

The families $\{F \in \binom{[n]}{k}\}$ $\binom{n}{k}: 1 \in F$ } show this bound is tight (these are the unique maximum families if $n > 2k$).

す 何 ト す ヨ ト す ヨ ト

Erdos-Ko-Rado theorem

A family of sets $\mathcal F$ is *intersecting* if any two sets in the family have a nonempty intersection.

Erd˝os-Ko-Rado

Let $n \geq 2k$. Then, if $\mathcal{F} \subset \binom{[n]}{k}$ $\binom{n}{k}$ is an intersecting family, we have $|\mathcal{F}| \leq {n-1 \choose k}$ $k-1$.

The families $\{F \in \binom{[n]}{k}\}$ $\binom{n}{k}: 1 \in F$ } show this bound is tight (these are the unique maximum families if $n > 2k$). One of the many proofs of EKR uses the Hoffman bound.

←ロト ←何ト ←ヨト ←ヨト

 Ω

Sketch of proof of EKR with Kneser graphs

• Recall the Kneser graph $G(n, k)$, which has $V(G(n, k)) = {[n] \choose k}$ $\binom{n}{k}$, and $A \sim B$ if and only if $A \cap B = \emptyset$.

Sketch of proof of EKR with Kneser graphs

- Recall the Kneser graph $G(n, k)$, which has $V(G(n, k)) = {[n] \choose k}$ $\binom{n}{k}$, and $A \sim B$ if and only if $A \cap B = \emptyset$.
- Independent sets in the Kneser graph correspond to intersecting k -uniform families.

Sketch of proof of EKR with Kneser graphs

- Recall the Kneser graph $G(n, k)$, which has $V(G(n, k)) = {[n] \choose k}$ $\binom{n}{k}$, and $A \sim B$ if and only if $A \cap B = \emptyset$.
- Independent sets in the Kneser graph correspond to intersecting k-uniform families.
- The eigenvalues of the Kneser graph $G(n, k)$ are $(-1)^{i} \binom{n-k-i}{k-i}$ $\binom{-k-i}{k-i}, i = 0, \ldots, k$, so

$$
\binom{n-1}{k-1} \leq \alpha(G) \leq \vartheta(G) \leq \frac{\binom{n-k-1}{k-1}}{\binom{n-k}{k} + \binom{n-k-1}{k-1}} \binom{n}{k} = \binom{n-1}{k-1}.
$$

 Ω

Erdos-Ko-Rado for t-intersecting families

A family of sets $\mathcal F$ is *t-intersecting* if every two sets in the family intersect in at least t elements.

医间周的

Erdos-Ko-Rado for t-intersecting families

A family of sets $\mathcal F$ is *t-intersecting* if every two sets in the family intersect in at least t elements.

Theorem (Wilson)

If $\mathcal{F} \subset \binom{[n]}{k}$ $\binom{n}{k}$ is *t*-intersecting, then for $n \ge (t+1)(k-t+1)$,

$$
|\mathcal{F}| \leq {n-t \choose k-t}.
$$

t-Kneser graphs

• Define the *t-Kneser graph* $G(n, k, t)$ as the graph with $V(G(n, k, t)) = {[n] \choose k}$ $\binom{n}{k}$, and $A \sim B$ if and only if $|A \cap B| < t$.

伊 ▶ イヨ ▶

t-Kneser graphs

- Define the *t-Kneser graph* $G(n, k, t)$ as the graph with $V(G(n, k, t)) = {[n] \choose k}$ $\binom{n}{k}$, and $A \sim B$ if and only if $|A \cap B| < t$.
- Unfortunately, the Hoffman bound for the adjacency matrix does not give a tight bound for the independence number of $G(n, k, t)$.

t-Kneser graphs

- Define the *t-Kneser graph* $G(n, k, t)$ as the graph with $V(G(n, k, t)) = {[n] \choose k}$ $\binom{n}{k}$, and $A \sim B$ if and only if $|A \cap B| < t$.
- Unfortunately, the Hoffman bound for the adjacency matrix does not give a tight bound for the independence number of $G(n, k, t)$.
- Wilson constructed a suitable pseudoadjacency matrix for $G(n, k, t)$ to show

$$
\binom{n-t}{k-t}\leq \alpha(G(n,k,t))\leq \vartheta(G(n,k,t))\leq \binom{n-t}{k-t}.
$$

Smaller values of n

• What about for $n < (t+1)(k-t+1)$?

William Linz L-systems and the Lovász number

E

メロメ メ母メ メミメ メミメー

 299

Smaller values of n

- What about for $n < (t+1)(k-t+1)$?
- The answer is given by the complete intersection theorem of Ahlswede and Khachatrian:

4 17 18

4母 ト 4回 ト

 Ω

Smaller values of n

- What about for $n < (t+1)(k-t+1)$?
- The answer is given by the complete intersection theorem of Ahlswede and Khachatrian:
- Theorem (Ahlswede-Khachatrian): If $\mathcal{F} \subset \binom{[n]}{k}$ $\binom{n}{k}$ is a t-intersecting family, then

$$
|\mathcal{F}| \leq \max_{i} \{F \in \binom{[n]}{k} || F \cap [t+2i] \geq t+i \}.
$$

Smaller values of n

- What about for $n < (t+1)(k-t+1)$?
- The answer is given by the complete intersection theorem of Ahlswede and Khachatrian:
- Theorem (Ahlswede-Khachatrian): If $\mathcal{F} \subset \binom{[n]}{k}$ $\binom{n}{k}$ is a t-intersecting family, then

$$
|\mathcal{F}| \leq \max_i \{F \in \binom{[n]}{k} || F \cap [t+2i] \geq t+i \}.
$$

• Is there a proof of the Ahlswede-Khachatrian complete intersection theorem using pseudoadjacency matrices?

 \mathcal{A} and \mathcal{A} . The set of \mathcal{A}

 Ω

Smaller values of n (continued)

• Let
$$
n = 11
$$
, $k = 5$, $t = 2$.

E

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 299

Smaller values of n (continued)

- Let $n = 11$, $k = 5$, $t = 2$.
- By the complete intersection theorem, $\alpha(\textsf{G}(11,5,2)) = |\{F \in \binom{[11]}{5}\}|$ $\binom{[1]}{5}$ || $F \cap [4]$ | ≥ 3 } = 91.

Smaller values of n (continued)

- Let $n = 11$, $k = 5$, $t = 2$.
- By the complete intersection theorem, $\alpha(\textsf{G}(11,5,2)) = |\{F \in \binom{[11]}{5}\}|$ $\binom{[1]}{5}$ || $F \cap [4]$ | ≥ 3 } = 91.
- But $\vartheta(G(11, 5, 2)) = 105$,

Smaller values of n (continued)

- Let $n = 11$, $k = 5$, $t = 2$.
- By the complete intersection theorem, $\alpha(\textsf{G}(11,5,2)) = |\{F \in \binom{[11]}{5}\}|$ $\binom{[1]}{5}$ || $F \cap [4]$ | ≥ 3 } = 91.
- But $\vartheta(G(11, 5, 2)) = 105$, so no suitable pseudoadjacency matrix can exist.

● The Erdős-Ko-Rado and t-intersecting Erdős-Ko-Rado theorems are concerned with special cases of L-systems.

4 17 18

④ イ 伊 ト (手

∍

 Ω

L-systems

- The Erdős-Ko-Rado and t-intersecting Erdős-Ko-Rado theorems are concerned with special cases of L-systems.
- For positive integers n and k , and a set of integers $L \subseteq [0,k-1]$, an L -system is a collection of sets $\mathcal{F} \subset \binom{[n]}{k}$ $\binom{n}{k}$ such that for any two distinct sets $A, B \in \mathcal{F}$, $|A \cap B| \in L$.

L-systems

- \bullet The Erdős-Ko-Rado and t -intersecting Erdős-Ko-Rado theorems are concerned with special cases of L-systems.
- For positive integers n and k , and a set of integers $L \subseteq [0,k-1]$, an L -system is a collection of sets $\mathcal{F} \subset \binom{[n]}{k}$ $\binom{n}{k}$ such that for any two distinct sets $A, B \in \mathcal{F}$, $|A \cap B| \in L$.
- \bullet Intersecting *k*-uniform families correspond to *L*-systems with $L = \{1, 2, \ldots, k - 1\};$

L-systems

- The Erdős-Ko-Rado and t-intersecting Erdős-Ko-Rado theorems are concerned with special cases of L-systems.
- For positive integers n and k , and a set of integers $L \subseteq [0,k-1]$, an L -system is a collection of sets $\mathcal{F} \subset \binom{[n]}{k}$ $\binom{n}{k}$ such that for any two distinct sets $A, B \in \mathcal{F}$, $|A \cap B| \in L$.
- \bullet Intersecting *k*-uniform families correspond to *L*-systems with $L = \{1, 2, \ldots, k - 1\}$; t-intersecting families correspond to L-systems with $L = \{t, t + 1, ..., k - 1\}$.

 $\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$

L-systems and generalized Johnson graphs

Definition (Generalized Johnson graphs)

Let *n* and *k* be positive integers with $n > k$ and $L \subset [0, k - 1]$. The generalized Johnson graph $G = G(n, k, L)$ is the graph with $V(G) = {[n] \choose k}$ $\binom{n}{k}$, and $AB \in E(G) \iff |A \cap B| \notin L$.

- 何 ▶ → ヨ ▶ → ヨ ▶

L-systems and generalized Johnson graphs

Definition (Generalized Johnson graphs)

Let n and k be positive integers with $n > k$ and $L \subset [0, k - 1]$. The generalized Johnson graph $G = G(n, k, L)$ is the graph with $V(G) = {[n] \choose k}$ $\binom{n}{k}$, and $AB \in E(G) \iff |A \cap B| \notin L$. If $L = [0, k - 1] \setminus {\ell}$, then we use the notation $G(n, k, \ell)$ in place of $G(n, k, L)$.

∢ 何 ゝ ∢ ヨ ゝ ィ ヨ ゝ 。

L-systems and generalized Johnson graphs

Definition (Generalized Johnson graphs)

Let *n* and *k* be positive integers with $n > k$ and $L \subset [0, k - 1]$. The generalized Johnson graph $G = G(n, k, L)$ is the graph with $V(G) = {[n] \choose k}$ $\binom{n}{k}$, and $AB \in E(G) \iff |A \cap B| \notin L$. If $L = [0, k - 1] \setminus {\ell}$, then we use the notation $G(n, k, \ell)$ in place of $G(n, k, L)$.

L-systems correspond to independent sets in generalized Johnson graphs.

メラトメミトメミト

Lovász numbers of generalized Johnson graphs

Unfortunately, the Lovász number can be a very bad approximation for the independence number of a generalized Johnson graph.

Lovász numbers of generalized Johnson graphs

Unfortunately, the Lovász number can be a very bad approximation for the independence number of a generalized Johnson graph.

Theorem (L.)

For any $\epsilon > 0$, there is an explicit construction of a graph on n vertices which has $\vartheta(G)/\alpha(G)=\Omega(n^{\frac{1}{2}-\epsilon}).$

Lovász numbers of generalized Johnson graphs

Unfortunately, the Lovász number can be a very bad approximation for the independence number of a generalized Johnson graph.

Theorem (L.)

For any $\epsilon > 0$, there is an explicit construction of a graph on n vertices which has $\vartheta(G)/\alpha(G)=\Omega(n^{\frac{1}{2}-\epsilon}).$

Note that for random graphs $G(n, \frac{1}{2})$ $\frac{1}{2}$), $\vartheta(G(n, \frac{1}{2}))$ $(\frac{1}{2})) = \Theta(\sqrt{n})$ with high probability, while $\alpha(\textit{G}(n, \frac{1}{2}))$ $(\frac{1}{2})) = \log_2(n)$ with high probability.

ഹൈ

Construction

• Let
$$
G = G(n, 2\ell + 1, \ell)
$$
 and set $|V(G)| = N = \binom{n}{2\ell+1}$. Then,
we have $\vartheta(G) = \Theta(N^{\frac{2\ell}{2\ell+1}})$, while $\alpha(G) = \Theta(N^{\frac{\ell}{2\ell+1}})$.

メロトメ部 トメミトメミト

目

 299

Construction

- Let $G = G(n, 2\ell + 1, \ell)$ and set $|V(G)| = N = \binom{n}{2\ell+1}$. Then, we have $\vartheta (G)=\Theta (N^{\frac{2\ell}{2\ell+1}}),$ while $\alpha (G)=\Theta (N^{\frac{\ell}{2\ell+1}}).$
- This provides the promised explicit construction indeed, choose ℓ sufficiently large so that $\frac{1}{2} - \frac{\ell}{2\ell+1} = \frac{1}{4\ell+2} < \epsilon$.

The Lovász number

• The graphs $G(n, k, \ell)$ are regular and edge-transitive. Hence, by a result of Lovász,

$$
\vartheta(G(n,k,\ell))=\frac{-\lambda_{\binom{n}{k}}}{\lambda_1-\lambda_{\binom{n}{k}}}\binom{n}{k}.
$$

4 17 18

つくへ

∍

The Lovász number

• The graphs $G(n, k, \ell)$ are regular and edge-transitive. Hence, by a result of Lovász,

$$
\vartheta(G(n,k,\ell))=\frac{-\lambda_{\binom{n}{k}}}{\lambda_1-\lambda_{\binom{n}{k}}}\binom{n}{k}.
$$

• The eigenvalues of $G(n, k, \ell)$ are

$$
p_{k-\ell}(j) = \sum_{r=k-\ell}^{k} (-1)^{r-k+\ell+j} {r \choose k-\ell} {n-2r \choose k-r} {n-r-j \choose r-j}
$$

=
$$
\sum_{r=0}^{k-\ell} (-1)^r {j \choose r} {k-j \choose k-\ell-r} {n-k-j \choose k-\ell-r}
$$

for $j = 0, \ldots, k$. つくへ William Linz L-systems and the Lovász number

The Lovász number (continued)

• The largest eigenvalue is

$$
\lambda_1=p_{k-\ell}(0)=\binom{k}{k-\ell}\binom{n-k}{k-\ell}=\Theta(n^{k-\ell}).
$$

4日)

4母 ト 4目 ト

э

つくへ

∍ \sim

The Lovász number (continued)

• The largest eigenvalue is

$$
\lambda_1=p_{k-\ell}(0)=\binom{k}{k-\ell}\binom{n-k}{k-\ell}=\Theta(n^{k-\ell}).
$$

• By a result of Brouwer, Cioabă, Ihringer, and McGinnis, for n large enough, the smallest eigenvalue is

$$
p_{k-\ell}(\ell+1)=\Theta(n^{k-\ell-1}).
$$

The Lovász number (continued)

• The largest eigenvalue is

$$
\lambda_1 = p_{k-\ell}(0) = \binom{k}{k-\ell}\binom{n-k}{k-\ell} = \Theta(n^{k-\ell}).
$$

• By a result of Brouwer, Cioabă, Ihringer, and McGinnis, for n large enough, the smallest eigenvalue is

$$
p_{k-\ell}(\ell+1)=\Theta(n^{k-\ell-1}).
$$

• Therefore,

$$
\vartheta(G(n,k,\ell))=\Theta(n^{k-1}).
$$

Independence number

• Frankl and Füredi determined the order of magnitude of $\alpha(G(n, k, \ell))$:

$$
\alpha(G(n,k,\ell))=\Theta(n^{\max\{k-\ell-1,\ell\}}).
$$

4 0 8

∢ 何 ▶ (ヨ ▶ (ヨ ▶

 QQ

∍

Independence number

• Frankl and Füredi determined the order of magnitude of $\alpha(G(n, k, \ell))$:

$$
\alpha(G(n,k,\ell))=\Theta(n^{\max\{k-\ell-1,\ell\}}).
$$

So, if $k = 2\ell + 1$, then $\vartheta (\mathit{G} (n, 2 \ell + 1, \ell)) = \Theta (n^{2\ell}),$ while $\alpha(G(n, 2\ell + 1, \ell)) = \Theta(n^{\ell}).$

The Lovász number of generalized Johnson graphs

I conjecture the following for the order of magnitude of a generalized Johnson graph:

The Lovász number of generalized Johnson graphs

I conjecture the following for the order of magnitude of a generalized Johnson graph:

Conjecture

Let *n* and *k* be positive integers, and let $L \subset [0, k-1]$. Then, if $\mathcal F$ is an L-system with k and L fixed and $n \to \infty$,

$$
\vartheta(G(n,k,L))=\Theta(n^{|L|}).
$$

ഹൈ

The Lovász number of generalized Johnson graphs

I conjecture the following for the order of magnitude of a generalized Johnson graph:

Conjecture

Let *n* and *k* be positive integers, and let $L \subset [0, k-1]$. Then, if $\mathcal F$ is an L-system with k and L fixed and $n \to \infty$,

$$
\vartheta(G(n,k,L))=\Theta(n^{|L|}).
$$

• This is true if $L = [0, k - 1] \setminus \{\ell\}.$

ഹൈ

The Lovász number of generalized Johnson graphs

I conjecture the following for the order of magnitude of a generalized Johnson graph:

Conjecture

Let *n* and *k* be positive integers, and let $L \subset [0, k-1]$. Then, if $\mathcal F$ is an L-system with k and L fixed and $n \to \infty$,

$$
\vartheta(G(n,k,L))=\Theta(n^{|L|}).
$$

- This is true if $L = [0, k 1] \setminus \{\ell\}.$
- This is the same order of magnitude as the two general bounds for the maximum size of an L-system due to Deza-Erdős-Frankl and Ray-Chaudhuri–Wilson.

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

 Ω

• For which generalized Johnson graphs $G(n, k, L)$ is it the case that

$$
\alpha(G(n,k,L)) = \Theta(G(n,k,L)) = \vartheta(G(n,k,L))?
$$

4日下

K 何 ▶ 【三

э

 299

э

• For which generalized Johnson graphs $G(n, k, L)$ is it the case that

$$
\alpha(G(n,k,L)) = \Theta(G(n,k,L)) = \vartheta(G(n,k,L))?
$$

 \bullet This equality holds by the (*t*-intersecting) Erdős-Ko-Rado theorem for $n > (t+1)(k-t+1)$ and $L = \{t, t+1, \ldots, k-1\}.$

 200

The Lovász number of unions of classes of other association schemes

- More generally, the Lovász number of graphs whose edge-sets are unions of classes of other association schemes could be studied.
- For example, the analogues of L-systems for vector spaces over a finite field correspond to independent sets in unions of classes of graphs from the Grassmann scheme.

 Ω