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Hoffman bound

Let G be a graph on n vertices. We label the eigenvalues of its
adjacency matrix as λ1 ≥ λ2 ≥ · · · ≥ λn.

Hoffman bound

Let G be an n-vertex regular graph. Then,

α(G ) ≤ −λn
λ1 − λn

n,

where α(G ) is the maximum size of an independent set in G .
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Sketch of proof of Hoffman bound

Define the matrix

M = A− λnI −
λ1 − λn

n
J,

where J is the n × n all 1s matrix.

Fact: M is positive semidefinite.

Since M is positive semidefinite, for any vector x ,

0 ≤ xTMx = xTAx − λnxT x −
λ1 − λn

n
xT Jx .
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Sketch of proof continued

0 ≤ xTMx = xTAx − λnxT x −
λ1 − λn

n
xT Jx . (1)

Let s be the characteristic vector of the independent set S .
Since S is an independent set, sTAs =

∑
u,v auv susv = 0, so

setting x = s in (1),

0 ≤ −λn|S | −
λ1 − λn

n
|S |2.

Rearranging this inequality gives Hoffman’s bound.
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Pseudoadjacency matrices

Two properties of the adjacency matrix A were used in the proof of
the Hoffman bound:

(Implicitly) A is symmetric and has constant row sums.

auv = 0 whenever u 6∼ v .

We call any matrix which satisfies these two properties a
pseudoadjacency matrix for the graph G .
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Hoffman bound: pseudoadjaceny matrix version

Hoffman bound - pseudoadjacency matrix version

Let G be an n-vertex regular graph, and let A be a
pseudoadjacency matrix for G with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. Then,

α(G ) ≤ −λn
λ1 − λn

n.
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How do we find the best possible bound for the independence
number from pseudoadjacency matrices?
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Lovász number definition

Lovász number

Let G be an n-vertex graph. For a matrix A = (aij)1≤i ,j≤n, denote
the largest eigenvalue of A by lev(A). The Lovász number ϑ(G ) is
defined to be

ϑ(G ) = min{lev(A) : A is symmetric, aij = 1 if i = j or i 6∼ j .}
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Sandwich property of the Lovász number

Recall the Shannon capacity of a graph G is defined to be

Θ(G ) = sup(α(G k))
1
k = lim

k→∞
(α(G k))

1
k .

Sandwich Theorem (Lovász)

α(G ) ≤ Θ(G ) ≤ ϑ(G ).

William Linz L-systems and the Lovász number



Introduction: Hoffman bound
Lovász number

Applications to L-systems
Future directions

Alternate Lovász number characterization

The Lovász number can be written as a semidefinite program, so it
can be computed in polynomial time up to arbitrary precision.

Theorem (Lovász)

Let G be an n-vertex graph, and let B = (bij)1≤i ,j≤n range over all
positive semidefinite matrices with bij = 0 whenever i ∼ j and
Tr(B) = 1. Then,

ϑ(G ) = max
B

Tr(BJ).
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Connection to pseudoadjacency matrices

The Lovász number is, in some sense, the best bound for the
independence number that could be obtained by using
pseudoadjacency matrices.

Theorem (Lovász)

Let G be a regular graph with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.
Then,

ϑ(G ) ≤ −λn
λ1 − λn

n.
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Sketch of proof

Consider a matrix of the form J − xA, where x is chosen later.

J − xA satisfies the conditions for the definition of the Lovász
number, so

ϑ(G ) ≤ lev(J − xA).

The eigenvalues of J − xA are n − xλ1, −xλ2, . . . , −xλn, so

lev(J − xA) = max{n − xλ1,−xλn}.

Choosing x so that n − xλ1 = −xλn, i.e. x = n/(λ1 − λn)
gives

ϑ(G ) ≤ −λn
λ1 − λn

n.
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Erdos-Ko-Rado theorem

A family of sets F is intersecting if any two sets in the family have
a nonempty intersection.

Erdős-Ko-Rado

Let n ≥ 2k . Then, if F ⊂
([n]
k

)
is an intersecting family, we have

|F| ≤
(
n − 1

k − 1

)
.

The families {F ∈
([n]
k

)
: 1 ∈ F} show this bound is tight (these

are the unique maximum families if n > 2k).
One of the many proofs of EKR uses the Hoffman bound.
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Sketch of proof of EKR with Kneser graphs

Recall the Kneser graph G (n, k), which has

V (G (n, k)) =
([n]
k

)
, and A ∼ B if and only if A ∩ B = ∅.

Independent sets in the Kneser graph correspond to
intersecting k-uniform families.

The eigenvalues of the Kneser graph G (n, k) are
(−1)i

(n−k−i
k−i

)
, i = 0, . . . , k , so

(
n − 1

k − 1

)
≤ α(G ) ≤ ϑ(G ) ≤

(n−k−1
k−1

)(n−k
k

)
+
(n−k−1

k−1

)(n
k

)
=

(
n − 1

k − 1

)
.
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Erdos-Ko-Rado for t-intersecting families

A family of sets F is t-intersecting if every two sets in the family
intersect in at least t elements.

Theorem (Wilson)

If F ⊂
([n]
k

)
is t-intersecting, then for n ≥ (t + 1)(k − t + 1),

|F| ≤
(
n − t

k − t

)
.
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t-Kneser graphs

Define the t-Kneser graph G (n, k , t) as the graph with

V (G (n, k , t)) =
([n]
k

)
, and A ∼ B if and only if |A ∩ B| < t.

Unfortunately, the Hoffman bound for the adjacency matrix
does not give a tight bound for the independence number of
G (n, k , t).

Wilson constructed a suitable pseudoadjacency matrix for
G (n, k , t) to show(

n − t

k − t

)
≤ α(G (n, k, t)) ≤ ϑ(G (n, k , t)) ≤

(
n − t

k − t

)
.
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Smaller values of n

What about for n < (t + 1)(k − t + 1)?

The answer is given by the complete intersection theorem of
Ahlswede and Khachatrian:

Theorem (Ahlswede-Khachatrian): If F ⊂
([n]
k

)
is a

t-intersecting family, then

|F| ≤ max
i
{F ∈

(
[n]

k

)
||F ∩ [t + 2i ]| ≥ t + i}.

Is there a proof of the Ahlswede-Khachatrian complete
intersection theorem using pseudoadjacency matrices?
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Smaller values of n (continued)

Let n = 11, k = 5, t = 2.

By the complete intersection theorem,
α(G (11, 5, 2)) = |{F ∈

([11]
5

)
||F ∩ [4]| ≥ 3} = 91.

But ϑ(G (11, 5, 2)) = 105, so no suitable pseudoadjacency
matrix can exist.
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L-systems

The Erdős-Ko-Rado and t-intersecting Erdős-Ko-Rado
theorems are concerned with special cases of L-systems.

For positive integers n and k , and a set of integers
L ⊆ [0, k − 1], an L-system is a collection of sets F ⊂

([n]
k

)
such that for any two distinct sets A,B ∈ F , |A ∩ B| ∈ L.

Intersecting k-uniform families correspond to L-systems with
L = {1, 2, . . . , k − 1}; t-intersecting families correspond to
L-systems with L = {t, t + 1, . . . , k − 1}.
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L-systems and generalized Johnson graphs

Definition (Generalized Johnson graphs)

Let n and k be positive integers with n > k and L ⊂ [0, k − 1].
The generalized Johnson graph G = G (n, k , L) is the graph with

V (G ) =
([n]
k

)
, and AB ∈ E (G ) ⇐⇒ |A ∩ B| /∈ L.

If L = [0, k − 1] \ {`}, then we use the notation G (n, k , `) in place
of G (n, k, L).

L-systems correspond to independent sets in generalized Johnson
graphs.
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Lovász numbers of generalized Johnson graphs

Unfortunately, the Lovász number can be a very bad approximation
for the independence number of a generalized Johnson graph.

Theorem (L.)

For any ε > 0, there is an explicit construction of a graph on n

vertices which has ϑ(G )/α(G ) = Ω(n
1
2
−ε).

Note that for random graphs G (n, 1
2 ), ϑ(G (n, 1

2 )) = Θ(
√
n) with

high probability, while α(G (n, 1
2 )) = log2(n) with high probability.
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Construction

Let G = G (n, 2`+ 1, `) and set |V (G )| = N =
( n

2`+1

)
. Then,

we have ϑ(G ) = Θ(N
2`

2`+1 ), while α(G ) = Θ(N
`

2`+1 ).

This provides the promised explicit construction - indeed,
choose ` sufficiently large so that 1

2 −
`

2`+1 = 1
4`+2 < ε.
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The Lovász number

The graphs G (n, k, `) are regular and edge-transitive. Hence,
by a result of Lovász,

ϑ(G (n, k , `)) =
−λ(nk)

λ1 − λ(nk)

(
n

k

)
.

The eigenvalues of G (n, k , `) are

pk−`(j) =
k∑

r=k−`
(−1)r−k+`+j

(
r

k − `

)(
n − 2r

k − r

)(
n − r − j

r − j

)

=
k−∑̀
r=0

(−1)r
(
j

r

)(
k − j

k − `− r

)(
n − k − j

k − `− r

)
for j = 0, . . . , k .
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The Lovász number (continued)

The largest eigenvalue is

λ1 = pk−`(0) =

(
k

k − `

)(
n − k

k − `

)
= Θ(nk−`).

By a result of Brouwer, Cioabă, Ihringer, and McGinnis, for n
large enough, the smallest eigenvalue is

pk−`(`+ 1) = Θ(nk−`−1).

Therefore,
ϑ(G (n, k , `)) = Θ(nk−1).

William Linz L-systems and the Lovász number



Introduction: Hoffman bound
Lovász number

Applications to L-systems
Future directions

The Lovász number (continued)

The largest eigenvalue is

λ1 = pk−`(0) =

(
k

k − `

)(
n − k

k − `

)
= Θ(nk−`).
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Independence number

Frankl and Füredi determined the order of magnitude of
α(G (n, k , `)):

α(G (n, k , `)) = Θ(nmax{k−`−1,`}).

So, if k = 2`+ 1, then ϑ(G (n, 2`+ 1, `)) = Θ(n2`), while
α(G (n, 2`+ 1, `)) = Θ(n`).
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Frankl and Füredi determined the order of magnitude of
α(G (n, k , `)):

α(G (n, k , `)) = Θ(nmax{k−`−1,`}).

So, if k = 2`+ 1, then ϑ(G (n, 2`+ 1, `)) = Θ(n2`), while
α(G (n, 2`+ 1, `)) = Θ(n`).

William Linz L-systems and the Lovász number



Introduction: Hoffman bound
Lovász number

Applications to L-systems
Future directions

The Lovász number of generalized Johnson graphs

I conjecture the following for the order of magnitude of a
generalized Johnson graph:

Conjecture

Let n and k be positive integers, and let L ⊂ [0, k − 1]. Then, if F
is an L-system with k and L fixed and n→∞,

ϑ(G (n, k , L)) = Θ(n|L|).

This is true if L = [0, k − 1] \ {`}.
This is the same order of magnitude as the two general
bounds for the maximum size of an L-system due to
Deza-Erdős-Frankl and Ray-Chaudhuri–Wilson.
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For which generalized Johnson graphs G (n, k , L) is it the case
that

α(G (n, k , L)) = Θ(G (n, k , L)) = ϑ(G (n, k , L))?

This equality holds by the (t-intersecting) Erdős-Ko-Rado
theorem for n ≥ (t + 1)(k − t + 1) and
L = {t, t + 1, . . . , k − 1}.
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The Lovász number of unions of classes of other
association schemes

More generally, the Lovász number of graphs whose edge-sets
are unions of classes of other association schemes could be
studied.

For example, the analogues of L-systems for vector spaces
over a finite field correspond to independent sets in unions of
classes of graphs from the Grassmann scheme.
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