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Introduction

Evra, Feigon, Maurischat, and Parzanchevski defined a class of biregular graphs
which they called Cayley bigraphs. These graphs are bipartite variants of Cayley
graphs. They constructed bipartite expanders using such graphs.

In joint work with Árnadóttir, Gordeev, Lato, and Randrianarisoa, we gave a
definition that is equivalent to the one given by Evra, Feigon, Maurischat, and
Parzanchevski. We explored some basic properties of such graphs and the
relations that they have to other combinatorial objects. We opted for a different
name to avoid confusion with bi-Cayley graphs and Cayley digraphs.
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Definition

Let G be a group (with identity e) and let π = {C1, · · ·Cℓ} be a collection of
subsets of G containing e. We say that π satisfies the T -axiom if for all Ci and
g ∈ Ci , it holds that

g−1Ci ∈ π

The T stands for translate - translating any Ci by g−1 with g ∈ Ci gives some
Cj ∈ π. We will call the sets Ci cells.

Example

Let G = Z/7Z. The sets

C1 = {0, 1, 2}
C2 = {0, 6, 5}
C3 = {0, 1, 6}

satisfy the T -axiom.
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Definition

Let G be a group (with identity e) and let π = {C1, · · ·Cℓ} be a collection of
subsets of G containing e. We say that π satisfies the T -axiom if for all Ci and
g ∈ Ci , it holds that

g−1Ci ∈ π

Example

If H is a subgroup of H, g−1H = H for any g ∈ H, and therefore {H} satisfies the
T -axiom.
More generally a collection of subgroups {H1, · · · ,Hℓ} satisfies the T -axiom.
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Cayley incidence graphs

Definition

Let G be a group and let π = {C1, . . .Cℓ} such that each cell has size k, any two
distinct cells intersect in the identity

Ci ∩ Cj = {e},

and such that π satisfies the T -axiom. We then define the Cayley incidence graph
Cin(G , π) to be the bipartite graph having biparts γ and β, where

γ = G

β = {gCi : Ci ∈ π}.

The edges are given by g ∗ gCi .

Note: the elements gCi ∈ β are not uniquely represented, as one may have
gCi = hCj .
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Defining edges to only lie between g and gCi is equivalent to saying that we have
an edge between g and hCj if and only if g ∈ hCj .The proof of this is
straightforward:

’only if:’ It is clear that g ∈ gCi , since e ∈ Ci .
’if:’ If g ∈ hCj for some j , then

g = hga, where ga ∈ Cj .

By the T -axiom, g−1
a Cj = Cm for some m, and we see that

gCm = g(g−1
a Cj) = hga(g

−1
a Cj) = hCj ,

and thus one has g ∗ hCj .
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One naturally has a group action of G on Cin(G , π). It is given by

g · (h) = gh for h ∈ γ

g · (hCi ) = ghCi for hCi ∈ β.

The action is regular on γ, but it is not necessarily regular on β. In fact, the
action on β can both fail to be free (semiregular) and transitive. We will later
consider when it is regular.
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Examples

Let G = Z/7Z, and let

C1 = {0, 1, 5},
C2 = {0, 4, 6},
C3 = {0, 2, 3}.

The translates of the cells are
given by

C1 = {0, 1, 5} 1 + C1 = {1, 2, 6}
2 + C1 = {0, 2, 3} 3 + C1 = {1, 3, 4}
4 + C1 = {2, 4, 5} 5 + C1 = {3, 5, 6}
6 + C1 = {0, 4, 6}.

Note that the cells containing the
identity are precisely those that
appear in π.
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3

4

5

6

{0, 1, 5}

{1, 2, 6}

{0, 2, 3}

{1, 3, 4}

{2, 4, 5}

{3, 5, 6}

{0, 4, 6}

This Cayley incidence graph is the incidence graph of the Fano plane.
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The previous example fits into a general family of examples related to (n, k, 1)
difference sets.

Definition

Let G be a group. We say that D ⊆ G is called an (n, k , λ) difference set if
|D| = k, and every non-identity g ∈ G can be written as a product d1d

−1
2 with

d1, d2 ∈ D in λ ways.

If D is an (n, k, 1) difference set, one can define πD = {d−1D : d ∈ D}. We need
to check that this collection satisfies the three properties we need to define
Cin(G , πD).

T-axiom (if g ∈ Ci , g
−1Ci ∈ π). If d−1d ′ ∈ d−1D, then

(d−1d ′)−1d−1D = (d ′)−1D, so the T-axiom holds.

All cells have size k . This is clear by construction.

Ci ∩ Cj = {e} if i ̸= j . To show this one needs to show that d−1
i da = d−1

j db

if and only if a = i and b = j . The equation d−1
i da = d−1

j db is equivalent to

dad
−1
b = did

−1
j . Since D is a (n, k , 1) difference set, this is true if only if

a = i and b = j or if a = b and i = j . But i ̸= j , so we have a = i and b = j .
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The resulting partition πD is a partition such that each non-identity g ∈ G
appears in exactly one cell.

Difference sets lead to (n, k , 1)-designs with a regular group action on the points
of the design. More generally, Cayley incidence graphs Cin(G , π) such that each
non-identity g ∈ G appears in exactly one cell Ci ∈ π correspond to
(n, k , 1)-designs with a regular group action on the points.

Using difference sets, one can construct incidence graphs of affine planes Fn
q and

Desarguesian projective planes. The Cayley incidence graphs Cin(G , πD) will be
the incidence graphs of these planes.
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Another combinatorial structure which leads to Cayley incidence graphs is that of
a coset geometry. A coset geometry is defined using subgroups H1, · · · ,Hℓ ≤ G .
We can define the incidence graph Γ of a coset geometry as having vertices

G/H1 ∪ G/H2 ∪ · · · ∪ G/Hℓ.

and one puts an edge if i ̸= j and gHi ∩ g ′Hj ̸= ∅.

If Hi ∩ Hj = {e} for all i ̸= j , and if the subgroups have the same size k, then one
can define a Cayley incidence graph by setting π = {H1, . . . ,Hℓ}.

The graph Cin(G , π) has biparts γ = G and β = G/H1 ∪ G/H2 ∪ · · · ∪ G/Hℓ.
One puts an edge g ∗ gH if g ∈ gHi . The graph Cin(G , π) is related to Γ because
the halved graph Hβ with vertex set β and edge set

{gHi ∗ g ′Hj : there exists a h ∈ γ with h ∗ gHi and h ∗ g ′Hj}

is isomorphic to Γ.
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Example

Let G = Z/3Z× Z/3Z, and let H1 = Z/3Z× {0} and H2 = {0} × Z/3Z.
The resulting graph Cin(G , {H1,H2}) is the barycentric subdivision graph of K3,3,
with the vertices of subdivided edges being elements of γ, and the original vertices
of K3,3 given by β. The incidence graph of the coset geometry is given by a
complete bipartite graph K3,3.
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Using hypergraphs

We will now provide a definition of Cayley incidence graphs as incidence graphs of
hypergraphs.
A hypergraph H = (V , E) consists of a set V of vertices and a set
E = {c1, . . . , cm} of subsets of V (called hyperedges).

v0

v1 v3

v2 v4

Example

V = {v0, v1, v2, v3, v4}.
E = {{v0, v1}, {v0, v2v4}, {v1, v3}}.

An automorphism of a hypergraph H = (V , E) is a map φ : V → V such that
φ(c) is a hyperedge if and only if c is a hyperedge.

The automorphisms of a hypergraph form a group Aut(H). A group action on a
hypergraph is a group homomorphism G → Aut(H).
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Definition

The incidence graph of a hypergraph H = (V , E) is a graph with vertex set V ∪ E
and with edge set

{v ∗ ci : v ∈ ci}

The incidence graph is a bipartite graph with the two biparts being V and E . One
can also recover the hypergraph if one is given an incidence graph and the
partition into two parts.
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Cayley incidence graphs are incidence graphs of hypergraphs. More precisely
Cin(G , π) is the incidence graph of the hypergraph (V , E) having vertex set
V = G and hyperedge set

E = {gCi : Ci ∈ π, g ∈ G}.

We call these hypergraphs group hypergraphs associated to Cin(G , π), and we use
the notation CH(G , π) to denote them. One has a group action
G → Aut(CH(G , π)). Each g induces a hypergraph automorphism by g 7→ Lg ,
where Lg : G → G : h 7→ gh.
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Definition
A hypergraph is

uniform if every hyperedge has the same size k ,

regular if every vertex is contained in ℓ hyperedges.

linear if every two hyperedges intersect in at most 1 vertex.

Translated into a statement about the incidence graphs (with biparts γ = V and
β = E) these are equivalent to the following

H is uniform ⇐⇒ every vertex v ∈ β has degree k

H is regular ⇐⇒ every vertex v ∈ γ has degree ℓ

H is linear ⇐⇒ the girth (length shortest cycle) is at least 6.
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Definition
A hypergraph is

uniform if every hyperedge has the same size k ,

regular if every vertex is contained in ℓ hyperedges.

linear if every two hyperedges intersect in at most 1 vertex.

Cayley incidence graphs Cin(G , π) are incidence graphs of hypergraphs
H = (V , E), where V = G , and

E = {gCi : Ci ∈ π}.

These hypergraphs are

uniform, since each hyperedge has size |gCi | = |Ci | = k,

regular, since each vertex g is contained in the hyperedges gC1, . . . , gCℓ,

linear, which follows (after a short argument) from the property that
Ci ∩ Cj = {e} for distinct Ci ,Cj ∈ π
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There have been several suggestions to generalize the definition of a Cayley graph
to hypergraphs throughout the years (Teh and Shee (1976), Shee (1990), Buratti
(1994), Lee and Kwon (2013), Jajcay and Jajcayová (2024)).
One perspective is that a variant of Sabidussi’s theorem should hold:

Theorem

(Sabidussi) A graph is a Cayley graph if and only if there is a group that acts
regularly on the vertex set.

Jajcay (2002) and Lee and Kwon (2013) proved variants of this theorem for
hypergraphs - stating that any hypergraph for which a group acts regularly on the
vertex set must be given by certain constructions. Based on these theorems, we
gave the following characterisation of Cayley incidence graphs:

Theorem

A graph Γ is isomorphic to a Cayley incidence graph Cin(G , π) if and only if there
is a uniform, regular, and linear hypergraph H upon which the group G acts
regularly, such that Γ is the incidence graph of H.
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Theorem

A graph Γ is isomorphic to a Cayley incidence graph Cin(G , π) if and only if there
is a uniform, regular, and linear hypergraph H upon which the group G acts
regularly, such that Γ is the incidence graph of H.

proof:
’only if’: ✓
’if’ : (sketch) Let H be a hypergraph as in the statement of the theorem. We
need to check that its incidence graph is a Cayley incidence graph.
Pick v ∈ V (H). Let c1, · · · cℓ be the hyperedges containing v . Each ci is given by

{v , v i
1, · · · v i

k−1.}

We can then define gi,j to be the group element such that

gi,jv = v i
j .

We can then define Ci = {gi,0, . . . , gi,k−1}, where gi,0 = e for each i . It can then
be checked that Cin(G , {C1, . . . ,Cℓ}) is isomorphic to the incidence graph of H.
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Automorphisms

Similarly to the case for Cayley graphs (Godsil 1981), and Bi-Cayley graphs (Zhou
and Feng 2016), one can consider when group automorphisms of the group G
induce graph automorphisms of the Cayley incidence graph Cin(G , π). These
group automorphisms turn out to determine the normalizer

NAut(Cin(G ,π))(G ) = {φ ∈ Aut(Cin(G , π)) : ∀g ∈ G ∃h ∈ G φ ◦ Lg ◦ φ−1 = Lh},

where Lg denotes the action of g on V (Cin(G , π)).

For a bipartite graph X = (γ ∪ β,E ), an automorphism φ : X → X either satisfies

φ(γ) = γ, φ(β) = β,

or

φ(γ) = β φ(β) = γ.

This defines a group homomorphism:

σ : Aut(X ) → Z/2Z :

{
φ 7→ 0 if φ(γ) = γ

φ 7→ 1 if φ(γ) = β
.

We will first consider automorphisms in ker(σ) ∩ NAut(Cin(G ,π))(G ).
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An automorphism φ : Cin(G , π) → Cin(G , π) with σ(φ) = 0 can be viewed as a
hypergraph automorphism φ′ : CH(G , π) → CH(g , π), since for any gCi ∈ β, the
image φ(gCi ) is determined by the images of the neighbours of gCi .

Such an isomorphism is then given by a (set) map φ : G → G . To compute
NAut(Cin(G ,π))(G ) it suffices to consider the case where φ(e) = e, since one can
multiply by elements of G to make this the case. An automorphism then
normalizes G if for every g there exists an h such that

φ ◦ Lg ◦ φ−1 = Lh.

By applying to the identity e, one finds

φ(g) = φ ◦ Lg ◦ φ−1(e) = Lh(e) = h,

and hence φ ◦ Lg ◦ φ−1 = Lφ(g). One then sees that

Lφ(gh) = φLghφ
−1

= φLgφ
−1φLhφ

−1

= Lφ(g)Lφ(h)
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We thus see that any φ ∈ NAut(Cin(G ,π)) satisfies φ(gh) = φ(g)φ(h) (under the
assumption that φ(e) = e). Thus φ comes from a group automorphism.
Moreover, if we consider the fact that the image of an edge containing the identity
must be an edge containing the identity, we see that for every i ∈ {1, . . . ℓ} there
must be some j such that φ(Ci ) = Cj . Hence hypergraph automorphisms such
that φ ◦ Lg ◦ φ−1 = Lh must come from group automorphisms permuting π.

Any group automorphism φ : G → G which induces a permutation of π (meaning
that for every i there is some j such that φ(Ci ) = Cj) also defines a hypergraph
automorphism. To show this, we note that φ(gCi ) = φ(g)φ(Ci ) = φ(g)Cj . Since
φ is a group automorphism φ ◦ Lg ◦ φ = Lφ(g), thus φ ∈ NAut(Cin(G ,π))(G ). We
have now determined NAut(Cin(G ,π))(G ) ∩ ker(σ).

Theorem

NAut(Cin(G ,π))(G ) ∩ ker(σ) ∼= Aut(G , π)⋉ G ,

where Aut(G , π) is the group of group automorphisms that permute π.
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Dual hypergraphs

To understand the graph automorphisms which are not in the kernel, we must
make a digression on dual hypergraphs, and the action of G on the hyperedges of
CH(G , π).

For any hypergraph H = (V , E), one can define the dual hypergraph. H∗ is the
hypergraph having vertex set E and edge set E∗

E∗ = {cv ⊆ E}, where

cv = {ci ∈ E : v ∈ ci}.

In terms of the bipartite graphs, this means that one swaps the roles of γ and β.
We now investigate when the dual of a hypergraph CH(G , π) associated to a
Cayley incidence graph gives another CH(G , π′) associated to a Cayley incidence
graph. For this to be possible, we need the group G to act regularly on the set of
hyperedges E of CH(G , π).
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We now want to understand when the action of G on the edges of CH(G , π) is
regular. To this end we first consider what a stabilizer looks like. First we look at
when the action is free (semiregular).

We consider the cells Ci . If gCi = Ci then g · e = g ∈ Ci . Since g−1Ci = Ci , we
also have g−1 ∈ Ci . Conversely, if both g , g−1 ∈ Ci , then we see that

gCi = Cj for some j , by the T -axiom

g ∈ Cj , g ∈ Ci by definition, and since e ∈ Ci

Since Ci ∩ Cj = {e} if Ci ̸= Cj we see that j must be equal to i , and hence
gCi = Ci . Hence, we see that the stabilizer of Ci is given by
{g ∈ G | g ∈ Ci , g

−1 ∈ Ci}.

For other cells of the form gCi , the stabilizer Stab(gCi ) = gStab(Ci )g
−1, by

generalities on group actions. Thus, we see that the action is free if and only if at
most one of g , g−1 is an element of Ci for all cells Ci .
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We now want to understand when the action of G on the hyperedges is regular.
We now consider when the action is transitive.

It suffices that for each Ci with i ∈ {1, . . . , ℓ}, there exists a gi such that
giC1 = Ci . This forces the cells C2, · · · ,Cℓ to be given by g−1

2 C1, . . . , g
−1
ℓ C1 for

some g2, . . . gℓ ∈ C1.

If the action is regular, it follows that the cells C1, . . .Cℓ are given by:

C1 = {e, g2, . . . , gk}
C2 = g−1

2 C1 = {g−1
2 , e, . . . , g−1

2 gk}
...

Cℓ = g−1
k C1 = {g−1

k , g−1
k g2, . . . , g

−1
k gk−1, e}

In particular, one must have k = ℓ
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If the action of G on the edges of CH(G , π) is regular, combining these facts gives
that k = ℓ, and the cells C1, . . .Cℓ are given by:

C1 = {e, g2, . . . , gk}
C2 = {g−1

2 , e, . . . , g−1
2 gk}

...

Cℓ = {g−1
k , g−1

k g2, . . . , g
−1
k gk−1, e}

For such collections π, we can understand the hypergraph dual, which is
isomorphic to a group hypergraph associated to a Cayley incidence graph.

Hyperedges in the dual graph H∗ are given by collections {hC1, . . . , hCℓ}, since
these are all edges containing h. In particular {C1, . . . ,Cℓ} is such a hyperedge in
H∗. Treating C1 as the identity in the new Cayley incidence graph, we see that
since Ci = g−1

i C1, that taking one cell should be given by

e, g−1
2 , . . . , g−1

k .

It turns out that defining π∗ using the cell {e, g−1
2 , . . . , g−1

k } leads to a group
hypergraph isomorphic to H∗.
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Conclusion: If CH(G , π) is a group hypergraph associated to a Cayley incidence
graph, and if the action of G is regular on the edges of CH(G , π), then the cells
of π are given by

C1 = {e, g2, . . . , gk}
C2 = {g−1

2 , e, . . . , g−1
2 gk}

...

Cℓ = {g−1
k , g−1

k g2, . . . , g
−1
k gk−1, e},

and furthermore CH(G , π)∗ = CH(G , π∗), where the cells of π∗ are given by:

C∗
1 = {e, g−1

2 , . . . , g−1
k }

C∗
2 = {g2, e, . . . , g2g−1

k }
...

C∗
ℓ = {gk , gkg−1

2 , . . . , gkg
−1
k−1, e}

We can now return to our study of graph automorphisms!
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Since the map

σ : Aut(X ) → Z/2Z :

{
φ 7→ 0 if φ(γ) = γ

φ 7→ 1 if φ(γ) = β

is a group homomorphism, we have that Aut(X ) = ker(σ) or
Aut(X ) = ker(σ) ∪ φ∗ ker(σ), where φ∗ is any graph automorphism with
σ(φ∗) = 1. It thus suffices to consider if there exists any graph automorphism
which swaps the sides (i.e. σ(φ∗) = 1).

A graph automorphism with σ(φ) = 1 corresponds to a hypergraph isomorphism
between H and H∗. Hence it seems likely that a graph isomorphism with
σ(φ∗) = 1 exists in the normalizer of G if there is a group automorphism
φ : G → G with φ(C1) = C∗

i . This turns out to be the case.
We will only show one direction.
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We suppose that φ(C1) = C∗
i for some i . We will use this to define a graph

automorphism of Cin(G , π).
Considering C1 and C∗

1 as sets of group elements, we know there is some gφ such
that φ(C1) = gφC

∗
1 . We can thus define fφ : γ ∪ β → γ ∪ β by{

g 7→ φ(g)C1 for g ∈ γ

gC1 7→ φ(g)gφ for gC1 ∈ β

We have

h ∈ gC1 ⇐⇒ φ(g−1h) ∈ φ(C1)

⇐⇒ φ(g−1h) ∈ gφC
∗
1

⇐⇒ g−1
φ φ(g−1h) ∈ C∗

1

⇐⇒ φ(h−1g)gφ ∈ C1 (taking inverses)

⇐⇒ φ(g)gφ ∈ φ(h)C1

so fφ is a graph automorphism. Moreover, it holds that

fφ ◦ Lg = Lφ(g) ◦ fφ,

so we have fφ ∈ NAut(Cin(G ,π))(G ).
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Theorem

Let Cin(G , π) be a Cayley incidence graph with regular action on β.
If there is a group automorphism φ : G → G such that φ(C1) = C∗

j for some j,
then:

NAut(Cin(G ,π))(G ) ∼= ⟨Aut(G , π)⋉ G , φ⟩.

Otherwise
NAut(Cin(G ,π))(G ) ∼= Aut(G , π)⋉ G .

Example

For any Cin(G , π) defined using an abelian group G with regular action on β, the
automorphism

G 7→ G : g 7→ g−1

defines an automorphism which swaps the sides.

Example

We consider the quaternion group Q8, with π = {{1, i ,−j}, {1,−i , k}, {1, j ,−k}},
then π∗ is given by {{1,−i , j}, {1, i ,−k}, {1,−j , k}} and we let φ : Q8 7→ Q8 be
given by i 7→ j ,j 7→ i , k 7→ −k . This induces an automorphism of Cin(Q8, π)
which swaps the two sides
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Thank you for listening!

A.S. Árnadóttir, A. Gordeev, S. Lato, T. Randrianarisoa, and J. Vermant
Cayley Incidence graphs
arXiv:2411.19428 [math.CO]
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