Quantum Automorphism Groups of Trees

Joint work with Josse van Dobben de Bruyn, David Roberson, Simon Schmidt and Peter Zeman.

Prem Nigam Kar

AlgoLoG Section, DTU Compute, DTU.

DTU Compute

Department of Applied Mathematics and Computer Science

Overview

• Attempts to characterize symmetries of trees can be traced back to Jordan [1869] and Pólya [1937].

- Attempts to characterize symmetries of trees can be traced back to Jordan [1869] and Pólya [1937].
- It is a well known result that the automorphism groups of all trees can be constructed from the trivial group $\{1\}$ by iterated direct products and wreath products with symmetric groups S_n .

- Attempts to characterize symmetries of trees can be traced back to Jordan [1869] and Pólya [1937].
- It is a well known result that the automorphism groups of all trees can be constructed from the trivial group $\{1\}$ by iterated direct products and wreath products with symmetric groups S_n .
- It is known that almost all graphs do not have quantum symmetry(Lupini et al. [2020]), while almost all trees do(Junk et al. [2020]). This makes the study of quantum automorphism groups of trees particularly interesting.

- Attempts to characterize symmetries of trees can be traced back to Jordan [1869] and Pólya [1937].
- It is a well known result that the automorphism groups of all trees can be constructed from the trivial group $\{1\}$ by iterated direct products and wreath products with symmetric groups S_n .
- It is known that almost all graphs do not have quantum symmetry(Lupini et al. [2020]), while almost all trees do(Junk et al. [2020]). This makes the study of quantum automorphism groups of trees particularly interesting.
- In what follows, we shall see a quantum analogue of Jordan's theorem. The main idea of the proof is similar to the classical proof.

• The quantum automorphism group of a graph G, Qut(G), was defined in Banica [2005] to be the universal C^* -algebra C(Qut(G)) generated by elements $\{u_{ij}\}_{i,j \in V(G)}$ satisfying

$$u_{ij} = u_{ij}^2 = u_{ij}^*$$

$$\sum_j u_{ij} = \sum_i u_{ij} = 1$$

$$A_G u = u A_G$$
(1)

together with the comultiplication map $\Delta : C(\operatorname{Qut}(G)) \to C(\operatorname{Qut}(G)) \otimes C(\operatorname{Qut}(G))$ defined by $\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$,

• The quantum automorphism group of a graph G, Qut(G), was defined in Banica [2005] to be the universal C^* -algebra C(Qut(G)) generated by elements $\{u_{ij}\}_{i,j \in V(G)}$ satisfying

$$u_{ij} = u_{ij}^2 = u_{ij}^*$$

$$\sum_j u_{ij} = \sum_i u_{ij} = 1$$

$$A_G u = u A_G$$
(1)

together with the comultiplication map $\Delta : C(\operatorname{Qut}(G)) \to C(\operatorname{Qut}(G)) \otimes C(\operatorname{Qut}(G))$ defined by $\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$, where A_G is the adjacency matrix of the graph G, and $u = [u_{ij}]_{ij}$ is known as the *fundamental representation* of $\operatorname{Qut}(G)$.

• The quantum automorphism group of a graph G, Qut(G), was defined in Banica [2005] to be the universal C^* -algebra C(Qut(G)) generated by elements $\{u_{ij}\}_{i,j \in V(G)}$ satisfying

$$u_{ij} = u_{ij}^2 = u_{ij}^*$$

$$\sum_j u_{ij} = \sum_i u_{ij} = 1$$

$$A_G u = u A_G$$
(1)

together with the comultiplication map $\Delta : C(\operatorname{Qut}(G)) \to C(\operatorname{Qut}(G)) \otimes C(\operatorname{Qut}(G))$ defined by $\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$, where A_G is the adjacency matrix of the graph G, and $u = [u_{ij}]_{ij}$ is known as the fundamental representation of $\operatorname{Qut}(G)$.

• A matrix $[u_{ij}]_{ij}$ satisfying the first two conditions of 1 is known as a magic unitary.

• The quantum automorphism group of a vertex coloured graph (G, c), $\operatorname{Qut}_c(G)$ is defined to be the universal C^* -algebra $C(\operatorname{Qut}_c(G))$ generated by elements $\{u_{ij}\}_{i,j\in V(G)}$ satisfying

• The quantum automorphism group of a vertex coloured graph (G, c), $\operatorname{Qut}_c(G)$ is defined to be the universal C^* -algebra $C(\operatorname{Qut}_c(G))$ generated by elements $\{u_{ij}\}_{i,j\in V(G)}$ satisfying

$$u_{ij} = u_{ij}^{2} = u_{ij}^{*}$$

$$\sum_{j} u_{ij} = \sum_{i} u_{ij} = 1$$

$$A_{G}u = uA_{G}$$

$$u_{ij} = 0 \quad \text{if } c(i) \neq c(j)$$

$$(2)$$

together with the comultiplication map $\Delta : C(\operatorname{Qut}(G)) \to C(\operatorname{Qut}(G)) \otimes C(\operatorname{Qut}(G))$ defined by $\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$.

• The quantum automorphism group of a vertex coloured graph (G, c), $\operatorname{Qut}_c(G)$ is defined to be the universal C^* -algebra $C(\operatorname{Qut}_c(G))$ generated by elements $\{u_{ij}\}_{i,j\in V(G)}$ satisfying

$$u_{ij} = u_{ij}^{2} = u_{ij}^{*}$$

$$\sum_{j} u_{ij} = \sum_{i} u_{ij} = 1$$

$$A_{G}u = uA_{G}$$

$$u_{ij} = 0 \quad \text{if } c(i) \neq c(j)$$

$$(2)$$

together with the comultiplication map $\Delta : C(Qut(G)) \to C(Qut(G)) \otimes C(Qut(G))$ defined by $\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$.

• A (vertex-coloured) graph is said to have *quantum symmetry* if the C^* -algebra Qut(G) is non-commutative.

• A rooted tree (T, r) is a tree T with one of its vertices r being identified as the root. All vertices other than the root are coloured with the same colour, while the root is coloured in a different colour.

- A rooted tree (T, r) is a tree T with one of its vertices r being identified as the root. All vertices other than the root are coloured with the same colour, while the root is coloured in a different colour.
- We shall denote the quantum automorphism group of a rooted tree (T, r) when it is viewed as a coloured graph as $\operatorname{Qut}_r(T) = \operatorname{Qut}_c(T)$.

- A rooted tree (T, r) is a tree T with one of its vertices r being identified as the root. All vertices other than the root are coloured with the same colour, while the root is coloured in a different colour.
- We shall denote the quantum automorphism group of a rooted tree (T, r) when it is viewed as a coloured graph as $\operatorname{Qut}_r(T) = \operatorname{Qut}_c(T)$.
- Another closely related topic to quantum automorphism groups is that of *quantum isomorphism* introduced in Atserias et al. [2019]. Two (possibly coloured) graphs G, H are said to be *quantum isomorphic* if there is a non-zero unital C^* -algebra A, and a magic unitary $[u_{x,y}]_{x \in V(G), y \in V(H)}$ such that $A_G u = uA_H$, and $u_{xy} = 0$ if $c(x) \neq c(y)$.

• Let $(C(\operatorname{Qut}(G)), u)$ be the quantum automorphism group of a graph G.

- Let $(C(\operatorname{Qut}(G)), u)$ be the quantum automorphism group of a graph G.
- In Lupini et al. [2020], the following relations were defined:

DTU

- Let $(C(\operatorname{Qut}(G)), u)$ be the quantum automorphism group of a graph G.
- In Lupini et al. [2020], the following relations were defined:

for $i, j \in V(G)$, $i \sim_1 j$ if $u_{ij} \neq 0$. for $(i, j), (k, l) \in V(G)$, $(i, j) \sim_2 (k, l)$ if $u_{i,k}u_{j,l} \neq 0$

- Let $(C(\operatorname{Qut}(G)), u)$ be the quantum automorphism group of a graph G.
- In Lupini et al. [2020], the following relations were defined:

 $\begin{array}{l} \text{for } i,j\in V(G)\text{, }i\sim_1 j \text{ if } u_{ij}\neq 0.\\ \text{for }(i,j),(k,l)\in V(G)\text{, }(i,j)\sim_2 (k,l) \text{ if } u_{i,k}u_{j,l}\neq 0 \end{array}$

• It was also shown that these relations are equivalence relations.

- Let $(C(\operatorname{Qut}(G)), u)$ be the quantum automorphism group of a graph G.
- In Lupini et al. [2020], the following relations were defined:

for $i, j \in V(G)$, $i \sim_1 j$ if $u_{ij} \neq 0$. for $(i, j), (k, l) \in V(G)$, $(i, j) \sim_2 (k, l)$ if $u_{i,k}u_{j,l} \neq 0$

- It was also shown that these relations are equivalence relations.
- The partitions of V(G) induced by \sim_1 are called the *orbits* of Qut(G), and the partitions of $V(G) \times V(G)$ induced by \sim_2 are known as the *orbitals* of Qut(G).

Colour Refinement

• The colour refinement algorithm starts by labelling each vertex of a coloured graph in by its colour.

Colour Refinement

- The colour refinement algorithm starts by labelling each vertex of a coloured graph in by its colour.
- The colour is the iteratively updated to the multiset of colours of the neighbours of each vertex.

Colour Refinement

- The colour refinement algorithm starts by labelling each vertex of a coloured graph in by its colour.
- The colour is the iteratively updated to the multiset of colours of the neighbours of each vertex.
- This refinement eventually stabilises. This stable partition is the output of the algorithm.

Colour Refinement and Quantum Orbits

The following lemma also follows from the results of Lupini et al. [2020]

Colour Refinement and Quantum Orbits

The following lemma also follows from the results of Lupini et al. [2020]

Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

Let X be a (possibly coloured) graph and suppose that $P_1, \ldots, P_r \subseteq V(X)$ is the partition of V(X) found by colour-refinement. If $i \in P_l$ and $j \in P_k$ for $l \neq k$, then $u_{ij} = 0$, i.e., i and j are in different orbits of $\operatorname{Qut}_c(X)$.

Colour Refinement and Quantum Orbits

The following lemma also follows from the results of Lupini et al. [2020]

Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

Let X be a (possibly coloured) graph and suppose that $P_1, \ldots, P_r \subseteq V(X)$ is the partition of V(X) found by colour-refinement. If $i \in P_l$ and $j \in P_k$ for $l \neq k$, then $u_{ij} = 0$, i.e., i and j are in different orbits of $\operatorname{Qut}_c(X)$.

In other words, the output of colour refinement is a coarse graining of the orbits of Qut(G).

Colour Refinement as a Test for Isomorphism

• Color-refinement can also be used as an isomorphism test. Given graphs G and H, one can run color-refinement on their disjoint union.

Colour Refinement as a Test for Isomorphism

- Color-refinement can also be used as an isomorphism test. Given graphs G and H, one can run color-refinement on their disjoint union.
- If the resulting partition has a part that contains a different number of vertices of G and H, then we can conclude that G and H are not isomorphic.

Colour Refinement as a Test for Isomorphism

- Color-refinement can also be used as an isomorphism test. Given graphs G and H, one can run color-refinement on their disjoint union.
- If the resulting partition has a part that contains a different number of vertices of G and H, then we can conclude that G and H are not isomorphic.
- It is known that all of the resulting partitions have the same number of vertices from G and H if and only if G and H are fractionally isomorphic.

Quantum Isomorphism of Trees

• It was shown in Lupini et al. [2020] that if two graphs are quantum isomorphic, then they are fractionally isomorphic.

Quantum Isomorphism of Trees

- It was shown in Lupini et al. [2020] that if two graphs are quantum isomorphic, then they are fractionally isomorphic.
- Additionally, it is known from Immerman and Lander [1990] that any two trees are fractionally isomorphic if and only if they are isomorphic.

Quantum Isomorphism of Trees

- It was shown in Lupini et al. [2020] that if two graphs are quantum isomorphic, then they are fractionally isomorphic.
- Additionally, it is known from Immerman and Lander [1990] that any two trees are fractionally isomorphic if and only if they are isomorphic. Therefore we have the following:

Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

If F and F' are trees, then they are quantum isomorphic if and only if they are isomorphic.

Modifications that Don't Change the Quantum Automorphism Group of a Graph

We give a list of operations that do not change the quantum automorphism group of a graph. We shall omit the proofs of these statements.

Modifications that Don't Change the Quantum Automorphism Group of a Graph

We give a list of operations that do not change the quantum automorphism group of a graph. We shall omit the proofs of these statements.

1 If $S \subseteq V(X)$ is an independent set that is a union of colour classes, then adding $\binom{|S|}{2}$ edges, one for each distinct pair of vertices in S does not change the automorphism group of X.

Modifications that Don't Change the Quantum Automorphism Group of a Graph

We give a list of operations that do not change the quantum automorphism group of a graph. We shall omit the proofs of these statements.

- **1** If $S \subseteq V(X)$ is an independent set that is a union of colour classes, then adding $\binom{|S|}{2}$ edges, one for each distinct pair of vertices in S does not change the automorphism group of X.
- **2** Let $S, T \subseteq V(X)$ be disjoint vertex sets such that $S \cup T$ is an independent set and each of S and T is a union of color classes. Then adding $|S| \times |T|$ edges to X, one from every $s \in S$ to every $t \in T$, does not change the quantum automorphism group.

We give a list of operations that do not change the quantum automorphism group of a graph. We shall omit the proofs of these statements.

- **1** If $S \subseteq V(X)$ is an independent set that is a union of colour classes, then adding $\binom{|S|}{2}$ edges, one for each distinct pair of vertices in S does not change the automorphism group of X.
- **2** Let $S, T \subseteq V(X)$ be disjoint vertex sets such that $S \cup T$ is an independent set and each of S and T is a union of color classes. Then adding $|S| \times |T|$ edges to X, one from every $s \in S$ to every $t \in T$, does not change the quantum automorphism group.
- **3** Let $S \subseteq V(X)$ be a monochromatic vertex set that is a union of quantum orbits of X. Then changing the color of S to a new color (that does not occur elsewhere) does not change the quantum automorphism group.

We give a list of operations that do not change the quantum automorphism group of a graph. We shall omit the proofs of these statements.

- **1** If $S \subseteq V(X)$ is an independent set that is a union of colour classes, then adding $\binom{|S|}{2}$ edges, one for each distinct pair of vertices in S does not change the automorphism group of X.
- **2** Let $S, T \subseteq V(X)$ be disjoint vertex sets such that $S \cup T$ is an independent set and each of S and T is a union of color classes. Then adding $|S| \times |T|$ edges to X, one from every $s \in S$ to every $t \in T$, does not change the quantum automorphism group.
- **3** Let $S \subseteq V(X)$ be a monochromatic vertex set that is a union of quantum orbits of X. Then changing the color of S to a new color (that does not occur elsewhere) does not change the quantum automorphism group.
- Adding an isolated vertex in a new color (that does not occur elsewhere) does not change the quantum automorphism group.

• By applying the previous modifications, we can transform any given tree T into a rooted tree R such that $\operatorname{Qut}_r(R) = \operatorname{Qut}(T).$

- By applying the previous modifications, we can transform any given tree T into a rooted tree R such that ${\rm Qut}_r(R)={\rm Qut}(T).$
- To do so, first note that the Jordan center of a tree is a union of quantum orbits.

- By applying the previous modifications, we can transform any given tree T into a rooted tree R such that ${\rm Qut}_r(R)={\rm Qut}(T).$
- To do so, first note that the Jordan center of a tree is a union of quantum orbits.
- Indeed, the Jordan center can be found by iteratively removing the leaves of a tree.

- By applying the previous modifications, we can transform any given tree T into a rooted tree R such that ${\rm Qut}_r(R)={\rm Qut}(T).$
- To do so, first note that the Jordan center of a tree is a union of quantum orbits.
- Indeed, the Jordan center can be found by iteratively removing the leaves of a tree.
- Since the leaves of a tree are a union of quantum orbits, we see that after each iteration, we are left with a union of quantum orbits.

- By applying the previous modifications, we can transform any given tree T into a rooted tree R such that ${\rm Qut}_r(R)={\rm Qut}(T).$
- To do so, first note that the Jordan center of a tree is a union of quantum orbits.
- Indeed, the Jordan center can be found by iteratively removing the leaves of a tree.
- Since the leaves of a tree are a union of quantum orbits, we see that after each iteration, we are left with a union of quantum orbits.
- Hence, the Jordan center is a union of quantum orbits. We now describe the rootification process.

Case 1: The Jordan center is a vertex.

Rootification

Case 1: The Jordan center is a vertex.

Rootification

Case 1: The Jordan center is a vertex.

Rootification

Rootification

Rootification

Rootification

Rootification

De-rootification

• Similar to the rootification, we can do de-rootification, i.e for each rooted tree R, we may construct a tree T such that $Qut_r(R) = Qut(T)$

De-rootification

• Similar to the rootification, we can do de-rootification, i.e for each rooted tree R, we may construct a tree T such that $\operatorname{Qut}_r(R) = \operatorname{Qut}(T)$

De-rootification

• Similar to the rootification, we can do de-rootification, i.e for each rooted tree R, we may construct a tree T such that $\operatorname{Qut}_r(R) = \operatorname{Qut}(T)$

Free Product

• Let $(C(\operatorname{Qut}(G)), u)$ and $(C(\operatorname{Qut}(H)), v)$ be the quantum automorphism groups of two graphs. Their direct product $\operatorname{Qut}(G) * \operatorname{Qut}(H)$ is defined as the quantum permutation group $(C(\operatorname{Qut}(G)) * C(\operatorname{Qut}(H)), u \oplus v)$.

Free Product

- Let $(C(\operatorname{Qut}(G)), u)$ and $(C(\operatorname{Qut}(H)), v)$ be the quantum automorphism groups of two graphs. Their direct product $\operatorname{Qut}(G) * \operatorname{Qut}(H)$ is defined as the quantum permutation group $(C(\operatorname{Qut}(G)) * C(\operatorname{Qut}(H)), u \oplus v)$.
- It was shown in Schmidt [2020a] that if G, H are two graphs that are not quantum isomorphic, then $Qut(G \sqcup H) = Qut(G) * Qut(H)$. This result can be strengthened to the following:

Free Product

- Let $(C(\operatorname{Qut}(G)), u)$ and $(C(\operatorname{Qut}(H)), v)$ be the quantum automorphism groups of two graphs. Their direct product $\operatorname{Qut}(G) * \operatorname{Qut}(H)$ is defined as the quantum permutation group $(C(\operatorname{Qut}(G)) * C(\operatorname{Qut}(H)), u \oplus v)$.
- It was shown in Schmidt [2020a] that if G, H are two graphs that are not quantum isomorphic, then $Qut(G \sqcup H) = Qut(G) * Qut(H)$. This result can be strengthened to the following:

Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

Let X_1, \ldots, X_n be vertex colored graphs such that for any $i \neq j$, no connected component of X_i is quantum isomorphic to a connected component of X_j . Then,

$$\operatorname{Qut}_{c}\left(\bigsqcup_{i=1}^{n} X_{i}\right) = *_{i=1}^{n} \operatorname{Qut}_{c}(X_{i})$$
(3)

where $\bigsqcup_{i=1}^{n} X_i$ denotes the disjoint union of X_1, \ldots, X_n .

Free Wreath Product

When we take a disjoint union of multiple copies of a connected graph, we have the following theorem:

When we take a disjoint union of multiple copies of a connected graph, we have the following theorem:

Theorem (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

Let G be a connected vertex colored graph and $n \in \mathbb{N}$. Let $\bigsqcup_{i=1}^{n} X$ denote the disjoint union of n copies of X, all with the same coloring. Then, $\operatorname{Qut}_{c}(\bigsqcup_{i=1}^{n} G) = \operatorname{Qut}_{c}(G) \wr_{*} \mathbb{S}_{n}^{+}$, where \wr_{*} denotes the free wreath product and \mathbb{S}_{n}^{+} denotes $\operatorname{Qut}(K_{n})$.

From Rooted Trees to Forests

Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

Let F be a forest of rooted trees, and let \widetilde{F} be the rooted tree obtained by connecting the roots of the individual trees of F to a single new root. Then, $\operatorname{Qut}_c(F) \cong \operatorname{Qut}_r(\widetilde{F})$.

From Rooted Trees to Forests

Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

Let F be a forest of rooted trees, and let \widetilde{F} be the rooted tree obtained by connecting the roots of the individual trees of F to a single new root. Then, $\operatorname{Qut}_c(F) \cong \operatorname{Qut}_r(\widetilde{F})$.

From Rooted Trees to Forests

Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

Let F be a forest of rooted trees, and let \widetilde{F} be the rooted tree obtained by connecting the roots of the individual trees of F to a single new root. Then, $\operatorname{Qut}_c(F) \cong \operatorname{Qut}_r(\widetilde{F})$.

From Rooted Trees to Forests

Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

Let F be a forest of rooted trees, and let \tilde{F} be the rooted tree obtained by connecting the roots of the individual trees of F to a single new root. Then, $\operatorname{Qut}_c(F) \cong \operatorname{Qut}_r(\tilde{F})$.

DTU

From Rooted Trees to Forests

Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

Let F be a forest of rooted trees, and let \widetilde{F} be the rooted tree obtained by connecting the roots of the individual trees of F to a single new root. Then, $\operatorname{Qut}_c(F) \cong \operatorname{Qut}_r(\widetilde{F})$.

Main Result Statement

Theorem (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

The class \mathcal{T} of all quantum automorphism groups of trees can be constructed inductively as follows: **1** $\in \mathcal{T}$. **2** If $\mathbb{G}, \mathbb{H} \in \mathcal{T}$, then $\mathbb{G} * \mathbb{H} \in \mathcal{T}$. **3** If $\mathbb{G} \in \mathcal{T}$, then $\mathbb{G} \wr_* \mathbb{S}_n^+ \in \mathcal{T}$.

Theorem (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

The class \mathcal{T} of all quantum automorphism groups of trees can be constructed inductively as follows: **1** $\in \mathcal{T}$. **2** If $\mathbb{G}, \mathbb{H} \in \mathcal{T}$, then $\mathbb{G} * \mathbb{H} \in \mathcal{T}$.

3 If $\mathbb{G} \in \mathcal{T}$, then $\mathbb{G} \wr_* \mathbb{S}_n^+ \in \mathcal{T}$.

Here, ${\bf 1}$ can be though of as the quantum automorphism group of the tree with a single vertex and no edges.

• It follows from the rootification an de-rootification that we may work with rooted trees instead.

- It follows from the rootification an de-rootification that we may work with rooted trees instead.
- It is easy to see that $\mathbf{1} \in \mathcal{T}$.

- It follows from the rootification an de-rootification that we may work with rooted trees instead.
- It is easy to see that $\mathbf{1}\in\mathcal{T}.$
- Let $\mathbb{G}, \mathbb{H} \in T$ such that \mathbb{G} and \mathbb{H} are not isomorphic. Then, there are rooted trees G, H such that $\operatorname{Qut}(G) = \mathbb{G}$ and $\operatorname{Qut}(H) = \mathbb{H}$.

- It follows from the rootification an de-rootification that we may work with rooted trees instead.
- It is easy to see that $\mathbf{1}\in\mathcal{T}.$
- Let $\mathbb{G}, \mathbb{H} \in T$ such that \mathbb{G} and \mathbb{H} are not isomorphic. Then, there are rooted trees G, H such that $\operatorname{Qut}(G) = \mathbb{G}$ and $\operatorname{Qut}(H) = \mathbb{H}$.
- \bullet Then, $\mathbb{G}*\mathbb{H}$ is the quantum automorphism group of the rooted tree constructed as follows:

• On the other hand, if $\mathbb{G} \in \mathcal{T}$, then there is a rooted tree G such that $\operatorname{Qut}(G) = \mathbb{G}$. Then, $\mathbb{G} * \mathbb{G}$ is the quantum automorphism group of the rooted tree constructed as follows:

• On the other hand, if $\mathbb{G} \in \mathcal{T}$, then there is a rooted tree G such that $\operatorname{Qut}(G) = \mathbb{G}$. Then, $\mathbb{G} * \mathbb{G}$ is the quantum automorphism group of the rooted tree constructed as follows:

• On the other hand, if $\mathbb{G} \in \mathcal{T}$, then there is a rooted tree G such that $\operatorname{Qut}(G) = \mathbb{G}$. Then, $\mathbb{G} * \mathbb{G}$ is the quantum automorphism group of the rooted tree constructed as follows:

• Similarly, $\mathbb{G}\wr_*\mathbb{S}_n^+$ is the quantum automorphism group of the rooted tree that can be constructed as follows:

• Similarly, $\mathbb{G} \wr_* \mathbb{S}_n^+$ is the quantum automorphism group of the rooted tree that can be constructed as follows:

• Similarly, $\mathbb{G} \wr_* \mathbb{S}_n^+$ is the quantum automorphism group of the rooted tree that can be constructed as follows:

• Now, we show that for any rooted tree T, its quantum automorphism group can be constructed by using 1-3 iteratively.

- Now, we show that for any rooted tree T, its quantum automorphism group can be constructed by using 1-3 iteratively.
- Let \tilde{T} be the forest of rooted trees that is constructed by deleting the root of T, and designating the neighbours of T as the roots of the trees that are formed.

- Now, we show that for any rooted tree T, its quantum automorphism group can be constructed by using 1-3 iteratively.
- Let \tilde{T} be the forest of rooted trees that is constructed by deleting the root of T, and designating the neighbours of T as the roots of the trees that are formed.
- If we have n equivalence classes of rooted trees (where two trees are equivalent if they are isomorphic), and the i^{th} equivalence class has m_i isomorphic copies of the rooted tree T_i , we have that

- Now, we show that for any rooted tree T, its quantum automorphism group can be constructed by using 1-3 iteratively.
- Let \tilde{T} be the forest of rooted trees that is constructed by deleting the root of T, and designating the neighbours of T as the roots of the trees that are formed.
- If we have n equivalence classes of rooted trees (where two trees are equivalent if they are isomorphic), and the i^{th} equivalence class has m_i isomorphic copies of the rooted tree T_i , we have that

 $\operatorname{Qut}_r(T) \cong *_{i=1}^n (\operatorname{Qut}_r(T_i) \wr_* \mathbb{S}_{m_i}^+)$

- Now, we show that for any rooted tree T, its quantum automorphism group can be constructed by using 1-3 iteratively.
- Let \tilde{T} be the forest of rooted trees that is constructed by deleting the root of T, and designating the neighbours of T as the roots of the trees that are formed.
- If we have n equivalence classes of rooted trees (where two trees are equivalent if they are isomorphic), and the i^{th} equivalence class has m_i isomorphic copies of the rooted tree T_i , we have that

$$\operatorname{Qut}_r(T) \cong *_{i=1}^n (\operatorname{Qut}_r(T_i) \wr_* \mathbb{S}_{m_i}^+)$$

• We can iteratively apply the same deconstruction to the rooted trees $\{T_i\}_{i=1}^n$ until we end up with trees with only one vertex and no edges.

- Now, we show that for any rooted tree T, its quantum automorphism group can be constructed by using 1-3 iteratively.
- Let \tilde{T} be the forest of rooted trees that is constructed by deleting the root of T, and designating the neighbours of T as the roots of the trees that are formed.
- If we have n equivalence classes of rooted trees (where two trees are equivalent if they are isomorphic), and the i^{th} equivalence class has m_i isomorphic copies of the rooted tree T_i , we have that

$$\operatorname{Qut}_r(T) \cong *_{i=1}^n (\operatorname{Qut}_r(T_i) \wr_* \mathbb{S}_{m_i}^+)$$

- We can iteratively apply the same deconstruction to the rooted trees $\{T_i\}_{i=1}^n$ until we end up with trees with only one vertex and no edges.
- Hence, $\operatorname{Qut}_r(T)$ can be constructed iteratively using 1-3.

Thank You!

Main Result

- A. Atserias, L. Mančinska, D. E. Roberson, R. Šámal, S. Severini, and A. Varvitsiotis. Quantum and non-signalling graph isomorphisms. *Journal of Combinatorial Theory, Series B*, 136:289–328, 2019.
- T. Banica. Quantum automorphism groups of homogeneous graphs. *Journal of Functional Analysis*, 224(2):243–280, 2005.
- T. Banica and J. Bichon. Free product formulae for quantum permutation groups. *J. Inst. Math. Jussieu*, 6(3):381–414, 2007. ISSN 1474-7480. doi: 10.1017/S1474748007000072.
- T. Banica and A. Freslon. Modeling questions for quantum permutations. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 21 (02):1850009, 2018.
- T. Banica, J. Bichon, and B. Collins. The hyperoctahedral quantum group. *J. Ramanujan Math. Soc.*, 22(4):345–384, 2007.
- J. Bichon. Quantum automorphism groups of finite graphs. *Proc. Amer. Math. Soc.*, 131(3):665–673, 2003.

Main Result References II

- J. Bichon. Free wreath product by the quantum permutation group. *Algebras* and *Representation Theory*, 7(4):343–362, 2004. doi: 10.1023/B:ALGE.0000042148.97035.ca.
- M. B. Fulton. The quantum automorphism group and undirected trees, 2006. URL https://hdl.handle.net/10919/28405. PhD thesis, Virginia Tech.
- M. Grohe, K. Kersting, M. Mladenov, and P. Schweitzer. Color refinement and its applications. *Van den Broeck, G.; Kersting, K.; Natarajan, S*, 30, 2017.
- D. Gromada. Quantum symmetries of cayley graphs of abelian groups. *arXiv:2106.08787*, 2021.
- N. Immerman and E. Lander. Describing graphs: A first-order approach to graph canonization. In A. L. Selman, editor, *Complexity Theory Retrospective: In Honor of Juris Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988*, pages 59–81. Springer New York, New York, NY, 1990. doi: 10.1007/978-1-4612-4478-3_5.

Main Result References III

- C. Jordan. Sur les assemblages de lignes. *Journal für die reine und angewandte Mathematik*, 70:185–190, 1869. doi: 10.1515/crll.1869.70.185.
- L. Junk, S. Schmidt, and M. Weber. Almost all trees have quantum symmetry. *Archiv der Mathematik*, 115:367–378, 2020.
- V. Levandovskyy, C. Eder, A. Steenpass, S. Schmidt, J. Schanz, and M. Weber. Existence of quantum symmetries for graphs on up to seven vertices: A computer based approach. In *Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation*, ISSAC '22, page 311–318, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450386883. doi: 10.1145/3476446.3535481. URL https://doi.org/10.1145/3476446.3535481.
- M. Lupini, L. Mančinska, and D. E. Roberson. Nonlocal games and quantum permutation groups. *Journal of Functional Analysis*, 279(5):#108592 (44pp.), 2020. doi: 10.1016/j.jfa.2020.108592.

- S. Neshveyev and L. Tuset. *Compact quantum groups and their representation categories*, volume 20 of *Cours Spécialisés [Specialized Courses]*. Société Mathématique de France, Paris, 2013. ISBN 978-2-85629-777-3.
- G. Pólya. Kombinatorische anzahlbestimmungen für gruppen, graphen und chemische verbindungen. *Acta Math.*, 68(1):145–254, 1937.
- S. Schmidt. Quantum automorphism groups of finite graphs, 2020a. PhD thesis, Universität des Saarlandes.
- S. Schmidt. Quantum automorphisms of folded cube graphs. *Annales de l'Institut Fourier*, 70(3):949–970, 2020b.
- S. Wang. Quantum symmetry groups of finite spaces. *Communications in Mathematical Physics*, 195(1):195–211, 1998.