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Overview

• Attempts to characterize symmetries of trees can be traced back to Jordan [1869] and Pólya [1937].
• It is a well known result that the automorphism groups of all trees can be constructed from the trivial

group {1} by iterated direct products and wreath products with symmetric groups Sn.
• It is known that almost all graphs do not have quantum symmetry(Lupini et al. [2020]), while almost

all trees do(Junk et al. [2020]). This makes the study of quantum automorphism groups of trees
particularly interesting.

• In what follows, we shall see a quantum analogue of Jordan’s theorem. The main idea of the proof is
similar to the classical proof.
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Definitions

• The quantum automorphism group of a graph G, Qut(G), was defined in Banica [2005] to be the
universal C∗-algebra C(Qut(G)) generated by elements {uij}i,j∈V (G) satisfying

uij =u2
ij = u∗

ij∑
j

uij =
∑

i

uij = 1

AGu = uAG

(1)

together with the comultiplication map ∆ : C(Qut(G)) → C(Qut(G)) ⊗ C(Qut(G)) defined by
∆(uij) =

∑
k uik ⊗ ukj , where AG is the adjacency matrix of the graph G, and u = [uij ]ij is known

as the fundamental representation of Qut(G).
• A matrix [uij ]ij satisfying the first two conditions of 1 is known as a magic unitary.

3 DTU Compute Quantum Automorphism Groups of Trees 24.1.2024



Definitions

• The quantum automorphism group of a graph G, Qut(G), was defined in Banica [2005] to be the
universal C∗-algebra C(Qut(G)) generated by elements {uij}i,j∈V (G) satisfying

uij =u2
ij = u∗

ij∑
j

uij =
∑

i

uij = 1

AGu = uAG

(1)

together with the comultiplication map ∆ : C(Qut(G)) → C(Qut(G)) ⊗ C(Qut(G)) defined by
∆(uij) =

∑
k uik ⊗ ukj ,

where AG is the adjacency matrix of the graph G, and u = [uij ]ij is known
as the fundamental representation of Qut(G).

• A matrix [uij ]ij satisfying the first two conditions of 1 is known as a magic unitary.

3 DTU Compute Quantum Automorphism Groups of Trees 24.1.2024



Definitions

• The quantum automorphism group of a graph G, Qut(G), was defined in Banica [2005] to be the
universal C∗-algebra C(Qut(G)) generated by elements {uij}i,j∈V (G) satisfying

uij =u2
ij = u∗

ij∑
j

uij =
∑

i

uij = 1

AGu = uAG

(1)

together with the comultiplication map ∆ : C(Qut(G)) → C(Qut(G)) ⊗ C(Qut(G)) defined by
∆(uij) =

∑
k uik ⊗ ukj , where AG is the adjacency matrix of the graph G, and u = [uij ]ij is known

as the fundamental representation of Qut(G).

• A matrix [uij ]ij satisfying the first two conditions of 1 is known as a magic unitary.

3 DTU Compute Quantum Automorphism Groups of Trees 24.1.2024



Definitions

• The quantum automorphism group of a graph G, Qut(G), was defined in Banica [2005] to be the
universal C∗-algebra C(Qut(G)) generated by elements {uij}i,j∈V (G) satisfying

uij =u2
ij = u∗

ij∑
j

uij =
∑

i

uij = 1

AGu = uAG

(1)

together with the comultiplication map ∆ : C(Qut(G)) → C(Qut(G)) ⊗ C(Qut(G)) defined by
∆(uij) =

∑
k uik ⊗ ukj , where AG is the adjacency matrix of the graph G, and u = [uij ]ij is known

as the fundamental representation of Qut(G).
• A matrix [uij ]ij satisfying the first two conditions of 1 is known as a magic unitary.

3 DTU Compute Quantum Automorphism Groups of Trees 24.1.2024



Definitions

• The quantum automorphism group of a vertex coloured graph (G, c), Qutc(G) is defined to be the
universal C∗-algebra C(Qutc(G)) generated by elements {uij}i,j∈V (G) satisfying

uij =u2
ij = u∗

ij∑
j

uij =
∑

i

uij = 1

AGu = uAG

uij = 0 if c(i) ̸= c(j)

(2)

together with the comultiplication map ∆ : C(Qut(G)) → C(Qut(G)) ⊗ C(Qut(G)) defined by
∆(uij) =

∑
k uik ⊗ ukj .

• A (vertex-coloured) graph is said to have quantum symmetry if the C∗-algebra Qut(G) is
non-commutative.
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Definitions

• A rooted tree (T, r) is a tree T with one of its vertices r being identified as the root. All vertices
other than the root are coloured with the same colour, while the root is coloured in a different colour.

• We shall denote the quantum automorphism group of a rooted tree (T, r) when it is viewed as a
coloured graph as Qutr(T ) = Qutc(T ).

• Another closely related topic to quantum automorphism groups is that of quantum isomorphism
introduced in Atserias et al. [2019]. Two (possibly coloured) graphs G, H are said to be quantum
isomorphic if there is a non-zero unital C∗-algebra A, and a magic unitary [ux,y]x∈V (G),y∈V (H) such
that AGu = uAH , and uxy = 0 if c(x) ̸= c(y).
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Quantum Orbits and Orbitals

• Let (C(Qut(G)), u) be the quantum automorphism group of a graph G.

• In Lupini et al. [2020], the following relations were defined:

for i, j ∈ V (G), i ∼1 j if uij ̸= 0.
for (i, j), (k, l) ∈ V (G), (i, j) ∼2 (k, l) if ui,kuj,l ̸= 0

• It was also shown that these relations are equivalence relations.
• The partitions of V (G) induced by ∼1 are called the orbits of Qut(G), and the partitions of

V (G) × V (G) induced by ∼2 are known as the orbitals of Qut(G).
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Colour Refinement

• The colour refinement algorithm starts by labelling each vertex of a coloured graph in by its colour.

• The colour is the iteratively updated to the multiset of colours of the neighbours of each vertex.
• This refinement eventually stabilises. This stable partition is the output of the algorithm.

7 DTU Compute Quantum Automorphism Groups of Trees 24.1.2024



Colour Refinement

• The colour refinement algorithm starts by labelling each vertex of a coloured graph in by its colour.
• The colour is the iteratively updated to the multiset of colours of the neighbours of each vertex.

• This refinement eventually stabilises. This stable partition is the output of the algorithm.

7 DTU Compute Quantum Automorphism Groups of Trees 24.1.2024



Colour Refinement

• The colour refinement algorithm starts by labelling each vertex of a coloured graph in by its colour.
• The colour is the iteratively updated to the multiset of colours of the neighbours of each vertex.
• This refinement eventually stabilises. This stable partition is the output of the algorithm.

7 DTU Compute Quantum Automorphism Groups of Trees 24.1.2024



Colour Refinement and Quantum Orbits

The following lemma also follows from the results of Lupini et al. [2020]

Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)
Let X be a (possibly coloured) graph and suppose that P1, . . . , Pr ⊆ V (X) is the partition of V (X)
found by colour-refinement. If i ∈ Pl and j ∈ Pk for l ̸= k, then uij = 0, i.e., i and j are in different
orbits of Qutc(X).

In other words, the output of colour refinement is a coarse graining of the orbits of Qut(G).
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Colour Refinement as a Test for Isomorphism

• Color-refinement can also be used as an isomorphism test. Given graphs G and H, one can run
color-refinement on their disjoint union.

• If the resulting partition has a part that contains a different number of vertices of G and H, then we
can conclude that G and H are not isomorphic.

• It is known that all of the resulting partitions have the same number of vertices from G and H if and
only if G and H are fractionally isomorphic.
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Quantum Isomorphism of Trees

• It was shown in Lupini et al. [2020] that if two graphs are quantum isomorphic, then they are
fractionally isomorphic.

• Additionally, it is known from Immerman and Lander [1990] that any two trees are fractionally
isomorphic if and only if they are isomorphic.

Therefore we have the following:

Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)
If F and F ′ are trees, then they are quantum isomorphic if and only if they are isomorphic.
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Modifications that Don’t Change the Quantum Automorphism Group of a
Graph

We give a list of operations that do not change the quantum automorphism group of a graph.
We shall omit the proofs of these statements.

1 If S ⊆ V (X) is an independent set that is a union of colour classes, then adding
(|S|

2
)

edges, one for
each distinct pair of vertices in S does not change the automorphism group of X.
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Modifications that Don’t Change the Quantum Automorphism Group of a
Graph

We give a list of operations that do not change the quantum automorphism group of a graph.
We shall omit the proofs of these statements.
1 If S ⊆ V (X) is an independent set that is a union of colour classes, then adding
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is a union of color classes. Then adding |S| × |T | edges to X, one from every s ∈ S to every t ∈ T ,
does not change the quantum automorphism group.

3 Let S ⊆ V (X) be a monochromatic vertex set that is a union of quantum orbits of X. Then
changing the color of S to a new color (that does not occur elsewhere) does not change the quantum
automorphism group.

4 Adding an isolated vertex in a new color (that does not occur elsewhere) does not change the
quantum automorphism group.
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Modifications that Don’t Change the Quantum Automorphism Group of a
Graph
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Modifications that Don’t Change the Quantum Automorphism Group of a
Graph
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Rootification

• By applying the previous modifications, we can transform any given tree T into a rooted tree R such
that Qutr(R) = Qut(T ).

• To do so, first note that the Jordan center of a tree is a union of quantum orbits.
• Indeed, the Jordan center can be found by iteratively removing the leaves of a tree.
• Since the leaves of a tree are a union of quantum orbits, we see that after each iteration, we are left

with a union of quantum orbits.
• Hence, the Jordan center is a union of quantum orbits. We now describe the rootification process.
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with a union of quantum orbits.
• Hence, the Jordan center is a union of quantum orbits. We now describe the rootification process.
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Rootification
Case 1: The Jordan center is a vertex.

24 DTU Compute Quantum Automorphism Groups of Trees 24.1.2024



Rootification
Case 1: The Jordan center is a vertex.

24 DTU Compute Quantum Automorphism Groups of Trees 24.1.2024



Rootification
Case 1: The Jordan center is a vertex.

25 DTU Compute Quantum Automorphism Groups of Trees 24.1.2024



Rootification
Case 2: The Jordan center is an edge.
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Rootification
Case 2: The Jordan center is an edge.
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Rootification
Case 2: The Jordan center is an edge.
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Rootification
Case 2: The Jordan center is an edge.
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Rootification
Case 2: The Jordan center is an edge.
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Rootification
Case 2: The Jordan center is an edge.
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De-rootification
• Similar to the rootification, we can do de-rootification, i.e for each rooted tree R, we may construct a

tree T such that Qutr(R) = Qut(T )
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Free Product

• Let (C(Qut(G)), u) and (C(Qut(H)), v) be the quantum automorphism groups of two graphs. Their
direct product Qut(G) ∗ Qut(H) is defined as the quantum permutation group
(C(Qut(G)) ∗ C(Qut(H)), u ⊕ v).

• It was shown in Schmidt [2020a] that if G, H are two graphs that are not quantum isomorphic, then
Qut(G ⊔ H) = Qut(G) ∗ Qut(H). This result can be strengthened to the following:

Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)
Let X1, . . . , Xn be vertex colored graphs such that for any i ̸= j, no connected component of Xi is
quantum isomorphic to a connected component of Xj . Then,

Qutc

(
n⊔

i=1
Xi

)
= ∗n

i=1 Qutc(Xi) (3)

where
⊔n

i=1 Xi denotes the disjoint union of X1, . . . , Xn.
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Free Wreath Product

When we take a disjoint union of multiple copies of a connected graph, we have the following
theorem:

Theorem (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)
Let G be a connected vertex colored graph and n ∈ N. Let

⊔n
i=1 X denote the disjoint union of n

copies of X, all with the same coloring. Then, Qutc(
⊔n

i=1 G) = Qutc(G) ≀∗ S+
n , where ≀∗ denotes the

free wreath product and S+
n denotes Qut(Kn).
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From Rooted Trees to Forests
Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

Let F be a forest of rooted trees, and let F̃ be the rooted tree obtained by connecting the roots of the
individual trees of F to a single new root. Then, Qutc(F ) ∼= Qutr(F̃ ).
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From Rooted Trees to Forests
Lemma (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

Let F be a forest of rooted trees, and let F̃ be the rooted tree obtained by connecting the roots of the
individual trees of F to a single new root. Then, Qutc(F ) ∼= Qutr(F̃ ).
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Main Result
Statement

Theorem (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

The class T of all quantum automorphism groups of trees can be constructed inductively as follows:

1 1 ∈ T .

2 If G,H ∈ T , then G ∗ H ∈ T .

3 If G ∈ T , then G ≀∗ S+
n ∈ T .

Here, 1 can be though of as the quantum automorphism group of the tree with a single vertex
and no edges.

39 DTU Compute Quantum Automorphism Groups of Trees 24.1.2024



Main Result
Statement

Theorem (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

The class T of all quantum automorphism groups of trees can be constructed inductively as follows:

1 1 ∈ T .

2 If G,H ∈ T , then G ∗ H ∈ T .

3 If G ∈ T , then G ≀∗ S+
n ∈ T .

Here, 1 can be though of as the quantum automorphism group of the tree with a single vertex
and no edges.

39 DTU Compute Quantum Automorphism Groups of Trees 24.1.2024



Main Result
Statement

Theorem (van Dobben de Bruyn, K., Roberson, Schmidt, Zeman)

The class T of all quantum automorphism groups of trees can be constructed inductively as follows:

1 1 ∈ T .

2 If G,H ∈ T , then G ∗ H ∈ T .

3 If G ∈ T , then G ≀∗ S+
n ∈ T .

Here, 1 can be though of as the quantum automorphism group of the tree with a single vertex
and no edges.
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Main Result
Proof Sketch

• It follows from the rootification an de-rootification that we may work with rooted trees instead.
• It is easy to see that 1 ∈ T .
• Let G,H ∈ T such that G and H are not isomorphic. Then, there are rooted trees G, H such that

Qut(G) = G and Qut(H) = H.
• Then, G ∗ H is the quantum automorphism group of the rooted tree constructed as follows:
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Main Result
Proof Sketch
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Main Result
Proof Sketch
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Main Result
Proof Sketch
• On the other hand, if G ∈ T , then there is a rooted tree G such that Qut(G) = G. Then, G ∗ G is

the quantum automorphism group of the rooted tree constructed as follows:
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Main Result
Proof Sketch
• Similarly, G ≀∗ S+

n is the quantum automorphism group of the rooted tree that can be constructed as
follows:
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n is the quantum automorphism group of the rooted tree that can be constructed as
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Main Result
Proof Sketch

• Now, we show that for any rooted tree T , its quantum automorphism group can be constructed by
using 1 − 3 iteratively.

• Let T̃ be the forest of rooted trees that is constructed by deleting the root of T , and designating the
neighbours of T as the roots of the trees that are formed.

• If we have n equivalence classes of rooted trees (where two trees are equivalent if they are
isomorphic), and the ith equivalence class has mi isomorphic copies of the rooted tree Ti, we have
that

Qutr(T ) ∼= ∗n
i=1(Qutr(Ti) ≀∗ S+

mi
)

• We can iteratively apply the same deconstruction to the rooted trees {Ti}n
i=1 until we end up with

trees with only one vertex and no edges.
• Hence, Qutr(T ) can be constructed iteratively using 1 − 3.
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Thank You!
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