< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thin distance-regular graphs with classical parameters $(D,q,q,\frac{q^t-1}{q-1}-1)$ with t > D are the Grassmann graphs

Xiaoye Liang Joint work with Jack Koolen, Ying-Ying Tan

Anhui Jianzhu University

Department of Combinatorics and Optimization, University of Waterloo July 10, 2023 1 Introduction

Definitions and notations

Let $\Gamma = (X, R)$ be a finite, simple, undirected, connected graph.

- $x \sim y$ if $xy \in R$; $x \nsim y$ if $xy \notin R$.
- **Distance** $\partial(x, y)$: the length of a shortest path connecting *x* and *y*.
- Diameter $D := D(\Gamma) = \max\{\partial(x, y) \mid x, y \in X\}.$
- $\Gamma_i(x) = \{y \in X \mid \partial(x, y) = i\}$ for a vertex $x \ (0 \le i \le D)$.
- **Regular** with valency k: $|\Gamma_1(x)| = k$ for all vertices in Γ .

Distance-regular graphs(DRGs)

Distance-regular graph

A graph Γ is called **distance-regular** (DR) if there are constants $a_i, b_i, c_i \ (0 \le i \le D = D(\Gamma))$ s.t. for any $x, y \in X$, if $\partial(x, y) = i$ then $c_i = |\Gamma_{i-1}(x) \cap \Gamma_1(y)|$, $a_i = |\Gamma_i(x) \cap \Gamma_1(y)|$, $b_i = |\Gamma_{i+1}(x) \cap \Gamma_1(y)|$.

- Γ is regular with valency $k = b_0$.
- $a_i + b_i + c_i = b_0 = k$.
- intersection array: $\{b_0 = k, b_1, ..., b_{D-1}; c_1 = 1, c_2, ..., c_D\}$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

DRGs with classical parameters

Classical parameters

A distance-regular graph Γ of diameter *D* has **classical parameters** (D, b, α, β) if the intersection numbers of Γ satisfy

$$c_{i} = \begin{bmatrix} i \\ 1 \end{bmatrix}_{b} (1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix}_{b}),$$
$$b_{i} = (\begin{bmatrix} D \\ 1 \end{bmatrix}_{b} - \begin{bmatrix} i \\ 1 \end{bmatrix}_{b})(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix}_{b}),$$
where $\begin{bmatrix} j \\ 1 \end{bmatrix}_{b} = 1 + b + b^{2} + \cdots b^{j-1}$ for $j \ge 1$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0.$

▶ $b \neq 0, -1$.

The parameters of the most of DRGs of diameter at least 3 with classical parameters are uniquely determined by the intersection array (see [BCN, Corollay 6.2.2]).

Hamming graphs

- $q \ge 2$, $D \ge 1$ integers.
- $\Omega = \{0, ..., q 1\}.$
- Hamming graph H(D,q) has vertex set Ω^D .
- $x \sim y$ if they differ exactly one position.
- Diameter is D.
- H(D,2)=D-cube.
- DRG with $c_i = i, b_i = (D i)(q 1)$.
- $(D,b,\alpha,\beta) = (D,1,0,q-1).$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Johnson graphs

- $1 \le D \le N$ integers.
- $\Omega = \{1, \ldots, N\}.$
- Johnson graph J(N,D) has vertex set $\binom{\Omega}{D}$.

•
$$x \sim y$$
 if $|x \cap y| = D - 1$.

- $J(N,D) \simeq J(N,N-D)$, diameter min $\{D,N-D\}$. \Rightarrow w.l.o.g., assume that $N \ge 2D$.
- DRG with $c_i = i^2$, $b_i = (D i)(N D i)$.

•
$$(D,b,\alpha,\beta) = (D,1,1,N-D).$$

J(4, 2)

▲□▶▲□▶▲□▶▲□▶ □ のQで

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Grassmann graphs

- $q \ge 2$ prime power, $1 \le D \le N 1$ integers.
- $\Omega = \mathbb{F}_q^N$: *N*-dimensional vector space over \mathbb{F}_q .
- Grassmann graph $J_q(N,D)$ has vertex set $\begin{bmatrix} \Omega \\ D \end{bmatrix}_q$, i.e., *D*-dimensional subspace of Ω .
- $x \sim y$ if dim $(x \cap y) = D 1$.
- $J_q(N,D) \simeq J_q(N,N-D)$, diameter min $\{D,N-D\}$. \Rightarrow w.l.o.g., assume that $N \ge 2D$.
- DRG with $c_i = (\begin{bmatrix} i \\ 1 \end{bmatrix}_q)^2$, $b_i = q^{2i+1} \begin{bmatrix} D-i \\ 1 \end{bmatrix}_q \begin{bmatrix} N-D-i \\ 1 \end{bmatrix}_q$.
- $(D,b,\alpha,\beta) = (D,q,q, \begin{bmatrix} N-D+1\\1 \end{bmatrix}_q 1).$

For a distance-regular graph with diameter *D*, define its intersection array by $\{b_0, b_1, \dots, b_{D-1}; c_1, c_2, \dots, c_D\}$. One is interested whether there exists a unique DRG with a given intersection array. In this case we say that the DRG is determined by its parameters.

For examples:

- ► The Petersen graph is determined by its intersection array {3,2;1,1}.
- ▶ Hamming graph $H(D,q)^{-1}$ is determined by its intersection array unless q = 4, $D \ge 2$, in which case there are so-called Doob graphs.
- ▶ Johnson graph J(N,D) (N ≥ 2D)² is determined by its intersection array unless (N,D) = (8,2), in which case there are so-called Chang graphs.

¹Y. Egawa. J. Combin. Theory Ser. A, 31:108-125, 1981.

²P. Terwilliger. Discrete Math., 58:175-189, 1986.

The Grassmann graphs

- ▶ In 1995, Metsch ³ showed that the Grassmann graph $J_q(N,D)$ (3 ≤ $D ≤ \frac{N}{2}$) is characterized by their intersection array except for the following:
 - (1) N = 2D or $N = 2D + 1, q \ge 2;$
 - (2) N = 2D + 2 and $q \in \{2,3\}$;
 - (3) N = 2D + 3 and q = 2.
- ▶ In 2018, Gavrilyuk and Koolen ⁴ solved the case N = 2D, $q \ge 2$ with large enough *D*.
- ► In 2005, Van Dam and Koolen ⁵ discovered Twisted Grassmann graphs J_q(2D + 1,D) that have the same intersection array as Grassmann graphs J_q(2D + 1,D), so J_q(2D + 1,D) is not determined by its intersection array.

³K. Metsch. *European J. Combin.*, 16: 639–644, 1995.

⁴A. Gavrilyuk and J. Koolen. *Arxiv:1806.02652v1*, 2018.

Our work

▶ We ⁶ showed that the Grassmann graph $J_q(N,D)$ (2D + 1 ≤ N ≤ 2D + 3, q ≥ 2) with large enough diameter is characterized by their intersection array if they are thin.

Remark: Twisted Grassmann graphs $\widetilde{J}_q(2D+1,D)$ are not thin.

Terwilliger algebra

Let $\Gamma = (X, R)$ be a distance-regular graph with diameter *D* and *A* be its adjacency matrix (i.e., $A_{xy} = 1$ if $x \sim y$; 0 otherwise).

Fix a base vertex $x \in X$. Define $E_i^* = E_i^*(x) \subseteq Mat_X(\mathbb{C})$ by

$$(E_i^*)_{yy} = \begin{cases} 1 & \text{if } y \in \Gamma_i(x), \\ 0 & \text{if } y \notin \Gamma_i(x). \end{cases}$$

• $\mathcal{T} = \mathcal{T}(x) = \langle A, E_0^*, E_1^*, \dots, E_D^* \rangle$: Terwilliger algebra w.r.t x.

Irreducible \mathcal{T} -modules

- Let $\mathcal{T} = \mathcal{T}(x)$ be the Terwilliger algebra w.r.t *x* of Γ .
 - $V = \mathbb{C}^X$ that is endowed with the Hermitian inner product.
 - \mathcal{T} -module $W \subseteq V$ s.t. $Tw \in W$ for $\forall T \in \mathcal{T}, \forall w \in W$.
 - \mathcal{T} -module *W* is called **irreducible** if it is non-zero, and contains no \mathcal{T} -submodule besides 0, *W*.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Irreducible \mathcal{T} -modules

Consider Γ w.r.t the ordering $E_0^*, E_1^*, \dots, E_D^*$, where $E_i^* = E_i^*(x)$. Let *W* be an irreducible \mathcal{T} -module of Γ .

- endpoint of W: $\min\{i \mid E_i^*W \neq 0\}$.
- **diameter** of *W*: $|\{i \mid E_i^* W \neq 0\}| 1$.
- W is **thin** if dim $E_i^* W \leq 1$ for all $i (0 \leq i \leq D)$.
- Γ is *i*-thin if each irreducible T(x)-module of endpoint at most *i* is thin for all x ∈ X.
- Γ is **thin** if it is *i*-thin for all $i (0 \le i \le D)$.

Our results

Our results

For a natural number $q \ge 2$, define a function $\chi(q)$ by:

$$\chi(q) = \begin{cases} 13 & \text{if } q = 2, \\ 10 & \text{if } q = 3, \\ 9 & \text{if } q = 4, \\ 8 & \text{if } q \in \{5, 6, 7\}, \\ 7 & \text{if } q \ge 8. \end{cases}$$

Corollary [Liang, Koolen, Tan, 2021]

Let Γ be a thin distance-regular graph with classical parameters $(D,q,q,\frac{q^t-1}{q-1}-1)$ with $q \ge 2$, t > D integers. If $D \ge \chi(q)$, then Γ is the Grassmann graph $J_q(D+t-1,D)$.

Our results

Theorem [Liang, Koolen, Tan, 2021]

Let Γ be a 1-thin distance-regular graph with classical parameters $(D,q,q,\frac{q^t-1}{q-1}-1)$ with $q \ge 2$, t > D integers. Assume further that Γ is μ -graph-regular with parameter ℓ . If $D \ge \chi(q)$, then Γ is the Grassmann graph $J_q(D+t-1,D)$.

Theorem [Terwilliger note]

Let Γ be a thin distance-regular graph with classical parameters with diameter $D \ge 5$. Then Γ is μ -graph-regular.

A regular graph Γ is called μ -graph-regular (with parameter ℓ) if each subgraph induced on $\Gamma_1(x) \cap \Gamma_1(y)$ for any two vertices x, y with $\partial(x, y) = 2$ is regular with valency ℓ .

Partial linear spaces and point graphs

- A partial linear space is an incidence structure (P, L, I), where P is a finite set (called the point set), L is a finite set (called the line set), and I ⊆ P × L is the incidence relation such that
 - every line is incident with at least two points ;
 - any two distinct points lie on at most one line.
- The **point graph** of $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ is a graph defined with \mathcal{P} as its vertex set, with two points being adjacent, if they are collinear.

▶ Back

Partial linear spaces and point graphs

Theorem 9.3.9 [BCN, 1989]

Let $(\mathcal{P}, \mathcal{L}, \in)$ be a partial linear space such that for some integer $q \ge 2$:

- (1) each line has at least $q^2 + q + 1$ points;
- (2) each point is on more than q + 1 lines;
- (3) if $P \in \mathcal{P}$, $l \in \mathcal{L}$ and $\partial(P, l) = 1$, then there are exactly q + 1 lines on *P* meeting *l*;
- (4) if the points P and P' have distance 2 in the point graph Γ, then there are precisely q + 1 lines l on P such that ∂(P', l) = 1;
- (5) the point graph Γ of $(\mathcal{P}, \mathcal{L}, \in)$ is connected.

Then *q* is a prime power, and $(\mathcal{P}, \mathcal{L}, \in) \simeq \begin{pmatrix} \Omega \\ D \end{pmatrix}_{q'} \begin{bmatrix} \Omega \\ D+1 \end{bmatrix}_{q'} \subseteq f$ for some integer *N*, $\Omega = \mathbb{F}_q^N$ and $3 \le D \le \frac{N}{2}$. In particular, $\Gamma = J_q(N, D)$.

Known results

- The local graph $\Delta(x)$ at a vertex x of a graph Γ is the subgraph of Γ induced by $\Gamma_1(x)$.
- The local graph of a Grassmann graph $J_q(N,D)$ is isomorphic to the *q*-clique extension of $\binom{N-D}{1}_q \times \binom{D}{1}_q$ -grid.
- The spectrum of the *q*-clique extension of the $(t_1 \times t_2)$ -grid is $\{[q(t_1 + t_2 1) 1]^1, [q(t_1 1) 1]^{t_2 1}, [q(t_2 1) 1]^{t_1 1}, [-1]^{(q-1)t_1t_2}, [-q 1]^{(t_1 1)(t_2 1)}\}.$

More definitions

A k-regular graph Γ with v vertices is called edge-regular with parameters (v,k,a) if any two adjacent vertices have exactly a common neighbors; called co-edge-regular with parameter (v,k,c) if any two distinct non-adjacent vertices have exactly c common neighbors.

Lemma

Let Γ be a graph that is edge-regular with parameters (v, k, a) and μ -graph-regular with parameter ℓ . Then any local graph of Γ is co-edge-regular with parameters (k, a, ℓ) . Back

Grand cliques in G

Let *G* be a graph that is cospectral with the *q*-clique extension of the $(t_1 \times t_2)$ -grid, where $q \ge 2$, $t_1 > 2t_2 > 2$ are integers.

Result 1 [Liang, Koolen, Tan, 2021]

For any clique *C* of *G*, we have $|C| \le qt_1$. If equality holds, then every vertex outside *C* has exactly *q* neighbors in *C*.

Assume further that *G* is co-edge-regular with parameters (v, k, c).

• We call a maximal clique in G a grand clique, if it contains at least $\frac{19}{36}k$ vertices.

Result 2 [Liang, Koolen, Tan, 2021]

If
$$t_2 > \frac{36(q+1)^6}{q^2}$$
, then any vertex of *G* lies on a unique grand clique. Back

Result 3 [Liang, Koolen, Tan, 2021]

If G has a clique of size qt_1 , then G is the q-clique extension of the

 $(t_1 \times t_2)$ -grid.

Proof of the main theorem

Let $\Gamma = (X, R)$ be a 1-thin distance-regular graph with classical parameters $(D, b, \alpha, \beta) = (D, q, q, \begin{bmatrix} D+e+1\\ 1 \end{bmatrix}_q - 1)$, where $q \ge 2$ and $e \in \{1, 2, 3\}$ are integers and $D \ge \chi(q)$.

- Assume further that Γ is μ -graph-regular with parameter ℓ .
- The local graph $\Delta(x)$ at any x of Γ is co-edge-regular with parameters (k, a_1, ℓ) .

• Set
$$t_1 = \begin{bmatrix} D+e\\1 \end{bmatrix}_q$$
, $t_2 = \begin{bmatrix} D\\1 \end{bmatrix}_q$.

• $\Delta(x)$ is cospectral with the *q*-clique extension of the $(t_1 \times t_2)$ -grid.

Proof of the main theorem

- There exists a Delsarte clique in Γ , say *C*. ($|C| = qt_1 + 1$)
- For any $x \in C$, $\Delta(x)$ is the *q*-clique extension of the $(t_1 \times t_2)$ -grid. Result 3
- For any neighbor y of x, Δ(y) is again the q-clique extension of the (t₁ × t₂)-grid.
- As Γ is connected, any local graph is the *q*-clique extension of the $(t_1 \times t_2)$ -grid.

Proof of the main theorem

- A maximal clique is called a **line** of Γ if it contains at least $\frac{19}{36}a_1 + 1$ vertices.
- Let \mathcal{L} be the set consisting of all lines in Γ .
- As $D \ge \chi(q)$, for any two adjacent vertices $x, y \in V$, there exists a unique line $l \in \mathcal{L}$ such that $x, y \in l$. Result 2
- (X, L, ∈) is a partial linear space such that Γ is its point graph.
 Partial linear space

Our results

Sketch of the Proof

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Proof of the main theorem

- Γ is the point graph of the partial linear space (X, L, ∈), where L is the set of Delsarte cliques of Γ.
- Every edge lies in a unique Delsarte clique and any vertex outside a Delsarte clique C has either q + 1 or none neighbors in C.
- Γ is the Grassmann graph $J_q(2D + e, D)$.

x Product Allines

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Thank you for your attention!