KORKARYKERKE POLO

Thin distance-regular graphs with classical parameters $(D, q, q, \frac{q^t - 1}{q - 1} - 1)$ with $t > D$ are the Grassmann graphs

Xiaoye Liang Joint work with Jack Koolen, Ying-Ying Tan

Anhui Jianzhu University

Department of Combinatorics and Optimization, University of Waterloo July 10, 2023

[Introduction](#page-2-0)

KORKARYKERKE POLO

Definitions and notations

- Let $\Gamma = (X,R)$ be a finite, simple, undirected, connected graph.
	- \bullet *x* ∼ *y* if *xy* ∈ *R*; *x* \sim *y* if *xy* ∉ *R*.
	- Distance *∂*(*x*, *y*): the length of a shortest path connecting *x* and *y*.
	- \bullet **Diameter** *D* := *D*(Γ) = max{ $\partial(x, y) | x, y \in X$ }.
	- \bullet $\Gamma_i(x) = \{ y \in X \mid \partial(x, y) = i \}$ for a vertex $x \ (0 \leq i \leq D)$.
	- **Regular** with valency *k*: $|\Gamma_1(x)| = k$ for all vertices in Γ .

Distance-regular graphs(DRGs)

Distance-regular graph

A graph Γ is called **distance-regular** (DR) if there are constants a_i, b_i, c_i ($0 \le i \le D = D(\Gamma)$) s.t. for any $x, y \in X$, if $\partial(x, y) = i$ then $c_i = |\Gamma_{i-1}(x) \cap \Gamma_1(y)|$, $a_i = |\Gamma_i(x) \cap \Gamma_1(y)|$, $b_i = |\Gamma_{i+1}(x) \cap \Gamma_1(y)|.$

- Γ is regular with valency $k = b_0$.
- $a_i + b_i + c_i = b_0 = k$.
- \bullet intersection array: {*b*₀ = *k*,*b*₁,...,*b*_{*D*−1};*c*₁ = 1,*c*₂,...,*c*_{*D*}}.

KORKARYKERKE POLO

DRGs with classical parameters

Classical parameters

A distance-regular graph Γ of diameter *D* has classical parameters (D, b, α, β) if the intersection numbers of Γ satisfy

$$
c_i = \begin{bmatrix} i \\ 1 \end{bmatrix}_b (1 + \alpha \begin{bmatrix} i-1 \\ 1 \end{bmatrix}_b),
$$

$$
b_i = \left(\begin{bmatrix} D \\ 1 \end{bmatrix}_b - \begin{bmatrix} i \\ 1 \end{bmatrix}_b \right) (\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix}_b),
$$
where
$$
\begin{bmatrix} i \\ 1 \end{bmatrix}_b = 1 + b + b^2 + \dots + b^{j-1} \text{ for } j \ge 1 \text{ and } \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0.
$$

 \blacktriangleright *b* \neq 0, -1.

 \triangleright The parameters of the most of DRGs of diameter at least 3 with classical parameters are uniquely determined by the intersection array (see [BCN, Corollay 6.2.2]).

Hamming graphs

- $q > 2$, *D* > 1 integers.
- $\Omega = \{0, \ldots, q-1\}.$
- Hamming graph $H(D,q)$ has vertex set Ω^D .
- *x* ∼ *y* if they differ exactly one position.
- Diameter is *D*.
- \bullet $H(D,2)=D$ -cube.
- DRG with $c_i = i$, $b_i = (D i)(q 1)$.
- $(D, b, \alpha, \beta) = (D, 1, 0, q 1).$

KOD KAR KED KED E LOQO

Johnson graphs

- \bullet 1 \leq *D* \leq *N* integers.
- $\Omega = \{1, ..., N\}.$
- **Johnson graph** $J(N, D)$ has vertex set $\binom{\Omega}{D}$ $\binom{1}{D}$.

$$
\bullet \ \ x \sim y \text{ if } |x \cap y| = D - 1.
$$

- $J(N,D) \simeq J(N,N-D)$, diameter $min\{D,N-D\}.$ \Rightarrow w.l.o.g., assume that *N* > 2*D*.
- DRG with $c_i = i^2$, $b_i = (D i)(N D i)$.

•
$$
(D,b,\alpha,\beta) = (D,1,1,N - D).
$$

 $J(4, 2)$

KOD KAR KED KED E LOQO

Grassmann graphs

- $q > 2$ prime power, $1 \leq D \leq N-1$ integers.
- $\Omega = \mathbb{F}_q^N$: *N*-dimensional vector space over \mathbb{F}_q .
- **Grassmann graph** $J_q(N,D)$ has vertex set $\begin{bmatrix} \Omega \\ n \end{bmatrix}$ *D* i *q* , i.e., *D*-dimensional subspace of Ω .
- $\bullet x \sim y$ if dim $(x \cap y) = D 1$.
- $J_q(N,D) \simeq J_q(N,N-D)$, diameter min $\{D,N-D\}$. \Rightarrow w.l.o.g., assume that *N* > 2*D*.
- DRG with $c_i = \begin{pmatrix} i \\ 1 \end{pmatrix}$ 1 i $q^{(i)}$, $b_i = q^{2i+1} \begin{bmatrix} D-i \\ 1 \end{bmatrix}$ 1 i *q* h *N*−*D*−*i* 1 i *q* . $(D, b, \alpha, \beta) = (D, q, q, \binom{N-D+1}{1})$ 1 i $_{q}$ - 1).

For a distance-regular graph with diameter *D*, define its intersection array by $\{b_0, b_1, \ldots, b_{D-1}; c_1, c_2, \ldots, c_D\}$. One is interested whether there exists a unique DRG with a given intersection array. In this case we say that the DRG is determined by its parameters.

For examples:

- \triangleright The Petersen graph is determined by its intersection array $\{3,2;1,1\}.$
- \blacktriangleright Hamming graph $H(D,q)^{-1}$ is determined by its intersection array unless $q = 4$, $D > 2$, in which case there are so-called Doob graphs.
- \blacktriangleright Johnson graph $J(N, D)$ $(N \geq 2D)^2$ is determined by its intersection array unless $(N, D) = (8, 2)$, in which case there are so-called Chang graphs.

¹Y. Egawa. *J. Combin. Theory Ser. A*, 31:108-125, 1981.

²P. Terwilliger. *Discrete Math.*, 58:175-189, 1986.

The Grassmann graphs

- In 1995, Metsch³ showed that the Grassmann graph $J_q(N,D)$ (3 $\leq D \leq \frac{N}{2}$) is characterized by their intersection array except for the following:
	- (1) $N = 2D$ or $N = 2D + 1$, $q > 2$;
	- (2) $N = 2D + 2$ and $q \in \{2, 3\}$;
	- (3) $N = 2D + 3$ and $q = 2$.
- In 2018, Gavrilyuk and Koolen⁴ solved the case $N = 2D$, $q \ge 2$ with large enough *D*.
- In 2005, Van Dam and Koolen 5 discovered Twisted Grassmann graphs $\widetilde{J}_q(2D + 1, D)$ that have the same intersection array as Grassmann graphs $J_q(2D + 1, D)$, so $J_q(2D + 1, D)$ is not determined by its intersection array.

³K. Metsch. *European J. Combin.*, 16: 639–644, 1995.

⁴A. Gavrilyuk and J. Koolen. *Arxiv:1806.02652v1*, 2018.

⁵E. van Dam, J. Koolen. *Invent. Math.*, 162:189-193, [20](#page-8-0)0[5.](#page-10-0)

Our work

 \blacktriangleright We ⁶ showed that the Grassmann graph $J_q(N,D)$ (2*D* + 1 ≤ *N* ≤ 2*D* + 3, *q* ≥ 2) with large enough diameter is characterized by their intersection array if they are thin .

Remark: Twisted Grassmann graphs $\widetilde{J}_q(2D + 1, D)$ are not thin.

⁶X. Liang, Y-Y. Tan and J. Koolen. *Electron J. Combi[n.](#page-9-0)*, [20](#page-11-0)[21](#page-9-0)[.](#page-10-0)

Terwilliger algebra

Let $\Gamma = (X,R)$ be a distance-regular graph with diameter *D* and *A* be its adjacency matrix (i.e., $A_{xy} = 1$ if $x \sim y$; 0 otherwise).

Fix a **base vertex** $x \in X$. Define $E_i^* = E_i^*(x) \subseteq \text{Mat}_X(\mathbb{C})$ by

$$
(E_i^*)_{yy} = \begin{cases} 1 & \text{if } y \in \Gamma_i(x), \\ 0 & \text{if } y \notin \Gamma_i(x). \end{cases}
$$

 $\mathcal{T} = \mathcal{T}(x) = \langle A, E_0^*, E_1^*, \dots, E_D^* \rangle$ $\mathcal{T} = \mathcal{T}(x) = \langle A, E_0^*, E_1^*, \dots, E_D^* \rangle$ $\mathcal{T} = \mathcal{T}(x) = \langle A, E_0^*, E_1^*, \dots, E_D^* \rangle$ $\mathcal{T} = \mathcal{T}(x) = \langle A, E_0^*, E_1^*, \dots, E_D^* \rangle$ $\mathcal{T} = \mathcal{T}(x) = \langle A, E_0^*, E_1^*, \dots, E_D^* \rangle$: Terw[ill](#page-10-0)i[ge](#page-12-0)r [al](#page-11-0)g[eb](#page-0-0)[ra](#page-25-0) [w](#page-0-0)[.r.t](#page-25-0) *[x](#page-0-0)*[.](#page-25-0)

KORKARYKERKE POLO

Irreducible \mathcal{T} -modules

- Let $\mathcal{T} = \mathcal{T}(x)$ be the Terwilliger algebra w.r.t *x* of Γ.
	- $V = \mathbb{C}^{X}$ that is endowed with the Hermitian inner product.
	- \bullet $\mathcal T$ -module *W* ⊂ *V* s.t. *Tw* ∈ *W* for \forall *T* ∈ $\mathcal T$ *,* \forall *w* ∈ *W*.
	- \bullet $\mathcal T$ -module *W* is called **irreducible** if it is non-zero, and contains no T -submodule besides 0,*W*.

KORKARYKERKE POLO

Irreducible $\mathcal T$ -modules

Consider Γ w.r.t the ordering $E_0^*, E_1^*, \ldots, E_D^*$, where $E_i^* = E_i^*(x)$. Let *W* be an irreducible $\mathcal T$ -module of Γ.

- endpoint of *W*: $\min\{i \mid E_i^*W \neq 0\}.$
- diameter of *W*: $|\{i \mid E_i^*W \neq 0\}| 1$.
- *W* is **thin** if dim $E_i^*W \le 1$ for all i ($0 \le i \le D$).
- Γ is *i*-thin if each irreducible $\mathcal{T}(x)$ -module of endpoint at most *i* is thin for all $x \in X$.
- Γ is thin if it is *i*-thin for all i ($0 \le i \le D$).

[Introduction](#page-2-0) **[Sketch of the Proof](#page-16-0)** Christmas **[Our results](#page-11-0) Our results** Sketch of the Proof

Our results

For a natural number $q \ge 2$, define a function $\chi(q)$ by:

$$
\chi(q) = \begin{cases}\n13 & \text{if } q = 2, \\
10 & \text{if } q = 3, \\
9 & \text{if } q = 4, \\
8 & \text{if } q \in \{5, 6, 7\}, \\
7 & \text{if } q \ge 8.\n\end{cases}
$$

Corollary [Liang, Koolen, Tan, 2021]

Let Γ be a thin distance-regular graph with classical parameters $(D, q, q, \frac{q^t-1}{q-1} - 1)$ with $q \ge 2$, $t > D$ integers. If $D \ge \chi(q)$, then Γ is the Grassmann graph $J_q(D + t - 1, D)$.

Our results

Theorem [Liang, Koolen, Tan, 2021]

Let Γ be a 1-thin distance-regular graph with classical parameters $(D, q, q, \frac{q^t-1}{q-1} - 1)$ with $q \ge 2$, $t > D$ integers. Assume further that Γ is *µ*-graph-regular with parameter ℓ . If $D \geq \chi(q)$, then Γ is the Grassmann graph $J_q(D + t - 1, D)$.

Theorem [Terwilliger note]

Let Γ be a thin distance-regular graph with classical parameters with diameter *D* ≥ 5. Then Γ is *µ*-graph-regular.

IF A regular graph Γ is called μ -**graph-regular** (with parameter ℓ) if each subgraph induced on $\Gamma_1(x) \cap \Gamma_1(y)$ for any two vertices *x*, *y* with $\partial(x, y) = 2$ is regular with valency ℓ .

Partial linear spaces and point graphs

- • A partial linear space is an incidence structure $(P, \mathcal{L}, \mathcal{I})$, where $\mathcal P$ is a finite set (called the **point set**), $\mathcal L$ is a finite set (called the line set), and $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}$ is the incidence relation such that
	- every line is incident with at least two points;
	- any two distinct points lie on at most one line.
- The point graph of $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ is a graph defined with $\mathcal P$ as its vertex set, with two points being adjacent, if they are collinear.

 \rightarrow [Back](#page-23-0)

Partial linear spaces and point graphs

Theorem 9.3.9 [BCN, 1989]

Let $(\mathcal{P}, \mathcal{L}, \in)$ be a partial linear space such that for some integer $q > 2$:

- (1) each line has at least $q^2 + q + 1$ points;
- (2) each point is on more than $q + 1$ lines;
- (3) if $P \in \mathcal{P}$, $l \in \mathcal{L}$ and $\partial(P, l) = 1$, then there are exactly $q + 1$ lines on *P* meeting *l*;
- (4) if the points *P* and P' have distance 2 in the point graph Γ , then there are precisely $q + 1$ lines l on P such that $\partial(P', l) = 1$;
- (5) the point graph Γ of $(\mathcal{P}, \mathcal{L}, \in)$ is connected.

Then *q* is a prime power, and $(\mathcal{P}, \mathcal{L}, \in) \simeq (\begin{bmatrix} \Omega \\ n \end{bmatrix})$ *D* i $\int q'$ $\left[\begin{matrix} \Omega \\ D + \end{matrix} \right]$ *D*+1 i q^{q} (\subseteq) for some integer *N*, $\Omega = \mathbb{F}_q^N$ and $3 \leq D \leq \frac{N}{2}$. In particular, $\Gamma = J_q(N, D)$.

Known results

- The local graph $\Delta(x)$ at a vertex x of a graph Γ is the subgraph of Γ induced by $Γ_1(x)$.
- The local graph of a Grassmann graph $J_q(N,D)$ is isomorphic to the *q*-clique extension of $\begin{bmatrix} N-D \end{bmatrix}$ 1 i $q \times \begin{bmatrix} D \\ 1 \end{bmatrix}$ 1 i *q*)-grid.
- The spectrum of the *q*-clique extension of the $(t_1 \times t_2)$ -grid is $\{[q(t_1 + t_2 - 1) - 1]^1, [q(t_1 - 1) - 1]^{t_2-1},$ $[q(t_2-1)-1]^{t_1-1},[-1]^{(q-1)t_1t_2},[-q-1]^{(t_1-1)(t_2-1)}\}.$

More definitions

A *k*-regular graph Γ with *v* vertices is called edge-regular with parameters (v, k, a) if any two adjacent vertices have exactly *a* common neighbors; called co-edge-regular with parameter (v, k, c) if any two distinct non-adjacent vertices have exactly c common neighbors.

Lemma

Let Γ be a graph that is edge-regular with parameters (v, k, a) and μ -graph-regular with parameter ℓ . Then any local graph of Γ is co-edge-regular with parameters (k, a, ℓ) . [Back](#page-21-0)

Grand cliques in *G*

Let *G* be a graph that is cospectral with the *q*-clique extension of the $(t_1 \times t_2)$ -grid, where $q \geq 2$, $t_1 > 2t_2 > 2$ are integers.

Result 1 [Liang, Koolen, Tan, 2021]

For any clique *C* of *G*, we have $|C| \le qt_1$. If equality holds, then every vertex outside *C* has exactly *a* neighbors in *C* vertex outside C has exactly q neighbors in C .

Assume futher that *G* is co-edge-regular with parameters (v, k, c) .

We call a maximal clique in *G* a grand clique, if it contains at least $\frac{19}{36}k$ vertices.

Proof of the main theorem

Let $\Gamma = (X,R)$ be a 1-thin distance-regular graph with classical parameters $(D, b, \alpha, \beta) = (D, q, q, \begin{bmatrix} D+e+1 \\ 1 \end{bmatrix})$ 1 i $(q-1)$, where $q \ge 2$ and $e \in \{1,2,3\}$ are integers and $D \geq \chi(q)$.

- Assume further that Γ is *µ*-graph-regular with parameter ℓ .
- The local graph $\Delta(x)$ at any *x* of Γ is co-edge-regular with parameters (k, a_1, ℓ) . \qquadblacksquare [Lemma](#page-19-0)

• Set
$$
t_1 = \begin{bmatrix} D+e \\ 1 \end{bmatrix}_q
$$
, $t_2 = \begin{bmatrix} D \\ 1 \end{bmatrix}_q$.

 $\Delta(x)$ is cospectral with the *q*-clique extension of the $(t_1 \times t_2)$ -grid.

Proof of the main theorem

- • There exists a Delsarte clique in Γ, say *C*. ($|C| = qt_1 + 1$)
- For any $x \in C$, $\Delta(x)$ is the *q*-clique extension of the $(t_1 \times t_2)$ -grid. [Result 3](#page-20-0)
- For any neighbor *y* of *x*, $\Delta(y)$ is again the *q*-clique extension of the $(t_1 \times t_2)$ -grid.
- As Γ is connected, any local graph is the *q*-clique extension of the $(t_1 \times t_2)$ -grid.

Proof of the main theorem

- A maximal clique is called a **line** of Γ if it contains at least $\frac{19}{36}a_1 + 1$ vertices.
- Let $\mathcal L$ be the set consisting of all lines in Γ .
- As $D \ge \chi(q)$, for any two adjacent vertices $x, y \in V$, there exists a unique line $l \in \mathcal{L}$ such that $x, y \in l$. [Result 2](#page-20-0)
- \bullet (*X*, \mathcal{L} , \in) is a partial linear space such that Γ is its point graph. ▶ [Partial linear spaces](#page-16-1)

[Introduction](#page-2-0) **[Sketch of the Proof](#page-16-0)** Contract Contrac

Proof of the main theorem

- • Γ is the point graph of the partial linear space (X, \mathcal{L}, \in) , where $\mathcal L$ is the set of Delsarte cliques of Γ.
- Every edge lies in a unique Delsarte clique and any vertex outside a Delsarte clique *C* has either $q + 1$ or none neighbors in C_{\cdot} [Result 1](#page-20-0)
- Γ is the Grassmann graph $J_q(2D + e, D)$.

 \rightarrow [Theorem 9.3.9](#page-17-0)

KORKARYKERKE POLO

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

Thank you for your attention!