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Introduction

Definitions and notations

Let T = (X,R) be a finite, simple, undirected, connected graph.
@ x~yifxy €R; xwyifxy €R.
e Distance 0(x,y): the length of a shortest path connecting x and y.
e Diameter D := D(T') = max{d(x,y) | x,y € X}.
o I'i(x) ={yeX|a(x,y) =i} foravertex x (0 <i<D).
e Regular with valency k: |T' (x)| = k for all vertices in T



Distance-regular graphs(DRGs)

Distance-regular graph

A graph I’ is called distance-regular (DR) if there are constants
ai,bi,c; (0<i<D=D(T)) s.t. forany x,y € X, if d(x,y) =i then
ci = |Tic1(x) N T (y)],
a; = |Ti(x) NT1(y)],
bi = |Tis1(x) NT1(y)]-

o I is regular with valency k = by.
J a;—I—b,-—l—c,-:bO:k.
e intersection array: {by = k,b,...,bp_1;¢c1 =1,¢2,...,¢cp}.
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DRGs with classical parameters

Classical parameters

A distance-regular graph I' of diameter D has classical parameters
(D,b,a,B) if the intersection numbers of I satisfy

=[]0+

- Bty

where Hb—l—l—b—i—bz—f— b~ forj>1and [(1)] —

» b#0,—1.

» The parameters of the most of DRGs of diameter at least 3 with
classical parameters are uniquely determined by the intersection array
(see [BCN, Corollay 6.2.2]).



Introduction

Hamming graphs

q > 2, D > 1 integers.

Q=H{0,...,q—1}.

Hamming graph H(D, q) has vertex set Q.
x ~ y if they differ exactly one position.
Diameter is D.

H(D,2)=D-cube.

DRG with ¢; =i,b; = (D —i)(q — 1).
(D,b,a,B) = (D,1,0,q — 1).
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Introduction

Johnson graphs

1 < D < N integers.

Q={1,...,N}. 2
Johnson graph J(N, D) has vertex set (g) ‘
x~yif [xNy|=D—1.

J(N,D) ~J(N,N — D), diameter
min{D,N — D}.

= w.l.o.g., assume that N > 2D. S
e DRG with¢; =2, b; = (D —i)(N — D —i).

o (D,b,a,B) = (D,1,1,N — D).
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Grassmann graphs

q > 2 prime power, 1 <D < N — 1 integers.

Q= IFS’ : N-dimensional vector space over IF,.

Grassmann graph J, (N, D) has vertex set [2} ,ie.,
q
D-dimensional subspace of ().

x~yifdim(xNy)=D— 1.
J4(N,D) ~ J,(N,N — D), diameter min{D,N — D}.
= w.l.o.g., assume that N > 2D.

DRG with ¢; = ( m q)z’ by = g+ [Dfi] q |:N7Dfi:| )

1 1

o (Db p)=Daq "] 1)



Introduction

For a distance-regular graph with diameter D, define its intersection
array by {bo,bl, .. .,bDfl,'Cl,Cz,. . .,CD}.

One is interested whether there exists a unique DRG with a given
intersection array. In this case we say that the DRG is determined by
its parameters.

For examples:

» The Petersen graph is determined by its intersection array
{3,2;1,1}.

» Hamming graph H(D,q) ! is determined by its intersection array
unless ¢ =4, D > 2, in which case there are so-called Doob
graphs.

» Johnson graph J(N,D) (N > 2D) ? is determined by its
intersection array unless (N,D) = (8,2), in which case there are
so-called Chang graphs.

ly, Egawa. J. Combin. Theory Ser. A, 31:108-125, 1981.
2p, Terwilliger. Discrete Math., 58:175-189, 1986.
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The Grassmann graphs

» In 1995, Metsch 3 showed that the Grassmann graph
J4(N,D) (3 <D < %) is characterized by their intersection
array except for the following:

(1) N=2DorN=2D+1,q>2;
(2) N=2D+2andq € {2,3};
(3) N=2D+3andg=2.

» In 2018, Gavrilyuk and Koolen 4 solved the case N = 2D, qg>2
with large enough D.

» In 2005, Van Dam and Koolen > discovered Twisted Grassmann
graphs j:](2D + 1,D) that have the same intersection array as
Grassmann graphs J, (2D + 1,D), so J,(2D + 1,D) is not
determined by its intersection array.

3K. Metsch. European J. Combin., 16: 639-644, 1995.
4A. Gavrilyuk and J. Koolen. Arxiv:1806.02652v1, 2018.
SE. van Dam, J. Koolen. Invent. Math., 162:189-193, 2005.
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Our work

» We 6 showed that the Grassmann graph
J4(N,D) (2D + 1 <N <2D + 3, g > 2) with large enough
diameter is characterized by their intersection array if they are
thin .

Remark: Twisted Grassmann graphs J, (2D + 1,D) are not thin.

6X. Liang, Y-Y. Tan and J. Koolen. Electron J. Combin.,2021;



Our results

Terwilliger algebra

Let T = (X,R) be a distance-regular graph with diameter D and A be
its adjacency matrix (i.e., Ay, = 1 if x ~ y; O otherwise).

Fix a base vertex x € X. Define Ef = Ef(x) C Matx(C) by

o )1 if yeTi(x),
(E")yy_{o if v Ti(x).

o T=T(x)=(A, E}, Ef, ..., E},): Terwilliger algebra w.r.t x .



Our results

Irreducible 7 -modules

Let 7 = T (x) be the Terwilliger algebra w.r.t x of T.
@ V = CX that is endowed with the Hermitian inner product.
@ T-module WC Vst Twe WforVT €T, VweW.

@ 7 -module W is called irreducible if it is non-zero, and contains
no 7 -submodule besides 0, W.



Our results

Irreducible 7 -modules

Consider I w.r.t the ordering Ej,E7 ..., E},, where E = E;(x).
Let W be an irreducible 7 -module of T
e endpoint of W: min{i | EXW # 0}.
diameter of W: |{i | E;W # 0}| — 1.
W is thin if dimEfW < 1 foralli (0 < i < D).
I is i-thin if each irreducible 7 (x)-module of endpoint at most i
is thin for all x € X.
o T is thin if it is i-thin for all i (0 <i < D).

D

EV E3V EpV



Our results

Our results

For a natural number g > 2, define a function x(g) by:

(13 ifg=2,
10 ifg=3,
x(g)={9 ifg=4
8 ifge{56,7},
7 ifg>8.

Corollary [Liang, Koolen, Tan, 2021]

Let I' be a thin distance-regular graph with classical parameters
(D,q,q, ‘f;%ll — 1) with g > 2, t > D integers. If D > x(q), then T is
the Grassmann graph J,(D +t — 1,D).




Our results

Our results

Theorem [Liang, Koolen, Tan, 2021]
Let I' be a 1-thin distance-regular graph with classical parameters
(D,q,q, ‘5]%11 — 1) with ¢ > 2, ¢ > D integers. Assume further that T

is p-graph-regular with parameter ¢. If D > x(g), then I is the
Grassmann graph J,(D +t— 1,D).

Theorem [Terwilliger note]

Let I' be a thin distance-regular graph with classical parameters with
diameter D > 5. Then I is y-graph-regular.

» A regular graph I is called y-graph-regular (with parameter ¢) if
each subgraph induced on 'y (x) N Ty (y) for any two vertices x,y with
d(x,y) = 2 is regular with valency ¢.



Sketch of the Proof

Partial linear spaces and point graphs

@ A partial linear space is an incidence structure (P, £,Z), where
P is a finite set (called the point set), £ is a finite set (called the
line set), and Z C P x L is the incidence relation such that

e every line is incident with at least two points ;
e any two distinct points lie on at most one line.

e The point graph of (P,L,7) is a graph defined with P as its
vertex set, with two points being adjacent, if they are collinear.



Sketch of the Proof

Partial linear spaces and point graphs

Theorem 9.3.9 [BCN, 1989]

Let (P, L, €) be a partial linear space such that for some integer
q=>2:

(1) each line has at least g> 4+ g + 1 points;

(2) each point is on more than g + 1 lines;

(3) ifPe P, 1€ L and d(P,I) = 1, then there are exactly g + 1
lines on P meeting /;

(4) if the points P and P’ have distance 2 in the point graph T', then
there are precisely g + 1 lines / on P such that d(P',1) = 1;

(5) the point graph T of (P, L, €) is connected.

Then g is a prime power, and (P, L, €) ~ ([Q} , { o ] ,C) for some
ply lp+1ly

integer N, Q) = ]quv and3 <D< % In particular, I = J,(N, D).
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Known results

@ The local graph A(x) at a vertex x of a graph I is the subgraph of
I" induced by Ty (x).

@ The local graph of a Grassmann graph J, (N, D) is isomorphic to
. . N-D D .
the g-clique extension of ( [ | } X [1] )-grid.
q q

@ The spectrum of the g-clique extension of the (#; X 1,)-grid is

{lgtti + 12— 1) — 1], [q(t, — 1) — 1]~
[q(t2 — 1) — 1]!171’[_1](‘1*1)t112’[_q _ 1](1171)(1271)}.



Sketch of the Proof

More definitions

@ A k-regular graph I' with v vertices is called edge-regular with
parameters (v, k,a) if any two adjacent vertices have exactly a
common neighbors; called co-edge-regular with parameter
(v,k,c) if any two distinct non-adjacent vertices have exactly ¢
common neighbors.

Let I be a graph that is edge-regular with parameters (v, k,a) and
u-graph-regular with parameter ¢. Then any local graph of T" is
co-edge-regular with parameters (k,a, ().

<\¥L—,, N 177/ /) () NT(v)
1,

A(x)
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Grand cliques in G

Let G be a graph that is cospectral with the g-clique extension of the
(11 X tp)-grid, where ¢ > 2, 1; > 21, > 2 are integers.

Result 1 [Liang, Koolen, Tan, 2021]

For any clique C of G, we have |C| < gf;. If equality holds, then every
vertex outside C has exactly g neighbors in C.

Assume futher that G is co-edge-regular with parameters (v,k,c).

@ We call a maximal clique in G a grand clique, if it contains at least
%k vertices.

Result 2 [Liang, Koolen, Tan, 2021]

Ifr, > ( b , then any vertex of G lies on a unique grand clique.

|
A

Result 3 [Liang, Koolen, Tan, 2021]

If G has a clique of size gt;, then G is the g-clique extension of the
(l‘] X lz)-gl‘id.
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Proof of the main theorem

LetT = (X,R) be a 1-thin distance-regular graph with classical

D+le+1} — 1), where ¢ > 2 and
q

e € {1,2,3} are integers and D > x(q).

o Assume further that I is y-graph-regular with parameter /.

parameters (D,b,a, ) = (D, q,q, [

@ The local graph A(x) at any x of I is co-edge-regular with
parameters (k,a,?).

D D
oSettlz[ﬁ],tz:[}.
1 Jq Llq

@ A(x) is cospectral with the g-clique extension of the
(l] X tz)—grid.
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Proof of the main theorem

@ There exists a Delsarte clique in T, say C. (|C| =gt; + 1)

e For any x € C, A(x) is the g-clique extension of the
(l] X tz)—grid.

e For any neighbor y of x, A(y) is again the g-clique extension of
the (1, X tp)-grid.

o AsT is connected, any local graph is the g-clique extension of
the (71 X 1p)-grid.
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Proof of the main theorem

@ A maximal clique is called a line of T if it contains at least
%al + 1 vertices.

@ Let £ be the set consisting of all lines in T'.

@ As D > x(q), for any two adjacent vertices x,y € V, there exists
aunique line / € £ such that x,y € I.

e (X,L,€) is a partial linear space such that I is its point graph.



Sketch of the Proof

Proof of the main theorem

e T is the point graph of the partial linear space (X, L, €), where £
is the set of Delsarte cliques of .

o Every edge lies in a unique Delsarte clique and any vertex
outside a Delsarte clique C has either ¢ 4 1 or none neighbors in
C.

o I is the Grassmann graph J,(2D +¢,D).

lines




Sketch of the Proof

Thank you for your attention!
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