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Laplacian

We consider the Laplacian of a graph G as a linear transformation:

[:G: ERE — S\/

Le(w) = Z wii(ei — ¢)(ei — &) €SV

jeE
It thus has an adjoint L : SV — RE
Lc(2)ij = Zi+ Zjj — 2Zj; for every ij € E

The usual Laplacian matrix is Lg(1)
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Gram Matrices

Let Y € SK.
Then Y = v,-TvJ- for vi V= RY. Hence

L5(¥)y = Yi+ Y —2Y
= v,-Tv,- 4 v,-Tv,- = 2v,-TvJ-

= [lvi = v
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Gram Matrices

Let Y € SZ.
Then Y = v,-TvJ- for vi V= RY. Hence

L5(¥)y = Yi+ Y —2Y
= v,-Tv,- 4 v,-Tv,- = 2v,-TvJ-

= [lvi = v

® Read “Yj;; < 4" as vy, <7,
® Read “LE(Y) > 2" as ||vi — vj||> > z; for every ij € E
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Cuts
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Cut Covers

Figure: {0,2,4,6} Figure: {2,3,6,7} Figure: {4,5,6,7}
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Cut Covers

Figure: {0,2,4,6} Figure: {2,3,6,7} Figure: {4,5,6,7}

cc(Kg) = 3, cc(G) = [lgx(6)]
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Fractional Cut-Covering Problem

Figure: {0,2,4,6} Figure: {2,3,6,7} Figure: {4,5,6,7}
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Fractional Cut-Covering Problem
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S={SCV:|5=40¢cS}
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Fractional Cut-Covering Problem

Figure: {0,2,4,6} Figure: {2,3,6,7} Figure: {4,5,6,7}

S={SCV:|5=40¢cS}
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The Weighted Fractional Cut-Covering
Problem

fcc(G) = min{ 1Ty:ye Rz(v), Z yslssy > ]1}
scv
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The Weighted Fractional Cut-Covering
Problem
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%
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The Weighted Fractional Cut-Covering
Problem

fcc(G, z) = min{ 1Ty:ye Ri(v), Z yslssy > z}
SCVv

=max{z'x:x¢€ Ri, vSCV, Il;sr(s)x <1}
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The Weighted Fractional Cut-Covering
Problem

fcc(G, z) = min{ 1My ye RZ:(V), Z yslssy > z}
%

=max{z'x:x¢€ Ri, mc(G,x) < 1}
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Question

Can we dualize the celebrated approximation algorithm by Goemans
and Williamson [1]?
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Question

Can we dualize the celebrated approximation algorithm by Goemans
and Williamson [1]?

mc(G, w) == max{ (}Lg(w), Y) : Y € SY, diag(Y) = 1}
agwmc(G, w) < mc(G,w) < mc(G, w)
aaw ~ 0.878

® GW(Y) samples subset of V for Y € SY with diag(Y) =1

® How to find the correct PSD matrix to sample from?
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Previous Works

Xvec(G) = min{ 1 — % ;Y €SY, diag(Y) =1, Vij € E, Y; <~}

Samal [3], and Neto and Ben-Ameur [2] show that

2<1 _ Xvecl(G)> < fec(G) < %1W2<1 - Xl(c)>
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Previous Works

Xvec(G) = min{ 1 — % ;Y €SY, diag(Y) =1, Vij € E, Y; <~}

Samal [3], and Neto and Ben-Ameur [2] show that

o(1- o) sheio) < Lof1- )

¢ A polynomial-time O(1)-approximation algorithm for the value
of fcc(G)

® the upper bound is obtained via repeated sampling from
GW(Y)
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This Presentation

Theorem

For any %agw < B < agw, there exists a polynomial-time
randomized algorithm producing y = A(G,z) € Rz(v) with
supp(y)| = O(In(n)),

1Ty < lfcc(G,z),
g
and such that ) s\ yslssy > z with high probability
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Why Weights?

A function f: E(G) — E(H) is cut continuous if for every
T C V(H) there exists S C V/(G) such that

FH(8(T)) = o(S)
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Why Weights?

A function f: E(G) — E(H) is cut continuous if for every
T C V(H) there exists S C V/(G) such that
FH(8(T)) = &(S)

if Pfe,'j = ef( then P;r]l(;(T) = 15(5)

i)

if x>0, mc(G,x) <1 then Prx >0, mc(H, Prx) <1
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Why Weights?

A function f: E(G) — E(H) is cut continuous if for every
T C V(H) there exists S C V/(G) such that
FH(8(T)) = &(S)

if Pfe,'j = ef( then P;r]l(;(T) = 15(5)

i)
if x>0, mc(G,x) <1 then Prx >0, mc(H, Prx) <1
fcc(H,z) = max{z"u: u >0, mc(H,u) <1}

> max{ z" Prx, : x >0, m¢(G,x) < 1}
= fec(G, P/ 2)

11 /26



@ Fractional Cut-Covering

@ An SDP Relaxation

@ Rounding and Sparsifying Optimal Solutions

@ The Algorithm

@ Discussion

Outline
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Outline

@ An SDP Relaxation
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The SDP

Recall that

fce(G,z) =max{z'w: w e RE, mc(G,w) <1}
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The SDP

Recall that
fce(G,z) =max{z'w: w e RE, mc(G,w) <1}
> max{z'w: weRE, me(G,w) <1}
= fcc(G, 2)
Using that
G TE(G, w) < me(G, w) < FE(G, w)
we get that

fee(G, 2) < fec(G, z) < 71-fcc(G, 2)
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Duality and Duality

Note

mc(G,w) =min{ 17x : x € RY, 1L5(w) < Diag(x)}
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Duality and Duality
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fcc(G,z) =max{z'w: w e RE, mc(G,w) <1}

~ maxd 2Tw - WERE,XERV
_ " 1Tx <1, 3L6(w) < Diag(x)

— (A . HER+,YES_~‘{
: ' diag(Y) = p1, 1Ly(Y) > 2
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Duality and Duality

Note

mc(G,w) =min{ 17x : x € RY, 1L5(w) < Diag(x)}

fcc(G,z) =max{z'w: w e RE, mc(G,w) <1}

~ maxd 2Tw - WERE,XERV
_ " 1Tx <1, 3L6(w) < Diag(x)

— (A . M€R+,Y€S¥
- " Diag(Y) = p1, 1LE(Y) > 2
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Outline

@ Rounding and Sparsifying Optimal Solutions
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Simulating the Algorithm

17/26



Simulating the Algorithm

17/26



Simulating the Algorithm

17/26



Simulating the Algorithm

17/26



Simulating the Algorithm

17/26



Simulating the Algorithm

17/26



Rounding Solutions

~ . _ peR, YesY
fce(G, z) = mln{u. Diag(Y) = ul, 1L5(Y) > z
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Rounding Solutions

fee(G,z) = min{

1% € R+, Y € SV
K Diag(¥) = ul, 1L5(Y) > 2

ys oc Prob(GW(u 1Y) = S) covers z and 1Ty <

- aGW

—— U
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Rounding Solutions

fee(G,z) = min{

1% € R+, Y € SV
K Diag(¥) = ul, 1L5(Y) > 2

ys oc Prob(GW(u 1Y) = S) covers z and 1Ty <

- aGW

—— U

Refines idea from Neto and Ben-Ameur [2]
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Outline

@ The Algorithm
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The Algorithm

Fix B e (%QGW7QGW)
Set T = ;aewﬂ_ B
_ . lracw B .

C 7560 a2/
a 4 (acw — 5)5/2
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The Algorithm

S '8 = (gaGW)aGw)
= 7 =5()
£ :=&(f)
C:=C(B)
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1:
2
3
4
5:
6
7
8
9

10:

The Algorithm

procedure ApproxFcc(G, z)

Ze < max(ze, %EHZHOO) for each e € E
Y < Approx-fccSDP-Solve(G, z, 7] z|| )
y—0eR”™ 2 0eRE
repeat [CIn(|V])] times
S+ GW(Y)
ysys+1, 2 2+ 1)
end
v < max{ze/2.: e € E, Z. # 0}
return vy

11: end procedure
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The Algorithm

procedure ApproxFcc(G, z)

Ze < max(ze, %5”2“00) for each e € E
Y < Approx-fccSDP-Solve(G, z, 7| z|| )
y—0eR”™ 2 0eRE
repeat [CIn(|V])] times
S+ GW(Y)
ysys+1, 2 2+ 1)
end
v < max{ze/2.: e € E, Z. # 0}
return vy

11: end procedure
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Outline

@ Discussion
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Eigenvectors

mc(G,w) = min{ I\max (3L (w) + Diag(u)) : u e RY, u'1 = O}

Given z € RE | we compute

Y €Y, diag(Y) = ul, 3£5(Y) 2 2
w>0,u'l=0,:Lc(w)+ Diag(u) < 1/
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Eigenvectors

mc(G, w) = min{ IAmax (2L (w) + Diag(u)) : ue RY, vl = 0}

Given z € RE, we compute

Y € SY, diag(Y) = ul, 3L5(Y) > 2
w >0, u"l =0, ;Lg(w)+ Diag(u) < 7/
(11— (2Lg(w) + Diag(u)))Y =0
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Eigenvectors

mc(G, w) = min{ IAmax (2L (w) + Diag(u)) : ue RY, vl = 0}

Given z € RE, we compute

Y € SY, diag(Y) = p1, 3£6(Y) > z
w > 0, u'l = 0, %EG(W) aF Dlag(u) = %I
LY = (Lc(w) + Diag(u))Y
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Eigenvectors

mc(G, w) = min{ I\max (3L6(w) + Diag(u)) : ueRY, u'1 = o}

Given z € RE, we compute

Y e SY, diag(Y) = pl, 3£6(Y) > z
w20, u'l =0, 3L(w) + Diag(u) < 7/
1Y = (§L6(w) + Diag(u))Y

® Y encodes a geometric representation of G

® Y encodes eigenvectors of a “Laplacian”
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Optimization and Homomorphisms

If f: E(G) — E(H) is cut continuous, then
fce(G, Pf z) < fee(H, z)

If f: V(G) — V(H) is a graph homomorphism, then
xr(G, P z) < x¢(H, 2)

and
9(G,Plz) < 9(H, z)
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Conclusion

® A weighted version of fcc allows for the use of convex
optimization techniques

24 /26



Conclusion

® A weighted version of fcc allows for the use of convex
optimization techniques

® Duality theory of convex optimization extends Goemans and
Williamson's celebrated approximation algorithm to the
fractional cut-covering setting

24 /26



Conclusion

® A weighted version of fcc allows for the use of convex
optimization techniques

® Duality theory of convex optimization extends Goemans and
Williamson's celebrated approximation algorithm to the
fractional cut-covering setting

e Computing either of {mc, fcc} implicitly computes the other
one
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Conclusion

A weighted version of fcc allows for the use of convex
optimization techniques

Duality theory of convex optimization extends Goemans and
Williamson's celebrated approximation algorithm to the
fractional cut-covering setting

Computing either of {mc, fcc} implicitly computes the other
one

Given either of w,z € RE, one can compute the triplet
(w, z, p), as well as (mostly) combinatorial certificates that

agwp < mC(G, W) <p< fCC(sz) < aéwp
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Thank You
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