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Stochastic matrices and Markov chains

An n × n matrix T is stochastic if it is entrywise nonnegative, and
T1 = 1, where 1 denotes the all ones vector in Rn. Note that 1 is
an eigenvalue of T , with 1 as a corresponding right eigenvector.

Associated with T is a Markov chain, i.e. a sequence of
nonnegative vectors x(k), k = 1, 2, 3, . . . satisfying
x(k + 1)> = x(k)>T and x(k)>1 = 1, k ∈ N. Evidently
x(k + 1)> = x(1)>T k , for each k ∈ N.

A square entrywise nonnegative matrix M is primitive if, for some
k ∈ N, Mk has all positive entries. Equivalently, the directed graph
of M is strongly connected, and the gcd of the cycle lengths is 1.

Examples:

 0 1 0
0 0 1
.25 .75 0

 ,
 0 1 0

0 0 1
1 0 0

 .
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Spectral theory for stochastic matrices

Theorem (Perron–Frobenius 1907, 1912)

Let T be an n × n primitive stochastic matrix, and denote the
eigenvalues of T by 1 ≡ λ1, λ2, . . . , λn. Then a)
|λj | < 1, j = 2, . . . , n; b) there is a unique left eigenvector w of
corresponding to the eigenvalue 1 such that w>1 = 1; and c) w
has all positive entries.

This vector w is known as the stationary distribution vector for T .

It now follows that T k → 1w> as k →∞. Hence, our Markov
chain x(k) converges the stationary distribution w as k →∞,
regardless of the initial distribution x(1).

Remark: A collection of somewhat weaker conclusions can be
made if T is irreducible (≡ directed graph is strongly connected),
but not primitive.
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More on eigenvalues

The eigenvalues of stochastic matrices carry critical information
regarding the convergence properties of Markov chains.

A classic result of Karpelevič describes the region in the complex
plane consisting of all eigenvalues of all stochastic matrices of
order n.
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The region for n = 12
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The stationary distribution

It turns out that the entries in the entries in the stationary
distribution can be understood in terms of the sums of weights of
certain spanning directed trees in the directed graph associated
with T . This is the Markov chain matrix tree theorem.

How does the stationary distribution of an irreducible stochastic
matrix constrain the corresponding eigenvalues? At first glance, it
may not be obvious that any constraints on the eigenvalues are
imposed by the stationary distribution.
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A simple example

Suppose we have w ∈ R3 with 0 < w1 ≤ w2 ≤ w3. A typical
stochastic matrix T having w> as the stationary distribution has
the form

T =

 a b 1− a− b
c d 1− c − d

(1−a)w1−cw2

w3

(1−d)w2−bw1

w3

w3+(a+b−1)w1+(c+d−1)w2

w3

 ,
where necessarily all entries are nonnegative. Observe that for such
a T we have
trace(T ) = a + d + w3+(a+b−1)w1+(c+d−1)w2

w3
≥ w3−w1−w2

w3
= 2w3−1

w3
.

It now follows that if λ is a non-real eigenvalue of T then
Re(λ) ≥ w3−1

2w3
. For example, if w3 >

1
2 then any non-real

eigenvalue of any stochastic matrix with w> as a left Perron vector
necessarily has real part strictly greater than −1

2 .
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A Karpelevič-type region

Suppose that w is a positive vector whose entries sum to 1.

Consider the following sets:
S(w) = {T ∈ Mn(R)|T ≥ 0,T1 = 1,w>T = w>},
σS(w) = {λ|λ is an eigenvalue of some T ∈ S(w)}.

Observe that S(w) includes all irreducible stochastic matrices
having w> as the stationary distribution. In fact the irreducible
members of S(w) form a dense subset.
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A Karpelevič-type region

Suppose that w is a positive vector whose entries sum to 1.

Consider the following sets:
S(w) = {T ∈ Mn(R)|T ≥ 0,T1 = 1,w>T = w>},
σS(w) = {λ|λ is an eigenvalue of some T ∈ S(w)}.

Observe that S(w) includes all irreducible stochastic matrices
having w> as the stationary distribution. In fact the irreducible
members of S(w) form a dense subset.

Steve Kirkland Eigenvalues and the stationary distribution



Background and preliminaries
An eigenvalue region
The reversible case

A Karpelevič-type region
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Easy observations

Suppose that w ∈ Rn,w > 0,w>1 = 1.

i) σS(w) is symmetric with respect to the real axis.

ii) λ ∈ σS(w) =⇒ tλ+ 1− t ∈ σS(w) ∀t ∈ [0, 1].
(T → (1− t)I + tT .)

iii) λ ∈ σS(w) =⇒ tλ ∈ σS(w) ∀t ∈ [0, 1].
(T → (1− t)1w> + tT .)

iv) Suppose that w1 = min{wj |j = 1, . . . , n}.
λ ∈ σS(w) =⇒ − w1λ∑n

j=2 wj
∈ σS(w). (T → 1

1−w1
(1w> − w1T ).)

v) If ŵ is a subvector of w , then σS( 1
1>ŵ

ŵ) ⊆ σS(w).
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ŵ) ⊆ σS(w).

Steve Kirkland Eigenvalues and the stationary distribution



Background and preliminaries
An eigenvalue region
The reversible case

Easy observations

Suppose that w ∈ Rn,w > 0,w>1 = 1.

i) σS(w) is symmetric with respect to the real axis.

ii) λ ∈ σS(w) =⇒ tλ+ 1− t ∈ σS(w) ∀t ∈ [0, 1].
(T → (1− t)I + tT .)

iii) λ ∈ σS(w) =⇒ tλ ∈ σS(w) ∀t ∈ [0, 1].
(T → (1− t)1w> + tT .)

iv) Suppose that w1 = min{wj |j = 1, . . . , n}.
λ ∈ σS(w) =⇒ − w1λ∑n

j=2 wj
∈ σS(w). (T → 1

1−w1
(1w> − w1T ).)
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Elements of σS(w) for any w

Theorem

Suppose that n ≥ 2. Then
⋂

w∈Rn,w>0,w>1=1 σS(w) = [0, 1].

The fact that [0, 1] ⊆ σS(w) for any w follows from observation
iii).

The reverse containment is proven by induction on n.
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Intersection of σS(w) with the unit circle

Theorem

Suppose that n ≥ 2, that 2 ≤ k ≤ n, and that w ∈ Rn with

w > 0,w>1 = 1. We have e
2πj
k ∈ σS(w) for some j = 1, . . . , k − 1

that is relatively prime to k, if and only if there is a collection of
non-empty disjoint subsets S1, . . . ,Sk ⊆ {1, . . . , n} such that the
values

∑
l∈Si wl , i = 1, . . . , k, are all equal.

Corollary

Consider a vector w ∈ Rn with w > 0,w>1 = 1. Suppose that for
any pair of non-empty disjoint subsets
S1, S2 ∈ {1, . . . , n},

∑
j∈S1 wj 6=

∑
k∈S2 wk . Then for any

stochastic matrix T such that w>T = w>, the only eigenvalue of
T of unit modulus is 1. In particular, if such a T is irreducible, it
is necessary primitive.
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Reversible stochastic matrices

Suppose that A is a symmetric nonnegative matrix such that
A1 = w . Set W =diag(w). Then T = W−1A is stochastic, and is
known as a reversible stochastic matrix.

The reversible stochastic matrices form an important subfamily.

Define R(w) = {T ∈ Mn(R)|T ≥ 0,T1 = 1,w>T =
w>,T is reversible} and
σR(w) = {λ|λ ∈ σ(T ) for some T ∈ R(w)}.

If T is reversible, then W
1
2TW− 1

2 is symmetric, so
σR(w) ⊆ [−1, 1].

Set λ(w) = min{σR(w)}.
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Extreme points

An extreme point of a convex set is one that can’t be written as a
nontrivial convex combination of other members of that set.

Theorem

Suppose that n ≥ 2, and that w ∈ Rn with w > 0,w>1 = 1.
There is an extreme point T of R(w) such that λ(w) is an
eigenvalue of T .

Idea: Let λmin(T ) denote the smallest eigenvalue of a reversible
stochastic matrix T . If T1,T2 ∈ R(w), then
λmin(tT1 + (1− t)T2) ≥ tλmin(T1) + (1− t)λmin(T2). Then
λmin(•) is a concave function, so it takes its minimum at an
extreme point of R(w).
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More on extreme points

Brualdi has characterised the extreme points of the convex set of
symmetric nonnegative matrices with prescribed positive row sum
vector. That leads to the following. (For a reversible stochastic
matrix T , let G (T ) denote its graph.)

Theorem

Suppose that w ∈ Rn,w > 0,w>1 = 1. A matrix T ∈ R(w) is an
extreme point of R(w) if and only if each connected component of
G (T ) is either a tree or a unicyclic graph whose unique cycle has
odd length (possibly a loop).
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Upshot

Theorem

Suppose that w ∈ Rn,w > 0,w>1 = 1, and for each pair of
non-empty disjoint subsets S1, S2 of {1, . . . , n}, we have∑

l∈S1 wl 6=
∑

l∈S2 wl . There is a T ∈ R(w) such that i)
λmin(T ) = λ(w) and ii) G (T ) is a tree with a loop.

Idea: Show that if T ∈ R(w) is a minimizer for λmin then G (T ) is
connected. Also show that if G (T ) has an odd cycle of length
2k + 1, then there is a T̃ ∈ R(w) such that λmin(T̃ ) ≤ λmin(T )
and T̃ has a cycle of length 2k − 1.
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A bound

Theorem

Suppose that w ∈ Rn,w > 0,w>1 = 1. Set

γ =
1

maxj wj
min

∑
p∈S1

wp −
∑
q∈S2

wq

∣∣∣∣∣S1, S2 ∈ {1, . . . , n},
S1 ∩ S2 = ∅,

∑
p∈S1

wp ≥
∑
q∈S2

wq

 .

Then λ(w) ≥ −(1− γn−1)
1

n−1 .

Idea: Suppose T attains λ(w) as an eigenvalue, and G (T ) is a
tree with a loop. The smallest positive entry in T is at least γ, and
T n−1 has a column with all entries at least γn−1.
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λ(w) for n = 2

Theorem

Suppose that w ∈ R2 with w > 0,w>1 = 1, and w1 < w2. Then
λ(w) = −w1

w2
.

Idea: There’s just one extreme point that fits the bill:[
0 1
w1
w2

w2−w1
w2

]
.
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λ(w) for n = 3, part 1

Theorem

Suppose that w ∈ R3 with w > 0,w>1 = 1, and w1 < w2 < w3,
and w3 >

1
2 . Then

λ(w) =


w3−1
w3

if w1 + 3w2 ≥ 1,

−1
2

(
w2−w1

w3
+

√
(w2−w1)2

w2
3

+ 4w1(1−2w2)
w2w3

)
if w1 + 3w2 < 1.

Idea: There are two candidate matrices to consider:

T1 =

 0 0 1
0 0 1
w1
w3

w2
w3

2w3−1
w3

 and T2 =

 0 1 0
w1
w2

0 w2−w1
w2

0 w2−w1
w3

w1+w3−w2
w3

 .
Now determine when λmin(T1) is <,=, > λmin(T2).
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λ(w) for n = 3, part 2

Theorem

Suppose that w ∈ R3 with w > 0,w>1 = 1, and
w1 < w2 < w3 <

1
2 . Let

x−1 =
−1

2

(
w2 − w1

w3
+

√
(w2 − w1)2

w2
3

+
4w1(1− 2w2)

w2w3

)
,

x−2 =
−1

2

(
w3 − w2

w1
+

√
(w3 − w2)2

w2
1

+
4w2(1− 2w3)

w1w3

)
.

Then λ(w) = min{x−1 , x
−
2 }.
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Idea

There are three candidate matrices:

T1 =

 0 1 0
w1
w2

0 w2−w1
w2

0 w2−w1
w3

w1+w3−w2
w3

 ,T2 =

w1+w2−w3
w1

0 w3−w2
w1

0 0 1
w3−w2

w3

w2
w3

0

 ,
T3 =

 0 0 1
0 w1+w2−w3

w2

w3−w1
w2

w1
w3

w3−w1
w3

0

 .
T3 is not a contender, as λmin(T2) ≤ λmin(T3). Now choose the
smaller of λmin(T1), λmin(T2).
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In fact . . .

For each w2 ∈ (14 ,
1
2) with w2 6= 1

3 , there is a unique
w∗1 ∈ (12 − w2,w2) such that

λ(w) =


x−2 , if w2 ∈ (14 ,

1
3),w1 ∈ (12 − w2,w

∗
1 )

x−1 if w2 ∈ (14 ,
1
3),w1 ∈ [w∗1 ,w2)

x−2 if w2 ∈ [13 ,
1
2),w1 ∈ (12 − w2, 1− 2w2).

It turns out that for fixed w2, w
∗
1 is a root of an unpleasant quartic

whose coefficients are polynomials in w2.
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Plot of λ(w) for w2 = 7
24 ,w1 ∈ [1

2 − w2,w2]
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Final thoughts

The case w = 1
n1 is the subject of the Perfect-Mirsky conjecture,

open since 1965.

Considering G (T ) is a great help in dealing with the reversible
variant of the problem.

There is much to be done in developing a better understanding of
σS(w).
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