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Motivation

Decision problem: is X ≃ Y ?

Matrix formulation: given A,B, is there permutation P
such that

AP = PB.

Integer programming formulation: is there

P ∈ {0, 1 coordinates} s.t.: (AP − PB) = 0.
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Fractional isomorphism

A linear relaxation of the problem: fractional isomorphism.

Now, we want to solve the following problem

P ∈ {doubly-stochastic polytope} s.t.: (AP − PB) = 0.

Recall: Birkhoff’s Theorem.

Weaker than isomorphism: for X,Y k-regular

AXJ = kJ = JAY .
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Weisfeiler Leman graph isomorphism test (1WL)

Another poly-relaxation of the isomorphism problem.

Based on the recursive number of neighbors.

All vertices start at the same color. We now make a color
partition based on the number of vertices of each color each
vertex has as a neighbor. We repeat this process until it
stabilizes.
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Ramana, Schreinerman and Ullman (adapted)

For two graphs X and Y on the same number of vertices, the
following are equivalent:

They are fractionally isomorphic, that is, there is a doubly
stochastic matrix M such that AXM = MAY ;

1WL algorithm does not differentiate X from Y ;

X and Y have some common equitable partition;

X and Y have in common the coarsest equitable partition.
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Equitable partitions

We say that a partition π is equitable if for every pair of
cells r, s we have

a, b ∈ Cr =⇒ N(a,Cs) = N(b, Cs).

We observe that a partition is invariant in 1WL iff it is
equitable.
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Lattice

We say that a partition π is coarser than ν if each cell of π
is contained in some cell of ν.

Notation:
π ≥ ν.

The equitable partitions forms a lattice with respect to this
ordering.
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Quotients

We can define a new weighted digraph called the
unsymmetrized quotient defined on the partition classes by:

w(rs) = N(a,Cs), for some a ∈ Cr.

We also define its symmetrized quotient, by setting the
weight of each edge as the geometric mean of its related
arcs.

X =

X/π =
3

1

2

2

1

3

X̃/π =

√
3 2

√
3
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Quotient equivalences

Given two graphs X,Y , the following are equivalent:

There are equitable partitions such that X/π ≃ Y/ν;

X/π ≃ Y/ν for their coarsest equitable partitions;

X and Y have a common cover;

There is a matrix M with constant row sum and constant
column sum such that AXM = MAY . - New!
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Quotients and lattice - New!

There is an order preserving lattice isomorphism

φ : {π ∈ Π(X) : ν ≤ π} → Π(X/ν).

for which is also valid:

(X/ν)/φ(π) ≃ X/π.
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Symmetrized quotient

Motivation - Perfect State Transfer and spectral theory.

Spectrum is well-behaved: σ(X̃/π) ⊆ σ(X).

Lattice is not preserved - φ is not surjective.

Not an equivalence relation - non-transitive.

2
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Equivalence Theorem - New!

The following are equivalent

X̃/π ≃ Ỹ/ν for some π, ν;

there is M such that AXM = MAY and both MMT and
MTM are doubly stochastic.
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Conclusion

Quotien Combinatorics Matricial

X/π ≃ Y/ν
|V (X)| = |V (Y )| 1-WL

AXM = MAY

M doubly-stochastic

X/π ≃ Y/ν common cover
AXM = MAY

M line, column regular

X̃/π ≃ Ỹ/ν ???
AXM = MAY

MMT , MTM stochastic
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Thank you!
Beamer theme by Jose Manoel Calderon Trilla
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