Quotient graphs & stochastic matrices

Frederico Cançado, Gabriel Coutinho

• Decision problem: is $X \simeq Y$?

Motivation

- Decision problem: is $X \simeq Y$?
- Matrix formulation: given A, B, is there permutation P such that

AP = PB.

Motivation

- Decision problem: is $X \simeq Y$?
- Matrix formulation: given A, B, is there permutation P such that

$$AP = PB.$$

■ Integer programming formulation: is there

Motivation

- Decision problem: is $X \simeq Y$?
- Matrix formulation: given A, B, is there permutation P such that

$$AP = PB.$$

■ Integer programming formulation: is there

 $P \in \{0, 1 \text{ coordinates}\}$ s.t.: (AP - PB) = 0.

• A linear relaxation of the problem: fractional isomorphism.

A linear relaxation of the problem: fractional isomorphism.Now, we want to solve the following problem

A linear relaxation of the problem: fractional isomorphism.Now, we want to solve the following problem

 $P \in \{\text{doubly-stochastic polytope}\}$ s.t.: (AP - PB) = 0.

A linear relaxation of the problem: fractional isomorphism.Now, we want to solve the following problem

 $P \in \{\text{doubly-stochastic polytope}\}$ s.t.: (AP - PB) = 0.

• Recall: Birkhoff's Theorem.

A linear relaxation of the problem: fractional isomorphism.Now, we want to solve the following problem

 $P \in \{\text{doubly-stochastic polytope}\}$ s.t.: (AP - PB) = 0.

Recall: Birkhoff's Theorem.Weaker than isomorphism: for X, Y k-regular

 $A_XJ = kJ = JA_Y.$

• Another poly-relaxation of the isomorphism problem.

- Another poly-relaxation of the isomorphism problem.
- Based on the recursive number of neighbors.

- Another poly-relaxation of the isomorphism problem.
- Based on the recursive number of neighbors.
- All vertices start at the same color. We now make a color partition based on the number of vertices of each color each vertex has as a neighbor. We repeat this process until it stabilizes.

- Another poly-relaxation of the isomorphism problem.
- Based on the recursive number of neighbors.
- All vertices start at the same color. We now make a color partition based on the number of vertices of each color each vertex has as a neighbor. We repeat this process until it stabilizes.

For two graphs X and Y on the same number of vertices, the following are equivalent:

• They are fractionally isomorphic, that is, there is a doubly stochastic matrix M such that $A_X M = M A_Y$;

For two graphs X and Y on the same number of vertices, the following are equivalent:

- They are fractionally isomorphic, that is, there is a doubly stochastic matrix M such that $A_X M = M A_Y$;
- 1WL algorithm does not differentiate X from Y;

For two graphs X and Y on the same number of vertices, the following are equivalent:

- They are fractionally isomorphic, that is, there is a doubly stochastic matrix M such that $A_X M = M A_Y$;
- 1WL algorithm does not differentiate X from Y;
- X and Y have some common equitable partition;

For two graphs X and Y on the same number of vertices, the following are equivalent:

- They are fractionally isomorphic, that is, there is a doubly stochastic matrix M such that $A_X M = M A_Y$;
- 1WL algorithm does not differentiate X from Y;
- X and Y have some common equitable partition;
- X and Y have in common the coarsest equitable partition.

Equitable partitions

• We say that a partition π is equitable if for every pair of cells r, s we have

 $a, b \in C_r \implies N(a, C_s) = N(b, C_s).$

Equitable partitions

• We say that a partition π is equitable if for every pair of cells r, s we have

$$a, b \in C_r \implies N(a, C_s) = N(b, C_s).$$

• We observe that a partition is invariant in 1WL iff it is equitable.

Lattice

• We say that a partition π is coarser than ν if each cell of π is contained in some cell of ν .

Lattice

- We say that a partition π is coarser than ν if each cell of π is contained in some cell of ν .
- Notation:

 $\pi \geq \nu$.

Lattice

- We say that a partition π is coarser than ν if each cell of π is contained in some cell of ν .
- Notation:

 $\pi \geq \nu$.

• The equitable partitions forms a lattice with respect to this ordering.

Quotients

• We can define a new weighted digraph called the unsymmetrized quotient defined on the partition classes by:

 $w(rs) = N(a, C_s),$ for some $a \in C_r$.

Quotients

• We can define a new weighted digraph called the unsymmetrized quotient defined on the partition classes by:

 $w(rs) = N(a, C_s),$ for some $a \in C_r$.

• We also define its symmetrized quotient, by setting the weight of each edge as the geometric mean of its related arcs.

Quotients

• We can define a new weighted digraph called the unsymmetrized quotient defined on the partition classes by:

 $w(rs) = N(a, C_s),$ for some $a \in C_r$.

• We also define its symmetrized quotient, by setting the weight of each edge as the geometric mean of its related arcs.

Given two graphs X, Y, the following are equivalent:

• There are equitable partitions such that $X/\pi \simeq Y/\nu$;

Given two graphs X, Y, the following are equivalent:

- There are equitable partitions such that $X/\pi \simeq Y/\nu$;
- $X/\pi \simeq Y/\nu$ for their coarsest equitable partitions;

Given two graphs X, Y, the following are equivalent:

- There are equitable partitions such that $X/\pi \simeq Y/\nu$;
- $X/\pi \simeq Y/\nu$ for their coarsest equitable partitions;
- \blacksquare X and Y have a common cover;

Given two graphs X, Y, the following are equivalent:

- There are equitable partitions such that $X/\pi \simeq Y/\nu$;
- $X/\pi \simeq Y/\nu$ for their coarsest equitable partitions;
- X and Y have a common cover;
- There is a matrix M with constant row sum and constant column sum such that $A_X M = M A_Y$. New!

Quotients and lattice - New!

There is an order preserving lattice isomorphism $\varphi \colon \{\pi \in \Pi(X) \colon \nu \leq \pi\} \to \Pi(X/\nu).$

for which is also valid:

 $(X/\nu)/\varphi(\pi) \simeq X/\pi.$

Quotients and lattice - New!

There is an order preserving lattice isomorphism $\varphi\colon \{\pi\in\Pi(X)\colon\nu\leq\pi\}\to\Pi(X/\nu).$

for which is also valid:

 $(X/\nu)/\varphi(\pi) \simeq X/\pi.$

• Motivation - Perfect State Transfer and spectral theory.

- Motivation Perfect State Transfer and spectral theory.
- Spectrum is well-behaved: $\sigma(X/\pi) \subseteq \sigma(X)$.

- Motivation Perfect State Transfer and spectral theory.
- Spectrum is well-behaved: $\sigma(X/\pi) \subseteq \sigma(X)$.
- Lattice is not preserved φ is not surjective.

- Motivation Perfect State Transfer and spectral theory.
- Spectrum is well-behaved: $\sigma(X/\pi) \subseteq \sigma(X)$.
- Lattice is not preserved φ is not surjective.
- Not an equivalence relation non-transitive.

- Motivation Perfect State Transfer and spectral theory.
- Spectrum is well-behaved: $\sigma(X/\pi) \subseteq \sigma(X)$.
- \blacksquare Lattice is not preserved φ is not surjective.
- Not an equivalence relation non-transitive.

Equivalence Theorem - New!

The following are equivalent

Equivalence Theorem - New!

The following are equivalent $\widetilde{X/\pi} \simeq \widetilde{Y/\nu} \text{ for some } \pi, \nu;$

Equivalence Theorem - New!

The following are equivalent

• $\widetilde{X/\pi} \simeq \widetilde{Y/\nu}$ for some π, ν ;

• there is M such that $A_X M = M A_Y$ and both $M M^T$ and $M^T M$ are doubly stochastic.

Conclusion

Quotien	Combinatorics	Matricial
$X/\pi \simeq Y/\nu$	1-WL	$A_X M = M A_Y$
V(X) = V(Y)		M doubly-stochastic
$X/\pi \simeq Y/\nu$	common cover	$A_X M = M A_Y$
		M line, column regular
$\widetilde{X/\pi}\simeq \widetilde{Y/\nu}$???	$A_X M = M A_Y$
		MM^T, M^TM stochastic

Thank you!

Beamer theme by Jose Manoel Calderon Trilla