Quotient graphs & stochastic matrices

Frederico Cançado, Gabriel Coutinho

Decision problem: is $X \simeq Y$?

Motivation

- Decision problem: is $X \simeq Y$?
- \blacksquare Matrix formulation: given A, B, is there permutation P such that

 $AP = PR$

Motivation

- Decision problem: is $X \simeq Y$?
- \blacksquare Matrix formulation: given A, B, is there permutation P such that

$$
AP = PB.
$$

 \blacksquare Integer programming formulation: is there

Motivation

- Decision problem: is $X \simeq Y$?
- \blacksquare Matrix formulation: given A, B, is there permutation P such that

$$
AP = PB.
$$

 \blacksquare Integer programming formulation: is there

 $P \in \{0, 1 \text{ coordinates}\}\$ s.t.: $(AP - PB) = 0.$

A linear relaxation of the problem: fractional isomorphism.

A linear relaxation of the problem: fractional isomorphism. Now, we want to solve the following problem

A linear relaxation of the problem: fractional isomorphism. Now, we want to solve the following problem

 $P \in \{\text{doubly-stochastic polytope}\}\$ s.t.: $(AP - PB) = 0.$

A linear relaxation of the problem: fractional isomorphism. Now, we want to solve the following problem

 $P \in \{\text{doubly-stochastic polytope}\}\$ s.t.: $(AP - PB) = 0.$

Recall: Birkhoff's Theorem.

A linear relaxation of the problem: fractional isomorphism. Now, we want to solve the following problem

 $P \in \{\text{doubly-stochastic polytope}\}\$ s.t.: $(AP - PB) = 0.$

Recall: Birkhoff's Theorem. Weaker than isomorphism: for X, Y k-regular

 $A_{\mathbf{v}}J = kJ = JA_{\mathbf{v}}$.

Another poly-relaxation of the isomorphism problem.

Another poly-relaxation of the isomorphism problem.

Based on the recursive number of neighbors.

- Another poly-relaxation of the isomorphism problem.
- **Based on the recursive number of neighbors.**
- All vertices start at the same color. We now make a color partition based on the number of vertices of each color each vertex has as a neighbor. We repeat this process until it stabilizes.

- Another poly-relaxation of the isomorphism problem.
- **Based on the recursive number of neighbors.**
- All vertices start at the same color. We now make a color partition based on the number of vertices of each color each vertex has as a neighbor. We repeat this process until it stabilizes.

For two graphs X and Y on the same number of vertices, the following are equivalent:

■ They are fractionally isomorphic, that is, there is a doubly stochastic matrix M such that $A_XM = MA_Y$;

For two graphs X and Y on the same number of vertices, the following are equivalent:

- They are fractionally isomorphic, that is, there is a doubly stochastic matrix M such that $A_XM = MA_Y$;
- \blacksquare 1WL algorithm does not differentiate X from Y;

For two graphs X and Y on the same number of vertices, the following are equivalent:

- They are fractionally isomorphic, that is, there is a doubly stochastic matrix M such that $A_XM = MA_Y$;
- \blacksquare 1WL algorithm does not differentiate X from Y;
- \blacksquare X and Y have some common equitable partition;

For two graphs X and Y on the same number of vertices, the following are equivalent:

- They are fractionally isomorphic, that is, there is a doubly stochastic matrix M such that $A_XM = MA_Y$;
- \blacksquare 1WL algorithm does not differentiate X from Y;
- \blacksquare X and Y have some common equitable partition;
- \blacksquare X and Y have in common the coarsest equitable partition.

Equitable partitions

We say that a partition π is equitable if for every pair of cells r, s we have

 $a, b \in C_r \implies N(a, C_s) = N(b, C_s).$

Equitable partitions

We say that a partition π is equitable if for every pair of cells r, s we have

$$
a, b \in C_r \implies N(a, C_s) = N(b, C_s).
$$

We observe that a partition is invariant in $1WL$ iff it is equitable.

Lattice

We say that a partition π is coarser than ν if each cell of π is contained in some cell of ν .

Lattice

- We say that a partition π is coarser than ν if each cell of π is contained in some cell of ν .
- Notation:

 $\pi > \nu$.

Lattice

- We say that a partition π is coarser than ν if each cell of π is contained in some cell of ν .
- Notation:

 $\pi > \nu$.

■ The equitable partitions forms a lattice with respect to this ordering.

Quotients

We can define a new weighted digraph called the unsymmetrized quotient defined on the partition classes by:

 $w(rs) = N(a, C_s),$ for some $a \in C_r$.

Quotients

We can define a new weighted digraph called the unsymmetrized quotient defined on the partition classes by:

 $w(rs) = N(a, C_s),$ for some $a \in C_r$.

We also define its symmetrized quotient, by setting the weight of each edge as the geometric mean of its related arcs.

Quotients

We can define a new weighted digraph called the unsymmetrized quotient defined on the partition classes by:

 $w(rs) = N(a, C_s),$ for some $a \in C_r$.

We also define its symmetrized quotient, by setting the weight of each edge as the geometric mean of its related arcs.

Given two graphs X, Y , the following are equivalent: ■ There are equitable partitions such that $X/\pi \simeq Y/\nu$;

Given two graphs X, Y , the following are equivalent:

- There are equitable partitions such that $X/\pi \simeq Y/\nu$;
- \blacksquare $X/\pi \simeq Y/\nu$ for their coarsest equitable partitions;

Given two graphs X, Y , the following are equivalent:

- There are equitable partitions such that $X/\pi \simeq Y/\nu$;
- \blacksquare $X/\pi \simeq Y/\nu$ for their coarsest equitable partitions;
- \blacksquare X and Y have a common cover;

Given two graphs X, Y , the following are equivalent:

- There are equitable partitions such that $X/\pi \simeq Y/\nu$;
- \blacksquare $X/\pi \simeq Y/\nu$ for their coarsest equitable partitions;
- \blacksquare X and Y have a common cover;
- \blacksquare There is a matrix M with constant row sum and constant column sum such that $A_XM = MA_Y$. - New!

Quotients and lattice - New!

There is an order preserving lattice isomorphism $\varphi\colon {\pi\in \Pi(X)\colon \nu\leq \pi} \to \Pi(X/\nu).$

for which is also valid:

 $(X/\nu)/\varphi(\pi) \simeq X/\pi$.

Quotients and lattice - New!

There is an order preserving lattice isomorphism $\varphi\colon {\pi\in \Pi(X)\colon \nu\leq \pi} \to \Pi(X/\nu).$

for which is also valid:

 $(X/\nu)/\varphi(\pi) \simeq X/\pi$.

Motivation - Perfect State Transfer and spectral theory.

Motivation - Perfect State Transfer and spectral theory. Spectrum is well-behaved: $\sigma(X/\pi) \subseteq \sigma(X)$.

- Motivation Perfect State Transfer and spectral theory.
- Spectrum is well-behaved: $\sigma(X/\pi) \subseteq \sigma(X)$.
- **Lattice is not preserved** φ **is not surjective.**

- Motivation Perfect State Transfer and spectral theory.
- Spectrum is well-behaved: $\sigma(X/\pi) \subseteq \sigma(X)$.
- **Lattice is not preserved** φ **is not surjective.**
- Not an equivalence relation non-transitive.

- Motivation Perfect State Transfer and spectral theory.
- Spectrum is well-behaved: $\sigma(X/\pi) \subseteq \sigma(X)$.
- **Lattice is not preserved** φ **is not surjective.**
- Not an equivalence relation non-transitive.

Equivalence Theorem - New!

The following are equivalent

Equivalence Theorem - New!

The following are equivalent $\widetilde{X/\pi} \simeq Y/\nu$ for some $\pi, \nu;$

Equivalence Theorem - New!

The following are equivalent

- \blacksquare $X/\pi \simeq Y/\nu$ for some $\pi, \nu;$
- **there is M** such that $A_XM = MA_Y$ and both MM^T and M^TM are doubly stochastic.

Conclusion

Thank you!

Beamer theme by Jose Manoel Calderon Trilla