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I Motivation

m Decision problem: is X ~ Y7

m Matrix formulation: given A, B, is there permutation P
such that
AP = PB.

m Integer programming formulation: is there

P € {0, 1 coordinates} s.t.. (AP — PB)=0.
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I Fractional isomorphism

m A linear relaxation of the problem: fractional isomorphism.

m Now, we want to solve the following problem

P € {doubly-stochastic polytope} s.t.. (AP — PB)=0.

m Recall: Birkhoff’s Theorem.
Weaker than isomorphism: for X, Y k-regular

AxJ =kJ = JAy.
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m Based on the recursive number of neighbors.

m All vertices start at the same color. We now make a color
partition based on the number of vertices of each color each
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I Ramana, Schreinerman and Ullman (adapted)

For two graphs X and Y on the same number of vertices, the
following are equivalent:

m They are fractionally isomorphic, that is, there is a doubly
stochastic matrix M such that AxM = M Ay;
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I Ramana, Schreinerman and Ullman (adapted)

For two graphs X and Y on the same number of vertices, the
following are equivalent:

m They are fractionally isomorphic, that is, there is a doubly
stochastic matrix M such that AxM = M Ay;

m 1W L algorithm does not differentiate X from Y;
m X and Y have some common equitable partition;

m X and Y have in common the coarsest equitable partition.

6/16



I Equitable partitions

m We say that a partition 7 is equitable if for every pair of
cells r, s we have

a,be C, = N(a,Cs) = N(b,Cs).
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I Equitable partitions

m We say that a partition 7 is equitable if for every pair of
cells r, s we have

a,be C, = N(a,Cs) = N(b,Cs).

m We observe that a partition is invariant in 1W L iff it is
equitable.

e
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I Lattice

m We say that a partition 7 is coarser than v if each cell of 7
is contained in some cell of v.
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I Lattice

m We say that a partition 7 is coarser than v if each cell of 7
is contained in some cell of v.

m Notation:
T > .

m The equitable partitions forms a lattice with respect to this
ordering.
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I Quotients

m We can define a new weighted digraph called the
unsymmetrized quotient defined on the partition classes by:

w(rs) = N(a,Cs), for some a € C,.
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m We can define a new weighted digraph called the

unsymmetrized quotient defined on the partition classes by:

w(rs) = N(a,Cs), for some a € C,.

m We also define its symmetrized quotient, by setting the
weight of each edge as the geometric mean of its related

arcs.
& 2 1
X/n= OGS 8®
1 2 3

Yo

i 0’0’0

10/16



I Quotient equivalences

Given two graphs X, Y, the following are equivalent:

m There are equitable partitions such that X /7 ~ Y /v;

11/16



I Quotient equivalences

Given two graphs X, Y, the following are equivalent:
m There are equitable partitions such that X /7 ~ Y /v;

m X /7 ~Y/v for their coarsest equitable partitions;

11/16



I Quotient equivalences

Given two graphs X, Y, the following are equivalent:
m There are equitable partitions such that X /7 ~ Y /v;
m X /7 ~Y/v for their coarsest equitable partitions;

m X and Y have a common cover;

11/16



I Quotient equivalences

Given two graphs X, Y, the following are equivalent:
m There are equitable partitions such that X /7 ~ Y /v;
m X /7 ~Y/v for their coarsest equitable partitions;
m X and Y have a common cover;

m There is a matrix M with constant row sum and constant
column sum such that AxM = M Ay. - New!
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I Quotients and lattice - New!

There is an order preserving lattice isomorphism
p:{mell(X): v <7} = II(X/v).
for which is also valid:
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I Symmetrized quotient

m Motivation - Perfect State Transfer and spectral theory.
Spectrum is well-behaved: 0()/(7;1') Co(X).

Lattice is not preserved - ¢ is not surjective.

Not an equivalence relation - non-transitive.
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I Equivalence Theorem - New!

The following are equivalent
] )/(\//w = }7/7/ for some 7, v;

m there is M such that AxM = M Ay and both MM7T and
MT M are doubly stochastic.
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I Conclusion

Quotien ‘ Combinatorics ‘ Matricial

X/W’:Y/V 1-WL AxM:MAY

IV(X)| = |V(Y)] M doubly-stochastic
AxM = MAy

2o = e COTUNOLL COVEL  p line, column regular

7 I A XM =M Ay

~ 277
K = o MMT, MT M stochastic
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Thank you!

Beamer theme by Jose Manoel Calderon Trilla
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