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Factored lifts

Introduction

Notation:

o Let I' be a (di)graph with vertex set V = V(I") and arc set

E = E(T'). Given a (finite) group G with generating set S,
voltage assignment of I is a mapping a: E — S.
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Introduction

Introduction

Notation:

o Let I' be a (di)graph with vertex set V = V(I") and arc set
E = E(T'). Given a (finite) group G with generating set S, a
voltage assignment of I is a mapping a: E — S.

o The pair (T',a) (or T for short) is a voltage digraph.
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Introduction

Introduction

Notation:

o Let I' be a (di)graph with vertex set V = V(I") and arc set
E = E(T'). Given a (finite) group G with generating set S, a
voltage assignment of I is a mapping a: E — S.

o The pair (T',a) (or T for short) is a voltage digraph.

o The lifted digraph or lift I'* is the digraph with vertex set
V(%) =V x G and arc set E(I'*) = E x G, where there is an arc
from vertex (u, g) to vertex (v, h) if and only if uv € E and
h = ga(uv).
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Introduction: First concepts
o Let G = Z,, be the cyclic group.
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Introduction

Introduction: First concepts
o Let G = Z,, be the cyclic group.
o The polynomial matrix B(z) is a square matrix indexed by the
vertices of I' and whose entries are fully represented by a polynomial

(B(2))uo = o + @12+ -+ + qy_12™ 7L, where for
i=0,....m—1,

o 1 ifuv € E and a(uv) =1,
*7 1 0 otherwise.
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Introduction: First concepts

o Let G = Z,, be the cyclic group.

o The polynomial matrix B(z) is a square matrix indexed by the
vertices of I' and whose entries are fully represented by a polynomial
(B(2))uo = o + @12+ -+ + qy_12™ 7L, where for
i=0,...,m—1,

o 1 ifuv € E and a(uv) =1,
*7 1 0 otherwise.

o Example. (B(2))yy =1+ 2+ -+ +2m" L

0
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Introduction: Example: The Alegre digraph
0
0
B(z)=| 0
1
z
T
Figure: The base digraph on the group Zs (right) and the Alegre digraph as a

lift (left).
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Introduction: Example: The Alegre digraph

o The polynomial matrix B(1) (for z = 1) is the quotient matrix of a
regular partition of the lift I'*.
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Introduction: Example: The Alegre digraph
o The polynomial matrix B(1) (for z = 1) is the quotient matrix of a
regular partition of the lift I'*.

o Example: The Alegre digraph. It has a regular partition with five
sets each of five vertices, with quotient matrix
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Factored lifts

Lifts for cyclic groups

The spectrum of lift digraphs for cyclic groups

o Lemma (Godsil, 1993). Let I be a base digraph with a given
voltage assignment « on the cyclic group G. Let B be the
polynomial matrix of its lift I'“. Then,

spB(1) C spI'®.
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Lifts for cyclic groups

The spectrum of lift digraphs for cyclic groups

o Lemma (Godsil, 1993). Let I be a base digraph with a given
voltage assignment « on the cyclic group G. Let B be the
polynomial matrix of its lift I'“. Then,

spB(1) C spI'®.

o Theorem (D., Fiol, Miller, Ryan, Sirai, 2019). Let T = (V, E)
be a base digraph with a voltage assignment « in Zj. The
spectrum of the lift I'“ is

spl'* = U Sp(B(Z))a

zEwW?
where w’ is the set of all k-th roots of unity.
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Lifts for cyclic groups

Example: The Alegre digraph
o Its polynomial matrix B(z) has spB(z) = {02, i, i,z + 1}.
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Lifts for cyclic groups

Example: The Alegre digraph
o lts polynomial matrix B(z) has spB(z) = {01, i, —i, 2 + 1}.
o From the previous theorem, evaluating them at the 5-th roots of
unity w' for i = 0,1,2,3,4, we get:

|z\)\ ToRT [ —i] z+1 ]
1 ol [ 4 | —i 2
w o [ | —i | L(1++5)
w? o || —i| 2(1-+5)
w? 0P [ 4| —i | 2(1+5)
w? 02 [i| —i|ta-V5)

Table: The eigenvalues of the Alegre digraph.
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Factored lifts

Lifts for cyclic groups

Example: The Alegre digraph
o lts polynomial matrix B(z) has spB(z) = {01, i, —i, 2 + 1}.
o From the previous theorem, evaluating them at the 5-th roots of
unity w' for i = 0,1,2,3,4, we get:

OGP [ [ =i =+T ]
1 ol [ 4 | —i 2
w o [ | —i | L(1++5)
w? o || —i| 2(1-+5)
w? 0P [ 4| —i | 2(1+5)
w? 02 [i| —i|ta-V5)

Table: The eigenvalues of the Alegre digraph.
o The complete spectrum of Alegre digraph is

spl'® = {2,0[10],2'[5] —il (1 +v5)3, ( \/5)[2]}.

[m] = = =
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Lifts for Abelian groups

Lift digraphs for Abelian groups

o If G is an Abelian group, say G = Zy, X -+ X Zy,,, with
m = |G| = 1\, ki, the entries of the polynomial matrix B can be
replaced by polynomials with n variables z1,...,z,. Thatis,

_ E i1 i
(B)uv - ail,...,inzl iz nv
%

1reemin
where
1 fIweE: a)=(g.....0.,) €C,
toestn ) () otherwise.
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Lifts for Abelian groups

Lift digraphs for Abelian groups
Example: The Hoffman-Singleton graph (HS)

o It was known that the Hoffman-Singleton graph can be constructed
as a lift of a base digraph on two vertices, with voltages in the group
Z5 X Z5.

(0,0) (0,0)

(-4-1) (4,1)

Weisstein, Eric W. "Hoffman-Singleton Graph.” From MathWorld—A Wolfram Web Resource.

https://mathworld.wolfram.com/Hof fman-SingletonGraph. html q
14 /30
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Factored lifts

Lifts for Abelian groups

Lift digraphs for Abelian groups

Example: The Hoffman-Singleton graph
o The polynomial matrix of the base digraph of HS is

w—i—% 1+ 2w + 22w + 23w + 24wt
B(w,z) = 14 L 1 1 1 2, 1 .
+ zw + 22wd + 23wd + 24wl w* + w2’

Or «@r «Trazr T a0
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Lifts for Abelian groups

Lift digraphs for Abelian groups

Example: The Hoffman-Singleton graph

| 2\w [ 1 w w | w? w
1 [[7,-3]2-3]2-3]2-3]2-3
w 1122 (23232 3|23
2 22 23232 3|23
P22 [2-3[2-32-32-3
or 12,2 [2-3]2-32-32-3

Table: The eigenvalues of the HS graph.

spHS = {711, 20281 321y,
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Why factored lifts?

F>(Cs)

Figure: F5(Cy)
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o Let I" be a graph, each of its edges is considered to consist of two
oppositely directed arcs.
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Notation

o Let I" be a graph, each of its edges is considered to consist of two
oppositely directed arcs.

o Let V(I') and A(T") denote the vertex and arc set of I".
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Introduction

Notation

o Let I" be a graph, each of its edges is considered to consist of two
oppositely directed arcs.

o Let V(I') and A(T") denote the vertex and arc set of I".
o Let A be the adjacency matrix of .

ST =T, T 930
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Introduction

Notation

o Let I" be a graph, each of its edges is considered to consist of two
oppositely directed arcs.

o Let V(I') and A(T") denote the vertex and arc set of I".
o Let A be the adjacency matrix of .

o For a group G and a subgroup H < G, let G/H and [G : H]
denote the set of all right cosets of H in G and the index of H in G,
respectively.
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A combined base graph

o A combined voltage assignment on a graph I" in a group G
consists of a pair of functions (o, w), where « is an ordinary voltage
assignment « : A(T') = G (in the case of graphs, with the property
that mutually reverse arcs receive mutually inverse voltages), and w
assigns to every vertex v € V(T') a subgroup w(v) < G.
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Introduction

A combined base graph

o A combined voltage assignment on a graph I" in a group G
consists of a pair of functions (o, w), where « is an ordinary voltage
assignment « : A(T') = G (in the case of graphs, with the property
that mutually reverse arcs receive mutually inverse voltages), and w
assigns to every vertex v € V(T') a subgroup w(v) < G.

o The graph T, together with a combined voltage assignment (o, w),
is called the combined base graph.
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A factored lift T(®“) of I" with respect to a combined voltage

assignment («,w) is the graph (or digraph, or mixed graph) such that:
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Factored lifts

Factored lift

A factored lift T(®“) of I" with respect to a combined voltage
assignment («,w) is the graph (or digraph, or mixed graph) such that:
o The vertex set of the factored lift is the set

V(ew) = f(y,H) | v € V(') and H € G/w(v)}. For every vertex
v € V(I'), one has [G : w(v)] vertices in the factored lift.

AR NG
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Introduction

Factored lift

A factored lift T(®“) of I" with respect to a combined voltage
assignment («,w) is the graph (or digraph, or mixed graph) such that:
o The vertex set of the factored lift is the set
V(ew) = (v, H) |ve V(T) and H € G/w(v)}. For every vertex
v € V(I'), one has [G : w(v)] vertices in the factored lift.

o Let a =wuv € A(T") be an arc emanating from a vertex u and
terminating at a vertex v, with a voltage a(a) € G. For each such
arc a = uw, there is an arc in the factored lift, emanating from a
vertex (u, H) for some H € G /w(u) and terminating at a vertex
(v, K) for some K € G/w(v) if and only if Ha(a) N K # 0.

22 /30
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Factored lift

A factored lift T'(®%) of I" with respect to a combined voltage
assignment («,w) is the graph (or digraph, or mixed graph) such that:
o The vertex set of the factored lift is the set
View) = {(v,H) | v € V(T) and H € G/w(v)}. For every vertex
v € V(I'), one has [G : w(v)] vertices in the factored lift.

o Let a =wuv € A(T") be an arc emanating from a vertex u and
terminating at a vertex v, with a voltage a(a) € G. For each such
arc a = uw, there is an arc in the factored lift, emanating from a
vertex (u, H) for some H € G/w(u) and terminating at a vertex
(v, K) for some K € G/w(v) if and only if Ha(a) N K # 0.

o Example. If G = Z12, H = 3Z12 = {0, 3,6,9},

K = 4715 ={0,2,4}, and a(uv) = 0, then, in the factored graph,
vertex (u, H) is adjacent to the vertices (v, K), (v, K + 3),
(v, K 4 6), and (v, K +9).

29 /30
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Factored lifts on cyclic groups

Factored lifts on cyclic groups: Example 1

The Johnson graph J(4,2) is a factored lift on the group
G =174=10,1,2,3} (see figure (a)).

(0,{0,2})
+1 1 (u.{1})
u P w(u)={0}
{1, (u{0})
+1 (u{2})
0O w(v)={0,2} (u,{3})
(v{13})
(a) (t) (0)

Figure: (a) The combined base graph on Z4 of J(4,2). (b) The standard lift of
the graph in (a). (¢) The factored lift of the graph in (a), that is, the Johnson
graph J(4,2) (or octahedron graph).
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Factored lifts on cyclic groups

Factored lifts on cyclic groups: Example 2
o Consider the token graph F3(Cg) with G = Zg and
H=1{0,2,4} < G.
o There are orbits with 6 vertices and one orbit with 2 vertices.
o Each of these vertices is a representative of one orbit. We take the
simplified notation {1, j, k} = ijk and v = 012, v = 013, y = 014,
and z = 024.

512
502 1)

. w(u)={0}
Q

123

25 /30
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:
Factored lifts on cyclic groups

o Consider that G is the cyclic group Z,,.
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Factored lifts on cyclic groups

Factored lifts on cyclic groups

o Consider that G is the cyclic group Z,,.

o Given a combined base graph (T, (a,w)), its associated base
graph (', a™) has the same vertices as (T, (o, w)), all of them
associated to the trivial group. Besides, each arc uv in (T, (a,w))
with w(u) = H = {hy,...,h:} and a(uv) = i, becomes the r arcs
hi+i,....h. +1.

295
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Factored lifts on cyclic groups

Factored lifts on cyclic groups

o Consider that G is the cyclic group Z,,.

o Given a combined base graph (T, (a,w)), its associated base
graph (', a™) has the same vertices as (T, (o, w)), all of them
associated to the trivial group. Besides, each arc uv in (T, (a,w))
with w(u) = H = {hy,...,h:} and a(uv) = i, becomes the r arcs
hi+i,....h. +1.

o Let B(z) be the polynomial matrix of the associated base graph
(T, "), where, for each arc uv with voltage o™ (uv) = i, the
(u,v)-entry of B(z) has a term 2°.

26 /30
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Factored lifts on cyclic groups

Factored lifts on cyclic groups

Theorem

Let T(@«) pe a factored lift graph associated with the combined
voltage graph T" on the vertex set V(T') = {uq,...,u,}. Let A be the
adjacency matrix of T(®%) and B(z) the polynomial n x n matrix of its
associated base graph (IU',a"). Let f = (f1,..., fn) be a A-eigenvector
of B(z) with z = (" = ¢!"%" satisfying the following condition:

Pl. Let o(r) = Tl and ni = [Z,, : w(u;)]. Forevery u; € V(T),
either f; =0, or o(r) divides n,.

Then, there exists a corresponding \-eigenvector of the factored graph
T(enw)

27 /30
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Factored lifts on cyclic groups

Factored lifts on cyclic groups: Example 2

To find the associated base graph and its voltages, we reason as follows:

(u) Vertex u =012 is adjacent to 512 =y + 1 and 013 = v.
Therefore, a(uy) = +1 and a(uv) = 0.

(v) Vertex v =013 is adjacent to 513 =z + 1, 023 =y + 2, 012 = u,
and 014 = y.
Therefore, a(vz) = +1, a(vy) = +2, a(vu) = 0, and a(vy) = 0.

(y) Vertex y = 014 is adjacent to 514 = v — 2, 024 = z, 013 = v, and
015 = u — 1. Therefore, a(yv) = -2, a(yx) =0, a(yv) =0, and
alyu) = —1.

(z) Vertex x = 024 is adjacent to 124 = v+ 1, 245 =y + 2, 014 =y,
034=v+3,502=v—1,and 023 =y — 2.
Thus, B(zv) = 2z + 2 + 27t and B(zy) =1+ 22 + 272,

28 /30
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Factored lifts on cyclic groups: Example 2

o The polynomial matrix is

0 1 z 0
1 0 1422 z
B(z) = 21 14272 0 1
0 zl4z428 14224272 0
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Factored lifts on cyclic groups

Factored lifts on cyclic groups: Example 2

o The polynomial matrix is

0 1 z 0
1 0 1+ 22 z
B(2) = 271 14272 0 1
0 2zl4z42 14224272 0

o As expected, such a matrix is obtained from the base matrix of the
combined base graph, namely

0 1 z 0
1 0 1422 2
20 14272 0 1
0 271 1 0
by multiplying the last row by 1 + 22 + 272,
=] F = z

AR NG
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Factored lifts on cyclic groups

Factored lifts on cyclic groups: Example 2

| C=¢6,z=(" | Arl A2 Arz Apa
sp(B(¢")) 4 0 -2 -2
sp(B(¢Y) =sp(B(¢)) | 2 0° -1 -1
sp(B(¢%) =sp(B(¢Y) | 1 10 -2
Sp(B(C?’)) 2 2 0 —4

Table: All the eigenvalues of the matrices B(¢"), which yield the eigenvalues of
the 3-token graph F3(Cs) plus four 0's (those marked with “*’).
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Factored lifts on cyclic groups

Factored lifts on cyclic groups: Example 2

| C = ei%v z = CT | )\T,l )\T,Q )\T,S )\r,4
sp(B(¢?) 4 0 -2 =2
sp(B(¢Y))=sp(B(¢°) | 2 0" -1 -1
B(®)=spB(¢")) | 1 1 0 -2
sp(B(¢?)) 2 2 0 —4
Table: All the eigenvalues of the matrices B(¢"), which yield the eigenvalues of
the 3-token graph F3(Cs) plus four 0's (those marked with “*’).

The spectrum of F3(Cs) is
sp F5(Cg) = {411,214 02 —ol4l 4[]}

indicating that we are dealing with a bipartite graph.

[} = =
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Factored lifts on non-cyclic groups

Factored lifts on non-cyclic groups

o Let I' = (V, A) be a base graph of order k with a combined voltage

assignment (a, 8) in a group G. Let p be a complex irreducible
representation of G in C¢ of dimension d = d(p).

Or «@r«Trazr T Ao
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Factored lifts on non-cyclic groups

Factored lifts on non-cyclic groups

o Let I' = (V, A) be a base graph of order k with a combined voltage
assignment (a, 8) in a group G. Let p be a complex irreducible
representation of G in C¢ of dimension d = d(p).

o Let G, be the subgroup associate to vertex u, such that

p(Gu)= > plg).

gEw(u)

PR NG
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Factored lifts on non-cyclic groups

Factored lifts on non-cyclic groups

o Let I' = (V, A) be a base graph of order k with a combined voltage
assignment (a, 8) in a group G. Let p be a complex irreducible
representation of G in C? of dimension d = d(p).

o Let G, be the subgroup associate to vertex u, such that

p(Gu)= > plg).

gEw(u)

o We introduce a dk x dk complex block matrix B(p) with entries

Buu(p) = p(Gu) Y plal(a)),
acub

where each block is a d x d matrix.

u}
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I
i
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Factored lifts on non-cyclic groups

Theorem

Let (o,w) be a combined voltage assignment on a graph T’ = (V, A) with
k vertices in a group G and let n,, = |G : G,,| for every uw € V, and with
the order of the factored lift I'®) equal to k* = 3", _\, ny. Let G have
order n, with v conjugacy classes, and let {p, : r=0,1,...,v—1} bea
complete set of complex irreducible representations of G, of dimensions
d(p,) = d,, so that S"_) d? = n. Let B be the multiset of eigenvalues

B=J dr sp(B(p.)).
r=0

v

of cardinality ZT;S kd? = kn. Then, the following statements hold:
(1) The multiset B contains at most k¥ =
eigenvalues.

(ii) The spectrum of the factored lift T(®*) s the multiset B\ Z, where
Z is a multiset containing kn — k% zeros.

wev N, NON-zero

23 /30
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Factored lifts on non-cyclic groups: Example
(1.6)
w(u)=G=D, I (M
={e} ,‘.ﬁ{v':lg;
a (v,a’)

wow(w)={e,a,a’}

(a)

(w{e.a,d}) (w{bab,a'b})

(¢)

Figure: (a) The combined base graph on the dihedral group Ds. (b) The
standard lift of the graph in (a). (¢) The factored lift of the graph in (a).
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Factored lifts

Factored lifts on non-cyclic groups: Example

6.

o The dihedral group Ds: D3 = (a,b | a® = b*> — (ab)? =€) of order
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Factored lifts on non-cyclic groups: Example

o The dihedral group Ds: D3 = (a,b | a® = b*> — (ab)? =€) of order
6.

o The matrix B = B(I") is the 3 x 3 matrix:

0 e 0
B = e a+at+b e
0 e 0

u}
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i
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Factored lifts on non-cyclic groups: Example

[T e a a® b ab a’b |
o 1 1 1 1 1 1
p1 1 1 1 —1 —1 —1

Al )G A ) &) (s )0 5) (% %)

Table: Irreducible representations of D3 = (a,b|a® = b? = (ab)? = €), where
C — 627ri/3-
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Factored lifts on non-cyclic groups: Example

[T e a 2 b ab a’b |
o 1 1 1 1
p1 1 1 —1 —1 —1

Pl 1) (6 &) (5

) o) (e ) (s %)

Table: Irreducible representations of D3 = (a,b|a® = b? = (ab)? = €), where

C — 627ri/3-

o po(Gu) =6,
p1(Gu) =0,
po(Gy) = p1(Gy) =1,
po(Gw) = p1(Guw) =3
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Factored lifts on non-cyclic groups: Example

[T e a a” b ab a’b |

PO 1 1 1 1 1 1

p1 1 1 1 —1 —1 —1

Al )G A ) &) (s )0 5) (% %)

Table: Irreducible representations of D3 = (a,b|a® = b? = (ab)? = €), where
C — 627ri/3-

o po(Gu) =6,
p1(Gu) =0,
po(Gy) = p1(Gy) =1,
po(Gw) = p1(Guw) = 3.

o For example, B(p1)y,» = 1,
B(p1)v,0 = p1(Go)(pi(a) + pr(a™") + pi (b)) = 1.

[m] = = =

2935
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Factored lifts on non-cyclic groups: Example

o The 3 x 3 matrices B(pg) and B(p1) are

B(po) = > B(pl) =

o = O
W w
o = O
o = O
W = =
o = O

29
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Factored lifts on non-cyclic groups: Example

o The 3 x 3 matrices B(pg) and B(p1) are

0 6 0 010
Bp)=|1 3 1], Bl)=|111
030 03 0
o Similarly, B(p2)u,v gives
0 0| 14+¢H+¢? 1+¢+¢% |0 0
0 O|1+¢ ' +¢2 14+¢P+¢2]0 0
[ 1To ¢+¢ ! 1 10
Blp2)= [ 4 1 C+¢t 0 1
0 0] 1+¢+¢2 0 0 0
0 0 0 14+¢1+¢2]0 0

Or «@r «Trazr» T Qoo
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Factored lifts on non-cyclic groups: Example

| B(po) [ B(p1) |
[ 31+ v5)/2 0 30-V5)/2 [ 1+V13)/2 0 (1-+13)/2 ]

[ B(p2) |
[0 0 0 0 0 -2

Table: Eigenvalues of the matrices B(p,) for r = 0,1, 2.
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Factored lifts on non-cyclic groups: Example

[ B(po) | B(p1) |
[ 31+ v5)/2 0 3(1—-v5)/2 | (1+V13)/2 0 (1-+13)/2 ]

[ B(p2) |
[0 0 0 0 0 -2

Table: Eigenvalues of the matrices B(p,) for r = 0,1, 2.

The spectrum of I'* is

spT® = {3(1 £ 5)/2, (1 +V13)/2,0*}.
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