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Introduction

State transfer between vertices of a graph by discrete time quantum walk
Evolution — coin (acts locally on vertices) and shift (propagation along arcs)
Utilize quantum walk search — vertices are marked with a different coin
Only local modification of dynamics, the rest of the graph is passive
Initialize the walk on one marked vertex — sender
Evolve to reach the second (receiver) with high probability
Run-time of the order of O(

√
N)

Analysis — dimensional reduction — find (approximate) invariant subspace
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Notation

Vertices of the hypercube labeled by n-bit strings x⃗ = x1 . . . xn, xi = 0,1
Position basis states — |x⃗⟩
Unit vector in direction d — e⃗d = ed

1 . . . e
d
n , ed

j = δj,d

Basis states of the coin — |d⟩
Marked vertex (0⃗ w.l.o.g.) has a loop — coin basis state |0⟩
Hilbert space of the walk can be written as a direct sum of local spaces

H′ =
⊕

x⃗

Hx⃗

x⃗ ̸= 0⃗ : Hx⃗ = Span
{
|x⃗ ,d⟩|d = 1, . . .n

}
x⃗ = 0⃗ : H0⃗ = Span

{
|⃗0,d⟩|d = 0,1, . . .n

}
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Evolution operator of the search

Evolution operator has the usual form — U ′ = S′ · C′

Conditional shift operator S′

S′ =
n∑

d=1

∑
x⃗

|x⃗ ⊕ e⃗d ,d⟩⟨x⃗ ,d |+ |⃗0,0⟩⟨0⃗,0|

Coin operator — Grover on non-marked vertices, and −G′ on the marked one

C′ = (IP − |⃗0⟩⟨0⃗|)⊗ G − |⃗0⟩⟨0⃗| ⊗ G′

Grover diffusion operator G

G = 2|sC⟩⟨sC | − IC , |sC⟩ =
1√
n

n∑
d=1

|d⟩
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Evolution operator of the search

Modified Grover coin with a weighted loop G′ (Wong)

G′ = 2|sl⟩⟨sl | − I0, |sl⟩ =
1√

n + l

(
√

l |0⟩+
n∑

d=1

|d⟩

)
Initial state of search — equal weight superposition of all states except for the loop

|ψ0⟩ =
1√
n2n

n∑
d=1

∑
x⃗

|x⃗ ,d⟩

Target state of the search — loop at the marked vertex |⃗0,0⟩
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Reduction to a walk on a line (Shenvi, Kempe, Whaley)

Problem can be reduced to the walk on a finite line with a non-homogeneous coin
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Reduction to a walk on a line

Define 2n + 1 orthonormal basis states

|x ,R⟩ = 1√
(n − x)

(n
x

) ∑
|⃗x |=x

∑
xd=0

|x⃗ ,d⟩, x = 0, . . .n − 1

|x ,L⟩ = 1√
x
(n

x

) ∑
|⃗x |=x

∑
xd=1

|x⃗ ,d⟩, x = 1, . . .n

|0,⟲⟩ = |⃗0,0⟩

Expression of the shift operator S′

S′ =
n−1∑
x=0

(|x ,R⟩⟨x + 1,L|+ |x + 1,L⟩⟨x ,R|) + |0,⟲⟩⟨0,⟲ |
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Reduction to a walk on a line

Coin operator

C′ = |0⟩⟨0| ⊗ C′
0 +

n∑
x=1

|x⟩⟨x | ⊗ Cx

Position dependent coins x ̸= 0,n (Cn = 1)

Cx =

(
cos θx sin θx
sin θx − cos θx

)
, cos θx = 1 − 2x

n
, sin θx =

2
n

√
x(n − x)

Coin at the marked vertex depends on the weight of the loop l

C′
0 =

(
−n−l

n+l −2
√

nl
n+l

−2
√

nl
n+l

n−l
n+l

)
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Approximate invariant subspace

Initial state |ψ0⟩ in terms of {|x ,R⟩, |x ,L⟩, |0,⟲⟩}

|ψ0⟩ =
1

2
n
2
(|0,R⟩+ |n,L⟩) + 1

2
n
2

n−1∑
x=1

(√(
n − 1
x − 1

)
|x ,L⟩+

√(
n − 1

x

)
|x ,R⟩

)

|ψ0⟩ together with |0,⟲⟩ and |ψ1⟩ form approximate invariant subspace

|ψ1⟩ =
1
c

n/2−2∑
x=0

1√
2
(n−1

x

) (|x ,R⟩ − |x + 1,L⟩) , 1
c
=

n/2−2∑
x=0

1(n−1
x

)
− 1

2

≈ 1 − 1
2n
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Approximate invariant subspace

Exact eigenvector of U ′ with eigenvalue 1 for all values of l

|α1⟩ =
√

l2n

n + l2n |ψ0⟩ −
√

n
n + l2n |0,⟲⟩

For small l we find "almost" eigenvectors of U ′

|α2⟩ =
√

n
n + l2n |ψ0⟩+

√
l2n

n + l2n |0,⟲⟩

|α3⟩ = |ψ1⟩
⟨αj |U ′|αj⟩ = 1 − O (l/n) , j = 2,3
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Evolution in the approximate invariant subspace

Effective evolution operator in the approximate invariant subspace

U ′
ef =

1 0 0
0 cosω sinω
0 − sinω cosω

 , ω ≈ sinω ≈
(2n − 1)

√
l + n

2n

√
2n(l + n)

Rotation in the |α2⟩, |α3⟩ plane by an angle ω
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Evolution in the approximate invariant subspace

Initial and target state in terms of |αj⟩

|ψ0⟩ =
√

l2n

n + l2n |α1⟩+
√

n
n + l2n |α2⟩

|0,⟲⟩ =
√

n
n + l2n |α1⟩ −

√
l2n

n + l2n |α2⟩

Maximal success probability achieved if
we rotate from |α2⟩ to −|α2⟩

P(l) = |⟨0,⟲ |ψ(T )⟩|2 ≈ 4nl2n

(n + l2n)2

Success for 10-dim hypercube
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Optimal weight for search on a hypercube

Success probability reaches 1 for weight l = n/2n ≡ d/N (Wong, Høyer and Yu)
For this value of l the states |α1,2⟩ simplifies into

|α1⟩ =
1√
2
(|ψ0⟩ − |0,⟲⟩) , |α2⟩ =

1√
2
(|ψ0⟩+ |0,⟲⟩)

Run-time of the search algorithm

T1 =
π

ω
≈ nπ(1 + 2−n)

2n − 1
2

n
2 ∼ π

2
2

n
2 = O(

√
N)
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State transfer by search with a switch

Utilize periodicity of the search for one vertex for state transfer
Initialize at the sender vertex in the loop — |⃗s,0⟩
Mark sender vertex
Evolve for T1 steps close to the initial state of the search |ψ0⟩
Switch marking from the sender to the receiver vertex r⃗
Evolve for T1 steps close to the loop on the receiver vertex |⃗r ,0⟩

Total run-time of the state transfer with a switch

T2 = 2T1 ∼ π2
n
2
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Reduction to a walk on a line

State transfer from 0⃗ to 1⃗ with both vertices marked simultaneously
Reduction to a line again possible, loops at both ends
Additional basis state — loop at the receiver vertex — |n,⟲⟩ = |⃗1,0⟩
Evolution operator — U ′′ = C′′ · S′′

Shift operator S′′

S′′ =
n−1∑
x=0

(|x ,R⟩⟨x + 1,L|+ |x + 1,L⟩⟨x ,R|) + |0,⟲⟩⟨0,⟲ |+ |n,⟲⟩⟨n,⟲ |

Position dependent coins, similar as for search

C′′ = (|0⟩⟨0|+ |n⟩⟨n|)⊗ C′
0 +

n−1∑
x=1

|x⟩⟨x | ⊗ Cx
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Approximate invariant subspace

Initial state of the state transfer — loop at the sender vertex — |0,⟲⟩
Target state of the state transfer — loop at the receiver vertex — |n,⟲⟩
Together with |ψ0⟩, |ψ1⟩ and |ψ2⟩ they form an approximate 5-dim invariant subspace

|ψ2⟩ =
1
c

n/2−2∑
x=0

1√
2
(n−1

x

) (|n − x ,L⟩ − |n − x − 1,R⟩)
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Approximate invariant subspace

Exact eigenvector of U ′′ with eigenvalue 1

|β1⟩ =
√

l2n

l2n + 2n
|ψ0⟩ −

√
n

l2n + 2n
(|0,⟲⟩+ |n,⟲⟩)

For small l , "almost" eigenvectors of U ′′

|β2⟩ =
√

2n
l2n + 2n

|ψ0⟩+

√
l2n−1

l2n + 2n
(|0,⟲⟩+ |n,⟲⟩)

|β3⟩ =
1√
2
(|ψ1⟩ − |ψ2⟩)

|β4⟩ =
1√
2
(|0,⟲⟩ − |n,⟲⟩)

|β5⟩ =
1√
2
(|ψ1⟩+ |ψ2⟩) , ⟨βj |U ′′|βj⟩ = 1 − O(l/n), j = 2, . . .5
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Evolution in the approximate invariant subspace

Effective evolution operator in the approximate invariant subspace

U ′′
ef =


1 0 0 0 0
0 cosω1 − sinω1 0 0
0 sinω1 cosω1 0 0
0 0 0 cosω2 − sinω2
0 0 0 sinω2 cosω2


Two rotations

in the |β2⟩, |β3⟩ plane by an angle ω1
in the |β4⟩, |β5⟩ plane by an angle ω2

ω1 ≈

√
2n
(
l + n21−n

)
c(n + l)

, ω2 ≈
√

2ln
c(n + l)
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Evolution in the approximate invariant subspace

Initial state in terms of |βj⟩

|0,⟲⟩ = −
√

n
l2n + 2n

|β1⟩+

√
l2n−1

l2n + 2n
|β2⟩+

1√
2
|β4⟩

Target state in terms of |βj⟩

|n,⟲⟩ = −
√

n
l2n + 2n

|β1⟩+

√
l2n−1

l2n + 2n
|β2⟩ −

1√
2
|β4⟩

We have to rotate from |β4⟩ to −|β4⟩, and make a full circle in |β2⟩, |β3⟩ plane
Optimal choice of the weight l — make the angles harmonic

l =
2
3

n
2n ≡ 2

3
d
N

=⇒ ω1 = 2ω2 ∼ 2
2√
3

2− n
2
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Evolution in the approximate invariant subspace

For l = 2
3

n
2n we find simpler form of |β1,2⟩

|β1⟩ =
1
2
|ψ0⟩ −

√
3
8
(|0,⟲⟩+ |n,⟲⟩), |β2⟩ =

√
3

2
|ψ0⟩+

√
1
8
(|0,⟲⟩+ |n,⟲⟩)

Eigenvectors of U ′′
ef corresponding to λ(±)

j = e±iωj

|ω(±)
1 ⟩ = 1√

2
(|β2⟩ ∓ i |β3⟩) , |ω(±)

2 ⟩ = 1√
2
(|β4⟩ ∓ i |β5⟩)

State after t steps

|ψ(t)⟩ = −
√

3
8
|β1⟩+

1
4
(ei2ω2t |ω(+)

1 ⟩+ e−i2ω2t |ω(−)
1 ⟩) + 1

2
(eiω2t |ω(+)

2 ⟩+ e−iω2t |ω(−)
2 ⟩)
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Fidelity of state transfer

Fidelity of state transfer into the loop at the
receiver vertex at time t

F(t) = |⟨n,⟲ |ψ(t)⟩|2

=
1
64

(3 + cos (2ω2t)− 4 cos (ω2t))2

Fidelity reaches unity for T3

T3 =
π

ω2
∼ π

√
3

2
2

n
2 =

√
3

2
T2

Fidelity for 10-dim hypercube

Faster than transfer with switch by a factor
√

3/2

Martin Štefaňák (FNSPE CTU in Prague) Quantum walk state transfer on a hypercube 5. 6. 2023 25 / 35



Outline

1 Introduction

2 Quantum walk search on a hypercube

3 State transfer between antipodal vertices

4 State transfer between vertices of arbitrary distance
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State transfer between vertices of arbitrary distance d

Sender at 0⃗, receiver at vertex r⃗ with
Hamming weight d
Weighted loops at both vertices
We consider same weight l = 2

3
n
2n as

for transfer to the antipode (d = n)

Initial state — |⃗0,0⟩
Target state — |⃗r ,0⟩
Reduction to a line is not possible,
mostly numerical evidence
For d = 2, . . . ,n − 1 the fidelity
behaves similarly as for d = n
For d = 1 the peak is wider, but the
maximum is reached at time close to
T3

State transfer on 10-dim hypercube

d=1

d=5
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Fidelity of state transfer for d ≥ 2

Fidelity for given distance d Minimal fidelity as function of n

Fidelity as a function of the distance d is almost constant, except for d = 2
With increasing dimension of the hypercube n the minimal fidelity improves
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Approximate invariant subspace for d ≥ 2

Approximation — state transfer evolves in 5-dim invariant subspace
Relevant eigenvalues 1, e±iω1 , e±iω2 , phases ω1,2 close to formulas for the antipode
Exact eigenvector corresponding to eigenvalue 1 for all distances d

|γ1⟩ =
1
2
|ψ0⟩ −

√
3
8
(|⃗0,0⟩+ |⃗r ,0⟩)

"Almost" eigenvectors |γ2⟩ and |γ4⟩ constructed in a similar way as |β2⟩ and |β4⟩

|γ2⟩ =
√

3
2

|ψ0⟩+
√

1
8
(|⃗0,0⟩+ |⃗r ,0⟩), |γ4⟩ =

1√
2
(|⃗0,0⟩ − |⃗r ,0⟩)

|γ3⟩ and |γ5⟩ would require analogy of |ψ1⟩ and |ψ2⟩ — we do not have analytical form
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Relevant phases for d ≥ 2

Relevant phases for n = 10 Ratio of phases for n = 10

Relevant phases are close to the values for d = n
With increasing distance d the ratio approaches 2
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Relevant eigenvectors for d ≥ 2

|γ2⟩ and |γ4⟩ in terms of eigenvectors
|ω(±)

1 ⟩, |ω(±)
2 ⟩ — similar as for the

antipode

|γ2⟩ ≈
1√
2
(|ω(+)

1 ⟩+ |ω(−)
1 ⟩)

|γ4⟩ ≈
1√
2
(|ω(+)

2 ⟩+ |ω(−)
2 ⟩)

Overlap with eigenvectors for n = 8

For d ≥ 2 state transfer works in a similar way as for d = n
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State transfer between nearest neighbours

Larger projection of the initial and the target state onto ker(U ′′ − 1)

|γ0⟩ =
x√
2
(|⃗0,0⟩+ |⃗r ,0⟩) + y |ψ0⟩+

z√
2
(|⃗0,dr ⟩+ |⃗r ,ds⟩)

Amplitudes of the exact eigenstate

x =

√
3a
b
, a = 2n + 2n − 4, b = 3 · 2n + 8n − 12 − 22−n

y = −2(n − 1)√
ab

, z = −
√

n2n+1(1 − 21−n)√
ab

For large n, y and z vanishes, x tends to 1 — approximation of the eigenvector

|γ0⟩ ≈
1√
2
(|⃗0,0⟩+ |⃗r ,0⟩)
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State transfer between nearest neighbours

For d = 1 only one pair of eigenvalues
λ
(±)
2 = e±iω2 is relevant

ω2 ∼ 2√
3

2− n
2

Initial and target states in terms of
eigenstates

|⃗0,0⟩ ≈ x√
2
|γ0⟩+

1
2
(|ω(+)

2 ⟩+ |ω(−)
2 ⟩)

|⃗r ,0⟩ ≈ x√
2
|γ0⟩ −

1
2
(|ω(+)

2 ⟩+ |ω(−)
2 ⟩)

Comparison of ω2 with numerics
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State transfer between nearest neighbours

State after t steps

|ψ(t)⟩ = x√
2
|γ0⟩+

1
2
(e−iω2t |ω(+)

2 ⟩+ eiω2t |ω(−)
2 ⟩)

Fidelity of state transfer at time t

F(t) =
1
4
(x2 − cos(ω2t))2

Maximal fidelity at T3 = π/ω2

F =
1
4
(1 + x2)2

For large n — x = 1

F(t) = sin4
(
ω2t
2

)

Max fidelity for a given n
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Conclusions

Two approaches to state transfer on a hypercube
Exploit search and switch marking from sender to receiver after one period
Mark both sender and receiver with weighted loops
In the second case the run-time is faster
Analytical results for search, and state transfer between antipodal vertices
Exact form of stationary state for d ̸= n + numerical results

Stefanak and Skoupy, Quantum walk state transfer on a hypercube, arXiv:2302.07581

Physica Scripta 98, 104003 (2023)

Thank you for your attention
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