A general theorem in spectral extremal graph theory Algebraic Graph Theory Seminar

John Byrne (joint work with Dheer Noal Desai and Michael Tait)

University of Delaware

June 10, 2024

Let \mathcal{F} be a family of graphs.

→ < ∃ →</p>

Image: A mathematical states and a mathem

æ

Let \mathcal{F} be a family of graphs. A graph G is called \mathcal{F} -free if G has no subgraph isomorphic to some $F \in \mathcal{F}$.

Image: A image: A

э

Let \mathcal{F} be a family of graphs. A graph G is called \mathcal{F} -free if G has no subgraph isomorphic to some $F \in \mathcal{F}$. The *spectral radius* of G is the largest eigenvalue of its adjacency matrix.

글 에 에 글 어 !!

Let \mathcal{F} be a family of graphs. A graph G is called \mathcal{F} -free if G has no subgraph isomorphic to some $F \in \mathcal{F}$. The *spectral radius* of G is the largest eigenvalue of its adjacency matrix.

• ex(n, \mathcal{F}) is the maximum number of edges in an \mathcal{F} -free graph on n vertices.

Let \mathcal{F} be a family of graphs. A graph G is called \mathcal{F} -free if G has no subgraph isomorphic to some $F \in \mathcal{F}$. The *spectral radius* of G is the largest eigenvalue of its adjacency matrix.

- ex(*n*, *F*) is the maximum number of edges in an *F*-free graph on *n* vertices.
- spex(*n*, *F*) is the maximum spectral radius of an *F*-free graph on *n* vertices.

Let \mathcal{F} be a family of graphs. A graph G is called \mathcal{F} -free if G has no subgraph isomorphic to some $F \in \mathcal{F}$. The *spectral radius* of G is the largest eigenvalue of its adjacency matrix.

- ex(*n*, *F*) is the maximum number of edges in an *F*-free graph on *n* vertices.
- $\operatorname{spex}(n, \mathcal{F})$ is the maximum spectral radius of an \mathcal{F} -free graph on n vertices.
- EX(n, \mathcal{F}) and SPEX(n, \mathcal{F}) are the sets of graphs obtaining the maximum in each case.

Let \mathcal{F} be a family of graphs. A graph G is called \mathcal{F} -free if G has no subgraph isomorphic to some $F \in \mathcal{F}$. The *spectral radius* of G is the largest eigenvalue of its adjacency matrix.

- ex(*n*, *F*) is the maximum number of edges in an *F*-free graph on *n* vertices.
- $\operatorname{spex}(n, \mathcal{F})$ is the maximum spectral radius of an \mathcal{F} -free graph on n vertices.
- EX(n, \mathcal{F}) and SPEX(n, \mathcal{F}) are the sets of graphs obtaining the maximum in each case.

Our goal is to find conditions on \mathcal{F} under which we can relate $\text{EX}(n, \mathcal{F})$ and $\text{SPEX}(n, \mathcal{F})$ as $n \to \infty$.

(人間) トイヨト イヨト ニヨ

ヨト・モラト

For non-bipartite forbidden graphs, then asymptotics of the edge extremal function are known:

< 3 >

For non-bipartite forbidden graphs, then asymptotics of the edge extremal function are known:

Theorem (Erdős-Stone-Simonovits)

For any graph F, we have

$$\operatorname{ex}(n,F) = \left(1 - \frac{1}{\chi(F) - 1}\right) \binom{n}{2} + o(n^2).$$

For non-bipartite forbidden graphs, then asymptotics of the edge extremal function are known:

Theorem (Erdős-Stone-Simonovits)

For any graph F, we have

$$\operatorname{ex}(n,F) = \left(1 - \frac{1}{\chi(F) - 1}\right) \binom{n}{2} + o(n^2).$$

Moreover, we know something about the structure of the extremal graphs:

For non-bipartite forbidden graphs, then asymptotics of the edge extremal function are known:

Theorem (Erdős-Stone-Simonovits)

For any graph F, we have

$$\operatorname{ex}(n,F) = \left(1 - \frac{1}{\chi(F) - 1}\right) \binom{n}{2} + o(n^2).$$

Moreover, we know something about the structure of the extremal graphs:

Theorem (Erdős-Simonovits)

Let F be a graph with $r = \chi(F) - 1$. Then any graph in $\text{EX}(n, \mathcal{F})$ can be obtained from $\mathcal{T}_{n,r}$ by adding and deleting $o(n^2)$ many edges.

くぼう くほう くほう

For non-bipartite forbidden graphs, then asymptotics of the edge extremal function are known:

Theorem (Erdős-Stone-Simonovits)

For any graph F, we have

$$\operatorname{ex}(n,F) = \left(1 - \frac{1}{\chi(F) - 1}\right) \binom{n}{2} + o(n^2).$$

Moreover, we know something about the structure of the extremal graphs:

Theorem (Erdős-Simonovits)

Let F be a graph with $r = \chi(F) - 1$. Then any graph in $\text{EX}(n, \mathcal{F})$ can be obtained from $\mathcal{T}_{n,r}$ by adding and deleting $o(n^2)$ many edges.

Here $T_{n,r}$ denotes the *Turán graph*, the complete *r*-partite graph on *n* vertices with partite sets as equal as possible.

ヘロト 不得 トイヨト イヨト 二日

(日)

Similar results hold for the spectral extrema.

< ∃⇒

< 1 k

Similar results hold for the spectral extrema.

Theorem (Nikiforov)

Let F be a graph with $r = \chi(F) - 1$. Then any graph in SPEX(n, F) can be obtained from $T_{n,r}$ by adding and deleting $o(n^2)$ many edges.

Similar results hold for the spectral extrema.

Theorem (Nikiforov)

Let F be a graph with $r = \chi(F) - 1$. Then any graph in SPEX(n, F) can be obtained from $T_{n,r}$ by adding and deleting $o(n^2)$ many edges.

What can be said about the relation between SPEX(n, F) and EX(n, F)?

Similar results hold for the spectral extrema.

Theorem (Nikiforov)

Let F be a graph with $r = \chi(F) - 1$. Then any graph in SPEX(n, F) can be obtained from $T_{n,r}$ by adding and deleting $o(n^2)$ many edges.

What can be said about the relation between SPEX(n, F) and EX(n, F)?

Theorem (Wang-Kang-Xue)

If $ex(n, F) = e(T_{n,r}) + O(1)$, then $SPEX(n, F) \subseteq EX(n, F)$ for n large enough.

イロン イ理 とくほとう ほんし

The Erdős-Stone-Simonovits Theorem gives that if F is bipartite, then $ex(n, F) = o(n^2)$. The correct exponent is only known in some special cases.

→ Ξ →

The Erdős-Stone-Simonovits Theorem gives that if F is bipartite, then $ex(n, F) = o(n^2)$. The correct exponent is only known in some special cases.

Proposition

- $ex(n, F) < n^{2-\varepsilon}$ if and only if F is bipartite;
- $ex(n, F) > n^{1+\varepsilon}$ if and only if F has a cycle;
- if F is a forest, then $ex(n, F) = \Theta(n)$.

The Erdős-Stone-Simonovits Theorem gives that if F is bipartite, then $ex(n, F) = o(n^2)$. The correct exponent is only known in some special cases.

Proposition

- $ex(n, F) < n^{2-\varepsilon}$ if and only if F is bipartite;
- $ex(n, F) > n^{1+\varepsilon}$ if and only if F has a cycle;
- if F is a forest, then $ex(n, F) = \Theta(n)$.

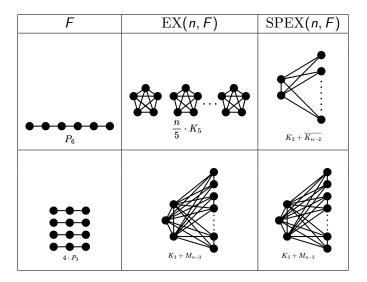
A linear extremal number can also be obtained by forbidding certain infinite families of graphs, e.g. if $\mathcal{F} = \{all cycles\}$.

くぼう くさう くさう しき

Motivating examples

イロト イポト イヨト イヨト

Motivating examples



<ロト < 四ト < 三ト < 三ト

э

Previous work for forests

ヨト・イヨト

æ

Previous work for forests

Let G + H denote the *join* of graphs G and H, obtained by taking the disjoint union of G and H and letting every vertex in G be adjacent to every vertex in H.

∃ ⇒

Previous work for forests

Let G + H denote the *join* of graphs G and H, obtained by taking the disjoint union of G and H and letting every vertex in G be adjacent to every vertex in H.

Theorem (Zhai, Yuan, You)

If $\operatorname{EX}(n, F) = K_k + \overline{K_{n-k}}$ (or $K_k + (K_2 \cup \overline{K_{n-k-2}})$) then $\operatorname{SPEX}(n, F) = K_k + \overline{K_{n-k}}$ (or $K_k + (K_2 \cup \overline{K_{n-k-2}})$) for *n* large enough.

<ロト < 四ト < 三ト < 三ト

We need some definitions before stating our main result:

∃ →

< 1 k

We need some definitions before stating our main result:

Definition

Let F, G be graphs. Then let $ex^G(n, F)$ denote the maximum number of edges in an *n*-vertex *F*-free graph which contains a copy of *G*.

We need some definitions before stating our main result:

Definition

Let F, G be graphs. Then let $ex^G(n, F)$ denote the maximum number of edges in an *n*-vertex *F*-free graph which contains a copy of *G*.

Definition

We denote by $K_{k,\infty}$ the complete bipartite graph with one partite set of size k and the other countably infinite.

We need some definitions before stating our main result:

Definition

Let F, G be graphs. Then let $ex^G(n, F)$ denote the maximum number of edges in an *n*-vertex *F*-free graph which contains a copy of *G*.

Definition

We denote by $K_{k,\infty}$ the complete bipartite graph with one partite set of size k and the other countably infinite.

Note that

$$F \subseteq K_{k,\infty} \iff F \subseteq K_{k,n-k}$$
 for *n* large enough.

<ロト < 四ト < 三ト < 三ト

Theorem (B., Desai, Tait 2024)

Suppose ${\mathcal F}$ satisfies:

< ロ > < 回 > < 回 > < 回 > < 回 >

Theorem (B., Desai, Tait 2024)

Suppose ${\mathcal F}$ satisfies:

• $ex(n, \mathcal{F}) = O(n)$

John Byrne (joint work with Dheer Noal DesaA general theorem in spectral extremal graph

イロン イヨン イヨン イヨン

Theorem (B., Desai, Tait 2024)

Suppose ${\mathcal F}$ satisfies:

- $ex(n, \mathcal{F}) = O(n)$
- $K_{k+1,\infty} \supseteq F \in \mathcal{F}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem (B., Desai, Tait 2024)

Suppose ${\mathcal F}$ satisfies:

- $ex(n, \mathcal{F}) = O(n)$
- $K_{k+1,\infty} \supseteq F \in \mathcal{F}$
- $\mathrm{EX}^{K_{k,n-k}}(n,\mathcal{F}) \ni H$ for large enough *n*, where either:

< 3 >

< (17) > <

Theorem (B., Desai, Tait 2024)

Suppose \mathcal{F} satisfies:

- $ex(n, \mathcal{F}) = O(n)$
- $K_{k+1,\infty} \supseteq F \in \mathcal{F}$
- EX<sup>K_{k,n-k}(n, F) ∋ H for large enough n, where either:
 (a) H = K_{k,n-k}
 </sup>

< 🗇 🕨 🔸

Theorem (B., Desai, Tait 2024)

Suppose \mathcal{F} satisfies:

- $ex(n, \mathcal{F}) = O(n)$
- $K_{k+1,\infty} \supseteq F \in \mathcal{F}$
- EX<sup>K_{k,n-k}(n, F) ∋ H for large enough n, where either:
 (a) H = K_{k,n-k}
 (b) H = K_k + K_{n-k}
 </sup>

< 17 ▶

Theorem (B., Desai, Tait 2024)

Suppose ${\mathcal F}$ satisfies:

- $ex(n, \mathcal{F}) = O(n)$
- $K_{k+1,\infty} \supseteq F \in \mathcal{F}$
- $\mathrm{EX}^{K_{k,n-k}}(n,\mathcal{F}) \ni H$ for large enough *n*, where either:

(a)
$$H = K_{k,n-k}$$

(b) $H = K_k + \overline{K_{n-k}}$
(c) $H = K_k + (K_2 \cup \overline{K_{n-k-2}})$

< 3 >

< (17) > <

Theorem (B., Desai, Tait 2024) Suppose \mathcal{F} satisfies: • $ex(n, \mathcal{F}) = O(n)$ • $K_{k+1,\infty} \supseteq F \in \mathcal{F}$ • $EX^{K_{k,n-k}}(n, \mathcal{F}) \ni H$ for large enough *n*, where either: (a) $H = K_{k,n-k}$ (b) $H = K_k + \overline{K_{n-k}}$ (c) $H = K_k + (K_2 \cup K_{n-k-2})$ (d) $H = K_k + X$ where $e(X) \leq Qn + O(1)$ for some $Q \in [0, 3/4)$ and \mathcal{F} is finite

< (F) >

Theorem (B., Desai, Tait 2024) Suppose \mathcal{F} satisfies: • $ex(n, \mathcal{F}) = O(n)$ • $K_{k+1,\infty} \supseteq F \in \mathcal{F}$ • $EX^{K_{k,n-k}}(n, \mathcal{F}) \ni H$ for large enough *n*, where either: (a) $H = K_{k,n-k}$ (b) $H = K_k + \overline{K_{n-k}}$ (c) $H = K_k + (K_2 \cup K_{n-k-2})$ (d) $H = K_k + X$ where $e(X) \leq Qn + O(1)$ for some $Q \in [0, 3/4)$ and \mathcal{F} is finite (f) $H = K_k + X$ where $e(X) \leq Qn + O(1)$ for some $Q \geq 3/4$, all but a bounded number of vertices of X have constant degree d, and $K_k + (\infty \cdot K_{1,d+1})$ is not \mathcal{F} -free.

< 17 ▶

Theorem (B., Desai, Tait 2024) Suppose \mathcal{F} satisfies: • $ex(n, \mathcal{F}) = O(n)$ • $K_{k+1,\infty} \supseteq F \in \mathcal{F}$ • $EX^{K_{k,n-k}}(n, \mathcal{F}) \ni H$ for large enough *n*, where either: (a) $H = K_{k,n-k}$ (b) $H = K_k + \overline{K_{n-k}}$ (c) $H = K_k + (K_2 \cup K_{n-k-2})$ (d) $H = K_k + X$ where $e(X) \leq Qn + O(1)$ for some $Q \in [0, 3/4)$ and \mathcal{F} is finite (f) $H = K_k + X$ where $e(X) \leq Qn + O(1)$ for some $Q \geq 3/4$, all but a bounded number of vertices of X have constant degree d, and $K_k + (\infty \cdot K_{1,d+1})$ is not \mathcal{F} -free. Then if (a), (b) or (c) holds $SPEX(n, \mathcal{F}) = \{H\}$

< f² ► <

Theorem (B., Desai, Tait 2024) Suppose \mathcal{F} satisfies: • $ex(n, \mathcal{F}) = O(n)$ • $K_{k+1,\infty} \supseteq F \in \mathcal{F}$ • $\mathrm{EX}^{K_{k,n-k}}(n,\mathcal{F}) \ni H$ for large enough *n*, where either: (a) $H = K_{k,n-k}$ (b) $H = K_k + K_{n-k}$ (c) $H = K_k + (K_2 \cup K_{n-k-2})$ (d) $H = K_k + X$ where $e(X) \leq Qn + O(1)$ for some $Q \in [0, 3/4)$ and \mathcal{F} is finite (f) $H = K_k + X$ where $e(X) \leq Qn + O(1)$ for some $Q \geq 3/4$, all but a bounded number of vertices of X have constant degree d, and $K_k + (\infty \cdot K_{1,d+1})$ is not \mathcal{F} -free. Then if (a), (b) or (c) holds $SPEX(n, \mathcal{F}) = \{H\}$ and if (d) or (f) holds $SPEX(n, \mathcal{F}) \subseteq EX^{K_k+K_{n-k}}(n, \mathcal{F}).$ < 🗇 🕨 🔸

イロト イボト イヨト イヨト

æ

Let F be the star forest $K_{1,d_1} \cup \cdots \cup K_{1,d_j}$ where $d_1 \geq \cdots \geq d_j$.

► < Ξ ►</p>

Let *F* be the star forest $K_{1,d_1} \cup \cdots \cup K_{1,d_i}$ where $d_1 \geq \cdots \geq d_j$.

• Any forest satisfies $ex(n, \mathcal{F}) = O(n)$.

< (17) × <

► < Ξ ►</p>

Let F be the star forest $K_{1,d_1} \cup \cdots \cup K_{1,d_i}$ where $d_1 \geq \cdots \geq d_j$.

- Any forest satisfies $ex(n, \mathcal{F}) = O(n)$.
- We have $F \subseteq K_{j,\infty}$, so let k = j 1.

< (17) × <

► < Ξ ►</p>

- Let F be the star forest $K_{1,d_1} \cup \cdots \cup K_{1,d_j}$ where $d_1 \geq \cdots \geq d_j$.
 - Any forest satisfies $ex(n, \mathcal{F}) = O(n)$.
 - We have $F \subseteq K_{j,\infty}$, so let k = j 1.
 - Any graph of the form Y + X where |V(Y)| = k is *F*-free if and only if $\Delta(X) < d_j$, so $\operatorname{EX}^{K_{k,n-k}}(n, F) \ni K_k + X$ where X is $(d_j 1)$ -regular.

くぼう くほう くほう

- Let F be the star forest $K_{1,d_1} \cup \cdots \cup K_{1,d_j}$ where $d_1 \geq \cdots \geq d_j$.
 - Any forest satisfies $ex(n, \mathcal{F}) = O(n)$.
 - We have $F \subseteq K_{j,\infty}$, so let k = j 1.
 - Any graph of the form Y + X where |V(Y)| = k is *F*-free if and only if $\Delta(X) < d_j$, so $\operatorname{EX}^{K_{k,n-k}}(n, F) \ni K_k + X$ where X is $(d_j 1)$ -regular.
 - (f) is satisfied, so we conclude that every graph in SPEX(n, F) is of this form.

くぼう くほう くほう しゅ

- Let F be the star forest $K_{1,d_1} \cup \cdots \cup K_{1,d_j}$ where $d_1 \geq \cdots \geq d_j$.
 - Any forest satisfies $ex(n, \mathcal{F}) = O(n)$.
 - We have $F \subseteq K_{j,\infty}$, so let k = j 1.
 - Any graph of the form Y + X where |V(Y)| = k is *F*-free if and only if $\Delta(X) < d_j$, so $\operatorname{EX}^{K_{k,n-k}}(n, F) \ni K_k + X$ where X is $(d_j 1)$ -regular.
 - (f) is satisfied, so we conclude that every graph in SPEX(n, F) is of this form.
 - This recovers a result of Chen, Liu, and Zhang.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

We can characterize $SPEX(n, \mathcal{F})$ when \mathcal{F} is:

æ

Image: A image: A

Image: A matrix and a matrix

We can characterize $SPEX(n, \mathcal{F})$ when \mathcal{F} is: Finite families

- Path forest (Chen-Liu-Zhang)
- Star forest (Chen-Liu-Zhang)
- Certain small trees
- Almost any tree (Fang-Lin-Shu-Zhang)
- Spectral Erdős-Sós theorem (Cioaba-Desai-Tait)

Infinite families

- Arithmetic progression of cycles
- Consecutive even cycle lengths
- k disjoint long cycles
- Disjoint equicardinal cycles
- Graphs with K_k -minors (Tait)
- Graph with F_k -minors (He-Li-Feng)
- k disjoint chorded cycles
- 2 disjoint cycles, one with a chord
- Cycles with k(k-2) + 1 chords
- Cycles with k incident chords

Proof idea I

イロト イヨト イヨト イヨト

Proof idea I

Our main tools are:

Eigenvector equations: if λ is an eigenvalue of G with eigenvector x, then for any u ∈ V(G),

$$\lambda x_{u} = \sum_{v \sim u} x_{v}, \quad \lambda^{2} x_{u} = \sum_{v \sim u} \sum_{w \sim v} x_{w}.$$

< ∃⇒

э

Proof idea I

Our main tools are:

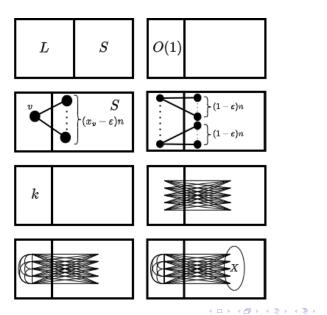
Eigenvector equations: if λ is an eigenvalue of G with eigenvector x, then for any u ∈ V(G),

$$\lambda x_u = \sum_{v \sim u} x_v, \quad \lambda^2 x_u = \sum_{v \sim u} \sum_{w \sim v} x_w.$$

• Rayleigh quotient: We have

$$\lambda = \max_{\|x\|=1} 2 \sum_{uv \in E(G)} x_u x_v.$$

Proof idea II



3

13 / 19

Q = 3/4 threshold I

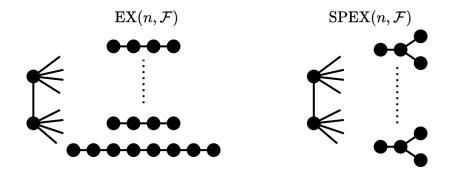
Q = 3/4 threshold I

Theorem (B., Desai, Tait 2024)
Suppose $\mathcal F$ satisfies:
• $ex(n, \mathcal{F}) = O(n)$
• $K_{k+1,\infty} \supseteq F \in \mathcal{F}$
• $\mathrm{EX}^{K_{k,n-k}}(n,\mathcal{F}) \ni H$ for large enough <i>n</i> , where either:
(a) $H = K_{k,n-k}$
(b) $H = K_k + K_{n-k}$ (c) $H = K_k + (K_2 \cup \overline{K_{n-k-2}})$
(d) $H = K_k + X$ where $e(X) \leq Qn + O(1)$ for some $Q \in [0, 3/4)$ and \mathcal{F} is
finite
(f) $H = K_k + X$ where $e(X) \le Qn + O(1)$ for some $Q \ge 3/4$, all but a
bounded number of vertices of X have constant degree d, and $K = \frac{1}{2} \left(\log \frac{1}{2} K + 1 \right)$ is not T free.
$K_k + (\infty \cdot K_{1,d+1})$ is not \mathcal{F} -free.
Then if (a), (b) or (c) holds $SPEX(n, \mathcal{F}) = \{H\}$ and if (d) or (f) holds
$\operatorname{SPEX}(n,\mathcal{F}) \subseteq \operatorname{EX}^{K_k + \overline{K_{n-k}}}(n,\mathcal{F}).$
DPC 로 4분 > 4분 > 4년 > 4日 >

Q = 3/4 threshold II

Q = 3/4 threshold II

We will find a finite graph family ${\mathcal F}$ for which:



< ∃⇒

15 / 19

Q = 3/4 threshold III

<ロト <問ト < 目ト < 目ト

Q = 3/4 threshold III

- Let ${\mathcal F}$ consist of:
 - 3 · K_{1,4}
 - $K_{2,6} \cup X_5 \cup Y_5$, for all connected graphs X_5, Y_5 on 5 vertices
 - $K_{2,6} \cup K_{1,3} \cup X_5$, for all connected graphs X_5 on 5 vertices
 - $K_{2,6} \cup X_9$, for all connected graphs X_9 on 9 vertices
 - $K_{2,6} \cup X_8$, for all connected graphs X_8 on 8 vertices except for P_8
 - $X_5 \cup Y_5 \cup Z_5 \cup W_5$, for all connected graphs X_5, Y_5, Z_5, W_5 on 5 vertices
 - $C_i \cup C_j \cup C_k$ for $3 \le i, j, k \le 7$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

< □ > < □ > < □ > < □ > < □ > .

Let spex_α(n, F) be the maximum spectral radius of the matrix
 A_α(G) := αD(G) + (1 − α)A(G) over F-free graphs G on n vertices.
 In particular, the signless Laplacian Q(G) = 2A_{1/2}(G).

- Let spex_α(n, F) be the maximum spectral radius of the matrix
 A_α(G) := αD(G) + (1 − α)A(G) over F-free graphs G on n vertices.
 In particular, the signless Laplacian Q(G) = 2A_{1/2}(G).
- Our second goal is to relate $SPEX(n, \mathcal{F})$ and $SPEX_{\alpha}(n, \mathcal{F})$.

- Let spex_α(n, F) be the maximum spectral radius of the matrix
 A_α(G) := αD(G) + (1 − α)A(G) over F-free graphs G on n vertices.
 In particular, the signless Laplacian Q(G) = 2A_{1/2}(G).
- Our second goal is to relate $SPEX(n, \mathcal{F})$ and $SPEX_{\alpha}(n, \mathcal{F})$.

Theorem (B., Desai, Tait 2024)

Let \mathcal{F} be a family of graphs containing some bipartite graph F for which F - v is a forest, or such that $ex(n, \mathcal{F}) = O(n)$. Suppose that for n large enough, $SPEX(n, \mathcal{F}) \ni H$, where either:

(a)
$$H = K_k + \overline{K_{n-k}}$$

(b)
$$H = K_k + (K_2 \cup \overline{K_{n-k-2}}).$$

Then for any $\alpha \in (0, 1)$, for any *n* large enough, $SPEX_{\alpha}(n, \mathcal{F}) = H$.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

We can characterize $SPEX_{\alpha}(n, \mathcal{F})$ when \mathcal{F} is:

æ

Image: A image: A

We can characterize $SPEX_{\alpha}(n, \mathcal{F})$ when \mathcal{F} is: Finite families

- Linear forests (Chen-Liu-Zhang)
- Certain small trees
- Spectral Erdős-Sós Theorem (Chen-Li-Li-Yu-Zhang)

Infinite families

- Even cycles (Li-Yu)
- Intersecting even cycles
- All k consecutive even cycles
- All k disjoint cycles (Li-Yu-Zhang)
- All long cycles
- All disjoint equicardinal cycles
- Graphs with K_k -minors (Chen-Liu-Zhang)
- Graphs with F_{k} -minors (Wang-Zhang)

• Many more applications can be proven using only a slight modification of our methods. Can one prove a stronger result which captures all of these?

- Many more applications can be proven using only a slight modification of our methods. Can one prove a stronger result which captures all of these?
 - Can we completely drop the assumption that \mathcal{F} is finite?

- Many more applications can be proven using only a slight modification of our methods. Can one prove a stronger result which captures all of these?
 - Can we completely drop the assumption that \mathcal{F} is finite?
 - What if the extremal graphs are of the form W + X where $W \notin \{\overline{K_K}, K_k\}$?

- Many more applications can be proven using only a slight modification of our methods. Can one prove a stronger result which captures all of these?
 - Can we completely drop the assumption that \mathcal{F} is finite?
 - ▶ What if the extremal graphs are of the form W + X where $W \notin {\overline{K_K}, K_k}$?
 - If K_{k,n-k} ∈ SPEX(n, F) then what is the range of α for which we can show K_{k,n-k} ∈ SPEX_α(n, F)?

- Many more applications can be proven using only a slight modification of our methods. Can one prove a stronger result which captures all of these?
 - Can we completely drop the assumption that \mathcal{F} is finite?
 - ▶ What if the extremal graphs are of the form W + X where $W \notin {\overline{K_K}, K_k}$?
 - ▶ If $K_{k,n-k} \in \operatorname{SPEX}(n, \mathcal{F})$ then what is the range of α for which we can show $K_{k,n-k} \in \operatorname{SPEX}_{\alpha}(n, \mathcal{F})$?
- Do the spectral extremal results still hold when $ex(n, \mathcal{F}) = n^r$ for 1 < r < 3/2?

- Many more applications can be proven using only a slight modification of our methods. Can one prove a stronger result which captures all of these?
 - Can we completely drop the assumption that \mathcal{F} is finite?
 - ▶ What if the extremal graphs are of the form W + X where $W \notin {\overline{K_K}, K_k}$?
 - If K_{k,n-k} ∈ SPEX(n, F) then what is the range of α for which we can show K_{k,n-k} ∈ SPEX_α(n, F)?
- Do the spectral extremal results still hold when $ex(n, \mathcal{F}) = n^r$ for 1 < r < 3/2?
- How much can the counterexample for Q = 3/4 be simplified?

くほう イヨン イヨン 二日